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Abstract— Most work on the simultaneous localization
and mapping (SLAM) problem assumes the frequent avail-
ability of dense information about the environment such as
that provided by a laser rangefinder. However, for imple-
menting SLAM in consumer-oriented products such as toys
or cleaning robots, it is infeasible to use expensive sensing.
In this work we examine the SLAM problem for robots with
very sparse sensing that provides too little data to extract
features of the environment from a single scan. We modify
SLAM to group several scans taken as the robot moves into
multiscans, achieving higher data density in exchange for
greater measurement uncertainty due to odometry error. We
formulate a full system model for this approach, and then in-
troduce simplifications that enable efficient implementation
using a Rao-Blackwellized particle filter. Finally, we describe
simple algorithms for feature extraction and data association
of line and line segment features from multiscans, and then
present experimental results using real data from several
environments.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a
fundamental capability for autonomous mobile robots
that must be able to navigate within their environment.
The SLAM problem has received much attention in the
robotics community, and a number of approaches have
been demonstrated. However, nearly all the prevalent
work on SLAM demands the use of costly, high-fidelity
sensors such as laser rangefinders.

As consumer-oriented robotic devices become more
widely available, the demand for mapping capabilities in
these robots also grows. Robust mapping and navigation
will enable many robotic applications such as robotic as-
sistants for the elderly and disabled, security monitoring,
and even “smart” toys. However, few consumers would
pay the cost that a laser rangefinder would entail for
such robots. Furthermore, a laser rangefinder imposes
power, size, and computation requirements that may be
infeasible for consumer applications.

In this work we present an efficient approach to enable
SLAM in indoor environments on robots with much more
limited sensing. We eventually plan to implement SLAM
using an array of infrared rangefinders that costs less
than US$40, several orders of magnitude less than a laser
rangefinder.

Using such a limited sensing array demands an ap-
proach that is somewhat different from the traditional
SLAM sequence of moving, sensing, extracting features,
finding correspondences, and then updating the map

(a) (b)
Fig. 1. (a) A typical laser rangefinder scan arrangement, providing
180 degrees of dense coverage in one-degree increments; (b) A sparse
sensor, which gives only five range readings in a single scan.

and pose estimates. To illustrate this, Figure 1a de-
picts the data density of a single scan of a 180◦ laser
rangefinder. A single such scan can be used to extract
meaningful features such as lines or corners, or can
be matched directly with the robot’s map. In contrast,
Figure 1b shows the data density of a scan using only
five radially-spaced range sensors, the arrangement we
use in our experiments. Clearly, it is much more difficult
to extract features from such sparse data.

Our approach is to group consecutive sparse scans into
multiscans so the data from multiple frames can be used
to extract good features; the tradeoff is that uncertainty
in the robot’s motion contributes to noise in feature
extraction. This approach requires the pose history to
be kept in order to process the multiscan. While others
(e.g., [8]) have explicitly stored the pose history in the
system state, we instead separate the pose history from
the system state so that feature extraction is performed
only once per multiscan. In conjunction with a particle
filter implementation, our approach yields a reasonably
efficient SLAM algorithm for robots with sparse sensing.

The paper proceeds as follows: after a brief discussion
of related research, in Section II we discuss a previ-
ous approach for applying SLAM using a pose history.
We then formulate the multiscan approach, examine its
properties, and discuss a particle filtering version in
Section III. In Section IV we describe simple methods for
extracting line and line segment features from multiscans
and finding correspondences. Finally, in Section V, we
discuss our implementation of sparse sensing SLAM and
the results of experiments on data from the Radish [5]
repository.

A. Related work
Most recent SLAM work has focused on creating ac-

curate maps using laser rangefinders either to extract



features from the environment [12] or to perform scan
matching against the robot’s map [4]. The particle filter-
ing approach for performing SLAM has recently gained
wide acceptance, and both landmark based and scan-
matching based techniques have drawn on the strategy
of Rao-Blackwellized particle filtering, first introduced in
the SLAM literature by Murphy [9].

Relatively little work has examined the SLAM problem
under sensing constraints such as sparseness or sensor
range limitations. In the topological mapping domain,
Huang and Beevers [7], [6] have dealt with both of these
constraints and have developed a complete algorithm for
tracing a version of the Voronoi diagram of a rectilinear
environment under the L∞ distance metric, using eight
radially spaced short-range sensors. It is not immediately
clear how the approach can be extended to more general
environments.

In work based on techniques similar to our multiscan
approach, Zunino and Christensen [16] and Wijk and
Christensen [14] have used SONAR data taken from
multiple locations to extract features and perform SLAM.
Similarly, Leonard et al. [8] and Tardós et al. [11] have
used a ring of 24 SONAR sensors for mapping with an
approach we discuss in Section II. In their experiments
with feature extraction based on the Hough transform
and an accurate SONAR sensor model, they closed loops
in several real-world environments using an Extended
Kalman Filter (EKF) based mapper.

II. APPLYING SLAM WITH A POSE HISTORY

When features can only be detected from multiple
poses, one approach to SLAM is to incorporate the pose
history into the state vector. This is the method used by
Leonard et al. [8] who applied an EKF to the resulting
system. In this section, we give a brief description of
this approach and how one might apply a particle filter
to this system. This sets the context for our simplified
approach to the problem, described in Section III.

Suppose we keep the most recent m robot poses in the
system state vector. Then, x(k) = [xr(k) x f (k)] where
xr(k) = [xtk xtk−1 . . . xtk−m+1 ] (with xtk being the robot
pose at time k), and x f (k) is a vector of n landmarks
[x f1

. . . x fn ]. This fits into the standard system model:

x(k) = f (x(k− 1), u(k− 1)) + v(k) (1)
z(k) = h(x(k)) + w(k) (2)

where u(k− 1) is the input, z(k) the measurement, and
v(k) and w(k) are system and measurement noise.

A. Using the EKF

Leonard et al. [8] apply the EKF to this system, so they
maintain an estimate of the state vector as well as its full
covariance:

Px =

[
Pxr Pxr x f

P T
xr x f

Px f

]
(3)

where Pxr , Pxr x f , and Px f are covariance matrices for the
robot pose history and the landmark locations. The key
points in applying the EKF to this system are:
• When the state is projected forward, the new robot

pose xtk is inserted in xr(k) and the oldest pose is
discarded.

• Feature extraction is done using the last m pose
estimates and the corresponding m measurements.

Since the full covariance (and cross covariance) of the
past m robot poses are maintained, feature extraction can
account for the uncertainty of (and correlation between)
poses from which the sensor measurements were taken.

However, the computation of the full covariance ma-
trix is very expensive (at least O((m + n)2) complexity),
and it must be performed at each time step. Furthermore,
EKF-SLAM is unable to represent multiple data associ-
ation hypotheses. Recently, particle filtering techniques
have been used to overcome these limitations in tradi-
tional SLAM problems.

B. Using a particle filter

A reasonably straightforward adaptation of the above
model to a standard Rao-Blackwellized particle filter is:

1) For each particle pi = {xi(k−1), ωi(k−1)}, i =
1 . . . N:

a) Project the state forward by drawing a new
robot pose xi

tk
from the distribution of v(k)

centered at f (xi
tk−1

, u(k− 1)), insert xi
tk

in xi
r(k)

and discard the oldest robot pose.
b) Extract features from the measurements using

the last m poses and perform data association.
c) Update the map and initialize new features.
d) Compute a new weight ωi(k) equal to the

likelihood of the data association.
2) If necessary, resample the particles with probabili-

ties proportional to ωi(k).
Note that each particle contains its own pose history, so
collectively the particles sample the space of the previ-
ous m pose histories. This approach avoids the expen-
sive computation of covariance matrices, but potentially,
many particles would be required to adequately sample
the pose history space. Furthermore, feature extraction is
required for every particle because of their unique pose
histories, and this computation is also fairly expensive.

III. SLAM USING MULTISCANS

Our approach is based on grouping sparse scans
from m consecutive robot poses into a multiscan z(k) =
[z(k) z(k−1) . . . z(k−m+1)]. We formulate a system
model in which a SLAM update is performed only after
each m steps, reducing the required computation. A fur-
ther simplification enables a particle filter implementa-
tion where features are extracted only once per multiscan
(instead of once per particle per multiscan).



A. System model
As before, the state vector x(k) = [xr(k) x f (k)], but

now xr(k) contains only the single pose xtk . Our system
model is:

x(k) = F(x(k−m), u(k−m)) (4)
Z(k) = g(z(k), x(k)) (5)

where u(k−m) is the vector of inputs [u(k−1) . . . u(k−
m)].

The system function F is defined as:

F(x(k−m), u(k−m)) = [xtk x f (k−m)]T (6)

where the pose xtk is modeled recursively as:

xtk = f (xtk−1 , u(k− 1)) + v(k) (7)

The pose xtk−m is taken from the state vector x(k − m)
after the previous SLAM update.

The function g computes a feature vector Z(k) con-
taining the parameters of features extracted from the
multiscan z(k), which is acquired from the intermediate
robot poses x(k) = [xtk . . . xtk−m+1 ]. Each scan z(k) in a
multiscan is modeled by:

z(k) = h(xtk , x f ) + w(k) (8)

where w(k) is the measurement noise and x f is the
feature vector from the most recent SLAM update.

B. Approach
We apply a Rao-Blackwellized particle filter to this

system, assuming the landmarks are independent when
conditioned on the robot’s trajectory:

1) For m time steps: move and collect sparse scans.
2) Extract features by considering the data from all m

scans simultaneously as a single multiscan.
3) For each particle pi ={xi(k−m), ωi(k−m)}, i=1 . . . N:

a) Project the pose forward for each motion by
drawing samples for intermediate poses:
• For i = (k−m + 1) to k,

– Draw v ∼ V(i)
– Let xti ← f (xti−1 , u(i− 1)) + v

b) Find correspondences between extracted fea-
tures and the landmark locations xi

f (k−m).
c) Update map and initialize new features.
d) Compute a new weight ωi(k) equal to the

likelihood of the data association.
4) If necessary, resample the particles with probabili-

ties proportional to ωi(k).

C. Feature extraction
Because our features are extracted from sensor read-

ings taken from different poses, both the measurement
noise and the odometry error contribute to uncertainty
in the extracted features. In our particle filter imple-
mentation, however, we do not maintain a pose history
of the intermediate states for each particle. Instead,

we use the expected intermediate pose history x(k) =
[xtk . . . xtk−m+1 ], calculated from the odometry as:

xtk = f (xtk−1 , u(k− 1)) (9)

Without loss of generality, we assume xtk−m is the origin.
We perform feature extraction using this expected

pose history, and then transform the features for each
particle pi so that the pose xtk coincides with xi

tk
to find

correspondences. While this approach does not precisely
account for the correlation between robot movement
and feature parameters and increases feature extraction
uncertainty, it avoids performing feature extraction on
an intermediate pose history for every particle.

D. Innovation covariance
We consider Z to be the measurement for SLAM

updates, and thus the innovation for a measurement
lies in the feature parameter space. The innovation co-
variance S is required for both maximum likelihood
data association and to update landmark locations. To
simplify our explanation, assume that all features in Z
are associated with landmarks whose parameters are in
x`(k) = Mx(k), where M is a matrix that simply selects
the appropriate landmarks from x(k). The innovation is
then ν = Z(k)− x`(k), and its covariance is:

S = JgP(z,x) JT
g + MPx(k)MT (10)

The covariance of landmark parameters from Px(k) is
readily available, but the covariance of the multiscan and
pose history is more complicated:

P(z,x) =

[
Pz Pzx

PT
zx Px

]
(11)

Feature extraction can be performed using the full
P(z,x). A further approximation that yields acceptable
results is to represent P(z,x) using only the block diagonal
portions of Pz and Px (i.e, assuming that measurements
are independent and that although pose uncertainty
compounds, multiscan poses are independent.)

For complicated feature extraction methods, Jg, the
Jacobian of the feature extraction with respect to the
multiscan, is difficult to compute analytically. However,
it is well-known that maximum likelihood estimation
gives good estimates for the covariance of the parame-
ters being estimated, even for an approximately specified
model such the block diagonal version of P(z,x) [13].
Thus, by using maximum likelihood estimation as a
feature extractor, we can obtain a good approximation
to the measurement covariance S without computing Jg.
We use this approach to extract lines from multiscan data
with a procedure described in Section IV.

E. Co-dependence on odometry
Notice that there is an issue of independence in the

multiscan formulation. The robot’s odometry is used
twice, first to update the pose estimate, and second to



Algorithm 1 EXTRACT-LINES(x, z, P(z,x))

1: Compute Cartesian points from x and z and covari-
ance of points from P(z,x)

2: Cluster points using a threshold based on the range
of each reading

3: for each cluster C do
4: Compute argmaxpi ,pj∈C ||pi − pj||
5: Perform IEPF using pi, pj as temporary segment

endpoints to split C into subclusters
6: end for
7: for each cluster C with enough supporting points do
8: ` = [r θ] ← Maximum Likelihood line parameters

for points in C
9: P` ← covariance of ` returned by ML estimator

10: Add line ` with covariance P` to L
11: end for
12: return L

extract features. The multiscan approach makes an im-
plicit assumption that the co-dependence of the robot’s
pose and the measurements can be ignored. For this to be
true, m, the number of readings per multiscan, must be
kept small enough that the odometry error experienced
over the course of the multiscan is small. One strategy
is to make m a function of the pose uncertainty.

IV. FEATURE EXTRACTION AND DATA ASSOCIATION

We have implemented sparse sensing SLAM with two
types of features: lines parameterized by distance r and
angle θ to the origin; and line segments, which explicitly
include extent information in the representation. Line
features have been used for SLAM on a number of
occasions, e.g. [15], and methods for performing line
extraction and data association with lines are readily
available [10]. Fewer attempts have been made to per-
form line segment SLAM. Brunskill and Roy [2] recently
described the use of probabilistic PCA to extract line seg-
ment parameters and compute covariance information
for use in data association. Since our focus is on SLAM
with very little data and minimal computation, we have
employed simpler techniques.

A. Line features

Before line parameters can be estimated, the data
from a multiscan must be segmented. Since our data
are sparse and from different poses, the simplest seg-
mentation methods cannot be employed because they
assume ordered measurements from a single pose. We
instead take all the Cartesian points from the multiscan
and apply an agglomerative clustering algorithm with a
threshold distance computed adaptively based on mea-
surement range. This is similar to the technique used in
an adaptive breakpoint detector [1] for a radial range
scan. The resulting clusters are further split using an
iterative endpoint filter (IEPF) [3]. Maximum likelihood

line parameters are then estimated for each cluster using
weights based on the covariance of each point. Lines
with too few supporting points are discarded. Algo-
rithm 1 shows the pseudocode for the line extraction
procedure.

Maximum likelihood data association and map up-
dates for line features are straightforward since the pa-
rameters of lines can be directly compared and merged.

B. Line segment features
We have also implemented SLAM with line segment

features. An advantage of segment features is that they
explicitly encode extent information which can be useful
in data association. In order to extract segments from
multiscan data, we employ the same procedure as for
line features, and then project the clustered points onto
their associated lines. The two extremal projected points
pi and pj are used as the segment parameters, and
the parameter covariance is computed based on the
covariances of the line parameters and of the projected
endpoints, i.e. Ps = J`P` JT

` + Jpi Ppi JT
pi

+ Jpj Ppj J
T
pj

A complication of line segment features is that it
is impossible to directly compare the parameters of
two segments for data association since they may ac-
tually represent different portions of the same feature.
A simple solution is to “extend” the segments so that
their endpoints can be directly compared. We extend
two segments so that their projections onto the angular
bisector are the same. Care must be taken to update
the endpoint covariances accordingly. Unfortunately the
extension procedure represents a complicated function
with convoluted Jacobians, so updating the covariance
is hard. A simple approximation is to assume that
the lengths each endpoint is extended, d0 and d1, are
known parameters of a function that transforms a single
segment, i.e., E(s, d0, d1), which has a simpler Jacobian
Js = ∂E/∂s that can be used to transform the segment
covariance. In practice, this simplification works reason-
ably well and is much easier to compute.

V. RESULTS

We have implemented our sparse sensing SLAM ap-
proach and tested it on a variety of datasets. Our Rao-
Blackwellized particle filter is based mainly on Fast-
SLAM 1.0 [12]; we also use the adaptive sampling ap-
proach described by Grisetti, Stachniss, and Burgard [4].

Most aspects of our implementation have been dis-
cussed in previous sections. In our feature extraction,
a simple weighted least squares estimator was used
instead of a full maximum likelihood approach, for
efficiency. Also, the experiments presented here with line
segment features estimated covariance using only the
two segment endpoints rather than the full data.

Our experiments used data from Radish [5], an on-
line repository of SLAM datasets. Most of the available
datasets use scanning laser rangefinders with 1◦ spacing.
In order to test SLAM with sparse sensing, we simply



TABLE I
EXPERIMENT STATISTICS

USC SAL CMU NSH Stanford
Dimensions 39m × 20m 25m × 25m 64m × 56m
Particles 100 600 1000
Sensing range 5 m 3 m 5 m
Path length 122 m 114 m 517 m
Path rotation 450 rad 133 rad 495 rad
Scans per multiscan 50 40 18
Total multiscans 89 118 1151
Avg. MS translation 1.37 m 0.97 m 0.45 m
Avg. MS rotation 3.80 rad 1.12 rad 0.43 rad
Feature type Lines Segments Segments
Num. landmarks 88 168 750

(a)
(b)

Fig. 2. The USC SAL Building, second floor. Dataset courtesy of
Andrew Howard. (a) Occupancy data for the corrected map. (b)
The corrected line landmark map (black) and trajectory (gray). The
landmark map shows only the original observed extent of the line
features.

discarded most of the data in each scan, using only the
five range measurements at 0◦, 45◦, 90◦, 135◦, and 180◦.
Additionally, we restricted the maximum sensor range
to at most 5 m, and in some cases less.

A. Experiments
Figures 2, 3, and 4 show the results of sparse sensing

SLAM on several datasets. (The occupancy grid images
were generated using corrected trajectories from sparse
sensing SLAM, but with the original dense laser data for
better clarity.) Detailed statistics for these datasets are
shown in Table I.

1) USC SAL Building: (Figure 2) This dataset consists
of a primary loop and several small excursions. The
robot closed the loop properly in its line-based landmark
map despite only a small overlap between the loop’s
start and end. Notice that some slight aliasing exists in
the occupancy grid map: this was a common occurrence
since most features have high uncertainty due to the use
of odometry to augment the sparse sensing.

2) CMU Newell-Simon Hall: (Figure 3) Because of the
maximum sensing range of 3 m for this experiment, the
fairly large initial loop (bottom) could not be closed until
after the robot finished exploring the upper hallway.

3) Stanford Gates Building: (Figure 4) This long dataset
has three large and several small loops. Figure 4a shows
the uncorrected data, which exhibits significant error,
particularly with respect to the robot’s orientation. At
several points the robot spins in place, a difficult sit-
uation for sparse sensing because rotation dramatically
increases the pose uncertainty and decreases the scan
density due to high rotational velocities.

(a)
(b)

Fig. 3. A partial map of Newell-Simon Hall Level A at CMU. Dataset
courtesy of Nicholas Roy. (a) Occupancy data for the corrected map.
(b) The corrected line segment map (black) and trajectory (gray).

Note that some landmarks are spurious, a result of
poor data association due to large uncertainty. No detec-
tion of spurious landmarks was implemented, so these
landmarks remained in the map. Again, although there is
some aliasing in the results, the environment’s structure
and the robot’s trajectory were properly recovered.

B. Discussion
These results show that performing SLAM in large

indoor environments is feasible even with minimal sens-
ing. All of our tests used only five sensors with restricted
range, but even large loops were closed correctly. How-
ever, there are tradeoffs to using such limited sensing:
• More particles are required since the parameters of

landmarks are more uncertain due to the use of
odometry to augment sensing.

• The success of SLAM is sensitive to the amount of
pose uncertainty accumulated during a multiscan.

• The size of multiscans (m) is a parameter that
must be determined, either by selecting a constant
or computing a value based on pose uncertainty.
Choosing m is a complex problem given all of the
factors — error models, environment complexity,
robot behaviors, etc. — that affect SLAM.

• Computationally-motivated approximations (such
as those made in extracting features and computing
the innovation covariance) can lead to poor data
association, as exhibited by the existence of spurious
landmarks.

VI. CONCLUSIONS

In this paper, we have presented a strategy for im-
plementing particle filtering SLAM on a robot with very
sparse sensing. Rather than performing feature extrac-
tion on every frame of scan data, we group the data into
“multiscans” consisting of several consecutive frames
of data. Feature extraction, data association, and state
updates are then performed based on multiscan data as
if it were data from a single scan. We formally specified a
system model for this approach that maintains multiscan
information separately from the system state, allowing



(a)

(b)

(c)

Fig. 4. The Gates Building at Stanford, first floor. Dataset courtesy
of Brian Gerkey. (a) Raw uncorrected data (not to scale with corrected
data). (b) Occupancy data for the corrected map. (c) The corrected line
segment landmark map (black) and trajectory (gray).

the efficient application of particle filtering methods
for SLAM. We then discussed properties of the innova-
tion covariance for features extracted from multiscans,
and presented a simplified representation for which the
computation costs are significantly reduced. Finally, we
described simple approaches for extracting line and line
segment features from multiscan data and performing
data association.

In our experiments using measurements from only five
one-dimensional range sensors, the robot was able to
close loops and recover the correct map and trajectory in
several large real environments. While the experiments
uncovered several tradeoffs to using limited sensing, the
success of our approach with real data shows that it is
possible to implement SLAM with sparse sensors.
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