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ABSTRACT

Applications running on the Internet, or on limited-resource
devices, need to be able to adapt to changes in their ex-
ecution environment at run-time. Current languages and
systems fall short of enabling developers to migrate and re-
configure application sub-components at program-execution
time.

In this paper, we describe essential aspects of the design
and implementation of SALSA, an actor-based language
for mobile and Internet computing. SALSA simplifies pro-
gramming dynamically reconfigurable, open applications by
providing universal names, active objects, and migration.
Moreover, SALSA introduces three language mechanisms to
help programmers coordinate asynchronous, mobile compu-
tations: token-passing continuations, join continuations and
first-class continuations.

We provide some examples which illustrate how SALSA pro-
grams are not only dynamically reconfigurable and open, but
also much more concise and easier to follow than comparable
Java code. Furthermore, we provide empirical results which
show SALSA’s performance to be better than Java code us-
ing an actor library, and which illustrate the difference be-
tween local, local area, and wide area communication and
migration. Finally, we discuss the implementation of our
preprocessor which translates SALSA code into Java.l
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1. MOTIVATION

Consider a chess program running on the web, playing
against Kasparov, Kramnik, or Deep Blue. Participants may
start and stop collaborating in this effort with their comput-
ing power at any time. The chess program must therefore
enable hosts to dynamically join and leave the global com-
putation of best moves. Furthermore, different parts of the
program may need to be relocated at run-time to improve
locality — which is affected by the dynamic nature of the
underlying network topology.

Consider a second example: a cellular phone or a watch
with very strict power, memory and bandwidth limitations
running a web browser. The web browser must be able to
dynamically reconfigure itself, or to enable manual reconfig-
uration; for example, moving the HTML parsing and hyper-
text rendering components to a nearby computation server.
‘When the cellular phone or watch user moves, the compu-
tation server must be dynamically changed. When the user
arrives to his office or home, the web browser components
must be re-composed in the user’s desktop.

Internet and mobile computing place new demands on ap-
plications, which require them to be open and dynamically
reconfigurable. Current programming languages and tech-
nologies fall short of enabling developers to write applica-
tions with such levels of adaptation, openness and reconfig-
urability at run-time.

Java, for example, has become widely used, arguably be-
cause of its support for dynamic Web content through ap-
plets, network class loading, bytecode verification, secure
sandbox execution, and multi-platform source and byte code
compatibility [19, 27]. A number of important high-level
APIs for Internet programming are also available for Java
including java.rmi with support for remote method invo-
cations, java.reflection with support for run-time intro-
spection, java.net with support for datagrams, sockets, and
URLs, and java.io with support for object serialization.

All these facilities make Java a very promising technology for
Internet and mobile computing. However, higher-level pro-
gramming languages are required, in order for applications
to be reconfigured, migrated to other platforms, and decom-
posed and re-composed arbitrarily. All of these operations



need to be enabled while the applications are running.

SALSA (Simple Actor Language, System and Architecture)
is a concurrent object oriented programming language in-
tended to demonstrate how a few language extensions can
go a long way in establishing a natural discipline for pro-
gramming Internet and mobile computing applications. We
have followed a pragmatic approach by using Java as the
base language and the Internet as the target execution plat-
form. In a spirit similar to C++, which introduced the
advantages of object-oriented programming to C program-
mers, we believe that by developing a conservative exten-
sion of Java, we can introduce the benefits of actor-based
programming to Java programmers. Our language, SALSA,
can be easily pre-processed to Java, and preserves many of
Java’s useful object-oriented concepts — namely, encapsu-
lation, inheritance, and polymorphism — while at the same
time introducing a discipline of concurrent programming us-
ing actors over the Internet.

In this paper, we explain the relationship between SALSA
modules, behaviors, actors, and messages; and Java pack-
ages, classes, objects and methods. Besides supporting the
actor model of computation, SALSA’s language constructs
for concurrency include token-passing continuations, join
continuations and first-class continuations. SALSA’s inte-
gration with the Internet includes primitives for universal
naming, remote communication — with the same syntax as
local message passing — and migration.

An illustrative example of a SALSA program can be found in
Figure 14. It shows a complete SALSA program represent-
ing a migrating Internet agent. This agent migrates through
different Internet hosts and can receive a printItinerary ()
message from any other SALSA program running on the In-
ternet. As a response to that message the agent prints the
list of hosts it has visited so far.

Paper Structure

We first describe the structure of SALSA programs and its
support for actor programming. Section 3 introduces token-
passing continuations, join continuations and first-class con-
tinuations. Section 4 describes the UniversalActor imple-
mentation for dynamically distributing and moving compu-
tations over the Internet. Section 5 contains essential as-
pects of the language implementation including the SALSA
actor library components, and the join continuation code
generation algorithm. Finally, we relate SALSA to other
programming languages and libraries for Internet and mo-
bile computing.

2. ACTOR ORIENTED PROGRAMMING

The actor model of concurrent computation for distributed
systems [1, 21] provides a unit of encapsulation for both
state and a thread of control manipulating that state. Com-
munication is purely based on asynchronous message pass-
ing. In response to a message (see Figure 1), an actor may:

e Create new actors,

Mailbox

Figure 1: In response to a message, an actor can:
(1) modify its local state, or (2) create new actors,
or (3) send messages to acquaintances.

e Send messages to known actors, possibly includ-
ing the addresses of other known actors (or acquain-
tances), and/or

e Modify its own state, possibly changing its future
behavior.

There are no restrictions on the ordering of messages, i.e.
an actor may receive messages in a temporal order different
than the message sending order. However, the model pro-
vides weak fairness, i.e. an actor infinitely ready to receive
a message will eventually get it.

2.1 SALSA’s Support for Actors

The general architecture for compiling and executing
SALSA programs is depicted in Figure 2. A program is
transformed into Java source code, using a SALSA prepro-
cessor. The generated Java code uses a library for actors
developed especially for SALSA programs. After this step,
any Java compiler can be used to produce the bytecodes for
the program, which can then be executed on top of any Java
virtual machine implementation.

A sample program printing “Hello World!” is shown in Fig-
ure 3. When a SALSA program is executed, an actor with
the given program behavior is created, and an act message
is sent to the actor by the run-time system, with any given
command line arguments. standardOutput is a standard
actor provided by the environment. An arrow (+) indicates
message sending to an actor. The at-sign (@) indicates a
token-passing continuation. In this example, it restricts the



SALSA Source Code

Program.salsa
>> salsac Program.salsa
Java Source Code SALSA
Program.java Actor Library

>> javac Program.java

Java Bytecode
Program.class

Java Virtual Machine

Figure 2: SALSA programs get preprocessed into
Java programs which use an actor library, and get
eventually compiled into Java bytecodes, for execu-
tion atop any Java virtual machine.

>> java Program

module helloworld;

behavior HelloWorld {
void act(String arguments[]){
standardOutput <- print("Hello ") @
standardQutput <- print("World!");

Figure 3: Hello World! Program in SALSA

second message to the standardOutput actor to be sent only
after the first message has been processed.

SALSA programs are grouped into related actor behaviors,
which are called modules. A module can contain several ac-
tor interfaces and behaviors. A behavior definition may
extend another behavior (single inheritance). Every SALSA
behavior extends a top-level UniversalActor behavior, sim-
ilarly to Java, in which every class extends a basic Object
class. A SALSA behavior can implement zero or more in-
terfaces (multiple interface inheritance).

We illustrate how the basic primitives of the Actor model
are supported by SALSA.

2.2 Actor Creation

To create a new actor, a SALSA behavior is instantiated
and a reference to the new actor is returned. For example, a
HelloWorld actor with the behavior shown above, is created
as follows:

HelloWorld helloWorld = new HelloWorld();

Behavior definitions may contain constructors which sup-
port actor initializations with arguments. If the behavior
is to be executed as a SALSA program and constructors
are provided, they must include a constructor with no argu-
ments for program initialization.

2.3 Message Sending

A SALSA message is implemented as a potential Java
method invocation. Actors contain a mailbox which acts as
a buffer for messages. Actors process messages sequentially
from their local mailbox.

To send a message to an acquaintance actor, SALSA pro-
grams use the actor’s reference, an arrow («), the message
name and possibly argument values. For example, to send
a print message with the String argument "Hello " to the
standardQutput actor, the following code is used:

standardQutput <- print("Hello ");

If an actor does not specify the target for a message, the
message is put in its own mailbox. Sending a message to
an actor, returns immediately, i.e. it is asynchronous. The
value of a message sending expression is void. Local param-
eter passing is by reference, except for Java primitive types,
which are passed by value. Remote parameter passing is by
reference for universal actors, and by value for serializable
Java objects.

2.4 Internal State Changes

An actor changes its state by updating its internal variables
through assignments or local method invocations. Notice
that only an actor can change its internal state since all
variables are private. The only way to change another ac-
tor’s state is by message passing.

Shared memory is not allowed in SALSA, as opposed to for
example, Java static variables which are shared among all
the instances of a given class.? The complete encapsulation
of state and processing, afforded by the actor model, enables
relatively straightforward actor migration.

3. CONTINUATIONS

In order to coordinate interaction among multiple, au-
tonomous, asynchronous actors, we introduce three kinds
of continuations: token-passing continuations, join continu-
ations, and first-class continuations.

3.1 Token-Passing Continuations

A SALSA message is a potential Java method invocation.
Since all actor communication is via asynchronous message
passing, we need a strategy to “pass” the return values of
methods invoked in a given actor (we name these values,
tokens). To accomplish this, a message to an actor may
contain a customer actor to which the token should be sent
after message processing. SALSA allows the programmer to
specify the customer, the message to send to such customer,
and the position of the token in the arguments of such cus-
tomer message. Finally, the continuation itself may have
another continuation, thus enabling chains of continuations
for tokens.

An example of a token-passing continuation follows:

*The current implementation of SALSA (v0.3.2) does not
strictly enforce not sharing memory.




checking<-getBalance() @ savings<-transfer(token);

In this example, the checking account actor receives a
getBalance() message, and when the checking account ac-
tor is done processing such message, it sends a transfer
message to the savings account actor with the token, which
is the return value of the original getBalance() message.

token is a special keyword with the scope provided by the
last token-passing continuation. For example, in the expres-
sion a1 < mi(args)Qaz < mo(token)Qaz  ms(token);,
the first token refers to the result of evaluating ai < ms
while the second token refers to the result of evaluating
az < ma.

a < m is syntactic sugar for a < m(token). For example,
the following two lines of code are equivalent:

fractal <- computePixel() @ screen <- draw(token);
fractal <- computePixel() @ screen <- draw;

When a continuation method is overloaded, SALSA dynam-
ically chooses the most specific method according to the run-
time type of the token [14, 11].

3.2 Join Continuations

SALSA supports join continuations: a customer actor re-
ceives an array with the tokens returned by multiple actors,
once they have all finished processing their messages. A
sample join continuation follows:

join(authori<-writeChapter(1),
author2<-writeChapter(2)) @
editor<-review @ publisher<-print;

In this example, the editor actor will receive a review mes-
sage with an array of chapter actors as a parameter, and
then it will pass it along to the publisher for printing. This
will happen only after all author actors finish processing
their respective writeChapter messages. The join statement
can also receive an array of actors which are all to receive
the same message.

3.3 First-Class Continuations

First-class continuations enable actors to delegate computa-
tion to a third party, independently of the context in which
message processing is taking place (i.e. independently of the
current continuation for a given message’s token).

To illustrate the design, let us look at an example us-
ing recursion. The infamous fibonacci computation is
shown in Figure 4. Notice how the first time that the
compute () message is sent to the Fibonacci actor, the
currentContinuation is to print the value to standard out-
put. Subsequent recursive compute() messages will have
as currentContinuation, the result of combining the join
continuation with the addition message and the previous

/Aﬁ;aule fibonaccij; ‘\\\

behavior Fibonacci {
int n;
Fibonacci(int n){

this.n = n;

int compute(){

if (n < 2){
return n;
} else {

Fibonacci fibl = new Fibonacci(n-1);

Fibonacci fib2 = new Fibonacci(n-2);

join (fibi<-compute(), fib2<-compute())
@ add @ currentContinuation;

}

int add(int numbers[]){
return numbers[0]+numbers([1];

void act(String args[1){
n = Integer.parselnt(args[0]);
compute() @ standardOutput<-println;

N J
Figure 4: Fibonacci
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join (al<-mil(),
a2<-m2()
a3<-m3() );

BNEN
- /

Figure 5: Multicast to three actors al, a2, a3. The
messages ml, m2, m3 may be different

currentContinuation taken from the recursive step.

3.4 Example: Multicast Protocols

‘We present three variations of multicast protocols; the pre-
sentation serves two goals: first, it illustrates the code gen-
eration for join continuations, and second, it allows us to
compare the performance and readability of the basic actor
operations in SALSA and in Java code. The Java code uses
the Actor Foundry [29], a library for implementing actor
systems in Java.

‘We show the trace of a simple multicast protocol in Figure 5.
Then, we introduce two variations of an acknowledged mul-
ticast protocol. By an acknowledged multicast protocol, we
mean that the receipt and processing of a message by differ-
ent members of an actor group is acknowledged to an outside
actor.



odule multicast;

behavior AcknowledgedMulticast{

SimpleActor[] actors;

void done(){}

void act(String[] args){
int howMany = Integer.parselnt(args[0]);
SimpleActor[] actors = new SimpleActor [howMany];
for (int i = 0; i< howMany; i++){

actors[i] = new SimpleActor();

join(actors<-m()) @ done();
}

"
Figure 6: Acknowledged Multicast Protocol
join (‘al<-m1(),
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Figure 7: Acknowledged multicast: Actors acknowl-
edge protocol director on message receipt

An implementation of acknowledged multicasting is shown
in Figure 6. In this program, we create an array of simple
actors — actors with an empty method m() — and we use a
join continuation to send them all the message m(). When
the done() message is received, all the actors have finished
processing the m() methods. Figure 7 shows a possible trace
of acknowledged multicasting, as generated by SALSA. Ver-
tical lines represent local time (increasing in the downward
direction) and diagonal lines represent message traversals
between actors. Even though the messages are originally
directed to actors al,a2,a3, SALSA-generated code creates
a join director, in charge of sending them their respective
messages. The join director waits for acknowledgment of
message receipt by the coordinated actors, before notifying
the outside actor of protocol “finalization”.

If we wanted to go further and implement group knowl-
edge [15] (i.e. everybody in the group knows that everybody
in the group got the message), we could use a two-phase
acknowledged multicasting protocol. In the first phase, the
director sends a message to every actor in the group; and
in the second phase, the director tells every actor in the
group that everybody acknowledged message receipt. Fig-
ure 8 shows a sample trace.

We have implemented these multicast protocols in SALSA
v0.3.2 and the Actor Foundry v0.1.9 [29]. Figures 9 and 10
show the timings for these multicasting protocols. SALSA

join (al<-m1(),
a2<-m2(),
a3<-m3()) @

join (‘al<-ok(),
a2<-ok(),
a3<-ok() ) @ done();

done();

- /

Figure 8: Group knowledge multicast: Actors ail,
a2, and a3 acknowledge message receipt and ok mes-
sage. The ok message from director d signals original
message acknowledgment by everybody.

code performs an order of magnitude better than Foundry
code in Java. There are three reasons for the better perfor-
mance:

e SALSA’s recognition of locality of the participating
actors and consequent use of local messages as opposed
to reliable UDP.

e The lightweight implementation of actors in SALSA’s
library is tightly integrated to the code generation pro-
cess.

e The Actor Foundry’s modular architecture enables
customization of the transport layer, the request han-
dler, and so forth, which results in a performance
penalty.

Perhaps more important than performance is the compari-
son in the size of these programs. Table 1 shows the number
of lines of code in the programs (including the code for time
measurements) using the Actor Foundry, using SALSA, and
for reference, the lines of Java code generated by the SALSA
preprocessor for these examples. Notice how join continua-
tions and token-passing continuations can drastically reduce
the size and complexity of concurrent programs: programs
are four times smaller on average in these examples.

4. INTERNET COMPUTING

In order to enable actor programs to be open and dynam-
ically reconfigurable, we introduce the concept of a World-
Wide Computer. The World Wide Computer (WWC)
consists of a set of virtual machines, or Theaters hosting
universal actors. Universal actors are reachable Internet-
wide through their globally unique Universal Actor Names

3Newer versions of the Foundry have since fixed this prob-
lem.



120

T T
“basic’ —+—
"group_K" ---%---

100 L g
80 - 4

60 - 4

Time in milliseconds

40 e 4

20 F 4

-

obi————— 1 1 1 1 1
0 10 20 30 40 50 60 70 80 9 100 110
Number of actors in cast
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Figure 10: Performance of different multicast pro-
tocols (in ms) using the Actor Foundry 0.1.9

Foundry | SALSA | Java
Shared Code 40 10 34
Basic Multicast 146 27 | 115
Acknowledged Multicast 60 21 | 134
Group-knowledge Multicast 73 24 | 183
TOTAL 319 82 | 466

Table 1: Lines of Code Comparison

/{ehavior TravelAgent{ \

void printItinerary(){...}

void act(String[] args){

TravelAgent a = new TravelAgent();

try {
a<-bind("uan://wwc.travel.com/agent",

"rmsp://wwc.aa.com/agent") ;

} catch (Exception e){
standardError<-println(e);

}

\_ /

Figure 11: Universal Naming and Locator Binding

(UAN) - identifiers which persist over the life time of an
actor, and can be used to obtain an authoritative answer
regarding the actor’s current Internet location, or theater.
Universal Actor Locators (UAL) uniformly represent the
current theater where an actor is running.

The top-level SALSA UniversalActor behavior provides
methods which support the following Internet computing
primitives:

e binding an actor to a name and an initial theater,

e getting references to and communicating with a uni-
versal actor, and

e migrating an actor from one theater to another.

SALSA programs can be executed on the WWC in-
frastructure because all behavior definitions extend the
UniversalActor behavior.

4.1 Universal Naming

The UniversalActor behavior provides support for bind-
ing actors to UANs and setting them up in a given
theater represented by a UAL. The code for a sam-
ple travel agent program is shown in Figure 11. This
program creates a travel agent and binds it to a par-
ticular UAN (uan://wwc.travel.com/agent) and UAL
(rmsp://wwc.aa.com/agent) pair. The binding process has
two effects: (1) the naming server (wwc.travel.com) gets
updated with the new <relative UAN, UAL> pair (in this
case, <‘‘/agent’’, ‘‘rmsp://wwc.aa.com/agent’’>)
and (2) the actor becomes universal by migrating to the
Theater (wwc.aa.com) specified by the UAL. After this
program terminates, the actor becomes remotely accessible
either by its name or by its locator.

4.2 Remote Communication

SALSA provides support for sending messages to remote ac-
tors using the Remote Message Sending Protocol (RMSP).
SALSA-generated code automatically uses RMSP when ac-
tors are remote. SALSA programmers use the same syntax
for local and remote message sending. The code for sending
a printItinerary() message to the travel agent created
above, is shown in Figure 12.
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/
m Getting a remote actor reference by name
// and sending a message:

//

TravelAgent a = new TravelAgent();
a<-getReferenceByName("uan://wwc.travel.com/agent") @
a<-printItinerary();

//
// Getting the reference by location:

TravelAgent a = new TravelAgent();
a<-getReferenceByLocation("rmsp://wwc.aa.com/agent") @

!K-print Itinerary(); /

Figure 12: Actor Location and Remote Communi-
cation

//
// Migrating a travel agent to a remote WWC Theater:
//

TravelAgent a = new TravelAgent();
a<-getReferenceByName("uan://wwc.travel.com/agent") @
a<-migrate("rmsp://wwc.nwa.com/agent") ;

Figure 13: Universal Actor Migration

First, a local reference with the remote actor type
(or UniversalActor) is created. Then, the reference
gets “upgraded” from a local actor reference to a uni-
versal actor reference by wusing the UniversalActor
behavior method getReferenceByName (UAN) or
getReferenceByLocation(UAL). TUpon completion of
this method, the local reference becomes an alias to the
remote universal actor. Once we have such an alias, a
message can be sent to the actor in the same way as in local
message sending. Notice that a token-passing continuation
is used to ensure that the reference to the remote actor is
obtained before the message is sent to the actor.

4.3 Migration

SALSA provides support for migrating an actor to a given
WWC Theater. For example, the code for migrating the
travel agent above is shown in Figure 13. Notice that we
first use the getReferenceByName (uan) method to obtain a
reference to the agent and then we use the migrate(ual)
method to trigger the migration. These two methods are
provided by the top-level UniversalActor class.

When an actor migrates to a theater: universal actor ac-
quaintances are passed by reference; Java serializable ob-
jects and primitive types are passed by value; anonymous
actors and non-serializable Java objects generate a run-time
exception; and environment actors (like standardOutput)
are bound after migration to the new theater’s environment
actors. These environment actors resemble ubiquitous types
in Sekiguchi and Yonezawa’s calculus for code mobility [32].

Because of security considerations, the current implementa-
tion requires that code for a universal actor (such as the

travel agent) should be present at the receiving theater.
However, an alternative is to provide a security manager
which makes it possible to download a remote actor and
safely execute it. For example, the security manager could
sandbox the code of the migrating actor, as is currently done
with Java applets. Two additional alternatives to protect
the theater hosting environment include authenticating ac-
tors (digitally signed code) after migration, and/or verify-
ing that the actor’s code respects a security policy (proof-
carrying code). Protecting the actor from a malicious the-
ater could be accomplished by requiring the explicit autho-
rization of messages using a hierarchy of directors [36]. Casts
of actors coordinated by a given director can also be used
as a coarser unit of migration, in a spirit similar to Mobile
Ambients [10].

4.4 Example: Worldwide Migrating Agent
The worldwide migrating agent example is presented here
with two goals: first, to illustrate the high-level support
afforded by SALSA programs for actor naming, migration
and remote communication, and second, to demonstrate the
open nature of SALSA programs due to universal naming.
‘We also use the agent example to time actor communication
and migration in different network settings illustrating the
wide variety of bandwidth and latency scenarios existing
today over the Internet.

Our worldwide migrating agent keeps track of its itinerary
and can print it in its current location on request. The
SALSA code is shown in Figure 14. The SALSA-generated
Java code is about four times larger. Programming this ex-
ample in pure Java would require much more effort, having
to deal directly with naming, serialization and thread mi-
gration issues.

This agent program receives a universal name and a list of
theaters to visit as command-line arguments. The agent
is initially bound to its universal name and home theater.
Once the agent has migrated to its home theater it records
the local time in that theater. For each new theater in the
list, the agents migrates there (updating its itinerary of the-
aters visited) and prints the current itinerary. If and when
the agent revisits its home theater (initialLocation) it
prints the time which has elapsed since its first visit. Notice
that the original initial time travels with the agent as part
of its state, but it only makes sense to use it in the agent’s
home theater.

‘We have used this example to make a preliminary measure-
ment of performance of different aspects of remote commu-
nication and migration in WWC systems. We have used
a testbed with three LANs and one WAN, as depicted in
Table 2.

Table 3 shows the ranges of values we have measured in our
tests with minimal actors and empty messages, as well as
with larger actors (up to 100Kb of data).

‘We have not tried to optimize the current implementation of
SALSA programs, the UAN service, or the RMSP server.*

4To perform these tests, we used SALSA version 0.3.2. The




Machine Name Location 0S-JVM Processor
yangtze.cs.uiuc.edu | Urbana, IL, USA Solaris 2.5.1-JDK 1.1.6 Ultra 2
vulcain.ecoledoc.lip6.fr Paris, France | Linux 2.2.5-JDK 1.2pre2 | PII, 350MHz
solar.isr.co.jp Tokyo, Japan Solaris 2.6-JDK 1.1.6 Sparc 20

Table 2: World Wide Computer Testbed

Local actor creation 386us
Local message sending 148us
LAN message sending 30-60ms
WAN message sending 2-3 secs
LAN minimal actor migration | 150-160ms
LAN 100Kb actor migration 240-250ms
WAN minimal actor migration 3-Tsecs
WAN 100Kb actor migration 25-30secs

Table 3: Local, LAN and WAN Time Ranges

The main goal of this data is to understand the impact of
the different factors in terms of orders of magnitude, not in
terms of absolute values. These numbers give us an estimate
of the difference in communication and migration times in
local, local-area and wide-area scenarios: local times are
in microseconds, LAN times are in milliseconds and WAN
times are in seconds.

5. LANGUAGE IMPLEMENTATION
SALSA’s syntax is based on Java’s. The SALSA preproces-
sor generates Java code, which uses and extends classes in
an actor library developed in Java. The generated code can
run stand-alone or on the WWC. The WWC run-time sys-
tem consists of theaters and naming servers distributed on
the Internet. The SALSA preprocessor and WWC run-time
system are written in Java.’®

5.1 SALSA Actor Library

Figure 15 shows the structure of the main classes which
compose the SALSA actor library. The library con-
tains three packages: salsa.language, wwc.naming and
wwc.messaging.% In the figure, rectangles represent classes,
with the class name in the top center, instance variables
below in italics, and method names and argument types in
plain style. Solid arrows point to a superclass and curved
dotted arrows point to the class of a particular instance vari-
able. We describe the salsa.language package in some de-
tail.

The  salsa.language.Actor  class  extends  the
java.lang.Thread class and therefore encapsulates a

local times were computed using JDK 1.1.8. on Linux 2.2.16
running on a Pentium III. Local message sending was two
times faster than reported above using JDK 1.2 on Windows
2000, and three times faster using JDK 1.3 on Linux 2.2.16.
SSALSA Version 0.3.2. contains about 20,000 lines of Java
code.

5The wwe packages were designed and implemented in col-
laboration with Grégory Haik at the University of Paris 6.

thread of execution directly. An actor contains a mailbox,
and methods to send it a Message object and to process a
given message. A main run method contains a loop that
gets messages from its mailbox and processes them one by
one. When a java.lang.Thread object is started (i.e. the
thread gets actually created), the run() method, with the
main actor loop gets executed.

The  salsa.language.Mailbox  class contains a
java.util.Vector of messages, as well as methods to
put a message into the mailbox and to get a message
from the mailbox (used by the run method of the Actor
class). Access to the mailbox is synchronized using the
lock associated to the mailbox object.

The salsa.language.Message class abstracts over a mes-
sage being sent from a source actor to a target ac-
tor. It includes a java.lang.reflect.Method to be even-
tually invoked in the target actor with a given array of
arguments. Additionally, there is an optional token-passing
continuation which is represented as another Message ob-
ject. If a token is to be passed to such continuation as an
argument, a tokenPosition value indicates the argument
number in which the token should be passed along. Fi-
nally, the internal withMessage instance variable determines
whether or not to pass this message as an argument to the
original method. This last feature is useful for implementing
first-class continuations.

The salsa.language.UniversalActor class extends the
Actor class to make an actor universal, i.e. reachable via
a Universal Actor Name (uan) or Locator (ual) by other
actors in the World-Wide Computer. The class provides
methods to bind a universal actor to a given name and ini-
tial theater, to get a reference to a remote universal actor
either by its name or by its theater locator, and to migrate
a universal actor to a remote theater.

The salsa.language.JoinDirector class contains an ar-
ray of Message objects and an array of tokens to be filled
with the returned value of the messages. It also contains
a tokensSet integer which keeps track of how many actors
have already returned their tokens and a continuation
message to be used to notify a customer actor of completion
of the join protocol. Section 5.3 describes how this class
is used by the SALSA code generator to implement a join
continuation statement.

5.2 Runtime System
Theaters are programs which host universal actors and
therefore do not explicitly terminate (deemons). A theater



odule migration;
import wwc.naming.x*;
behavior Agent {

StringBuffer itinerary;
UAL initialLocation;
long initialTime;

int hops;

void startTime(){
initialTime = System.currentTimeMillis();
}

void printItinerary(){
standardOutput<-println(itinerary);
}

void addLocation(String ual){
if (itinerary == null){
itinerary = new StringBuffer(ual);
initialLocation = new UAL(ual);

else {

hops++;

itinerary.append(" " + ual);
}

}

void printTime(){
standardOutput<-println("Migrated "
+hops+" times.");
if (this.getUAL().equals(initialLocation)) {
standardOutput<-println("Time ellapsed: "
+ new Long(System.currentTimeMillis()
-initialTime))@
standardOutput<-println(
"Migration avg time: "+ new Long
((System.currentTimeMillis()-initialTime)
/hops)) ;

}

void go(String[] args, Integer iObject){
int i = Integer.intValue(iObject);
if (i < args.length){
addLocation(args[i]) @
migrate(args[i]) @
printItinerary() @
printTime() @
go(args, new Integer(++i));

}

void act(String[] args){
try {
addLocation(args[1])@
bind(args[0], args[1]) @
startTime()@
printItinerary() @
go(args, new Integer(2));
} catch (Exception e){
standardQutput<-println(e);
standardQutput<-println("Usage:

+"java migration.Agent UAN UAL (<UAL>)*")|

}

NS /

Figure 14: Worldwide Migrating Agent
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SALSA Actor library. SALSA behaviors get
translated into Java classes which extend the
salsa.language.UniversalActor class.
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Figure 15: Class hierarchy diagram for the

includes an RMSP server listening for incoming actors and
communications. A theater also contains a hashtable map-
ping relative UALSs to internal SALSA actor references. Uni-
versal Actor Naming Servers are also deemons that commu-
nicate using the UAN Protocol (UANP), a TCP /IP-based
protocol resembling HTTP, which provides methods for set-
ting, getting, updating and deleting <relativeUAN, UAL>
pairs.

The runtime system for SALSA programs is in charge of
starting program execution by creating an instance of the
main behavior and sending an act(args) message to such
instance with given command-line arguments. The run-time
system also needs to check for the conditions that enable
program termination:

o All actors are local, i.e. there are no universal actors.
e All actor mailboxes are empty.

e No actor is currently processing a message.

The runtime system accomplishes this by setting up a lower
priority thread that checks for these conditions in order to
terminate the Java virtual machine.

In the current runtime system implementation, instead of
keeping track of all non-universal actors and their mail-
boxes, every time a message gets sent to an actor, a syn-
chronized global counter gets incremented. Likewise, every
time a message has been processed, the counter gets decre-
mented. When a SALSA program starts, the counter is set
to 1 (corresponding to the act(args) message sent to the
main actor). When such counter reaches 0, all messages
ever sent in the system have been processed, and there are
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Figure 16: A join statement in SALSA generates
code that creates a director actor in charge of exe-
cuting the specific join protocol with the given par-
ticipating actors.

no more messages pending, therefore the SALSA runtime
system proceeds to terminate the execution of the Java vir-
tual machine.”

5.3 Join Continuation Code Generation

The general strategy for implementing the join statement
is to create a join director actor which takes care of imple-
menting the join protocol: sending the messages within the
join statement to the respective actors, collecting back the
tokens, and contacting the customer actor with the compiled
array of tokens after completion.

Figure 16 displays a generic join protocol, as imple-
mented by the generated SALSA code for a particular
join statement. In this case, the src actor executing the
join statement will create a join director (an instance of
the salsa.language.JoinDirector behavior) and send a
process () message to such director.

In response to the process () message, the director sends the
original messages to the actors participating in the join pro-
tocol, with the token-passing continuation ack(i, token).
Every actor contacts back the director, with two pieces of
information: first, the position of the actor in the group of
participating actors, and second, the token returned after
the computation. When the join director has finished re-
ceiving all the respective tokens, it sends the customer actor
the continuation along with the array of tokens returned, if
such tokens are desired by the customer actor.

We have shown only a simple example of a join statement
and its corresponding code generation. Note that the code
generation algorithm has to deal with the most general case
of any potential location for the “join” statement within
a SALSA expression. Appendix B shows a more general
example of the usage of the join statement, along with the
Java code generated by SALSA.

"James Waldby proposed this idea for JVM termination.

join (al<-m1(), \
az<-m2(),
a3<-m3(), ... ) @ cust<-n;

6. DISCUSSION AND RELATED WORK

The separation of state (procedures and data) and process-
ing (threads) into different entities in passive object oriented
programming languages, the synchronous blocking interac-
tion among objects, and the difficulties arising from shared
memory, especially in distributed settings; motivate us to
consider a different model of concurrent and distributed
computation for mobile and Internet computing. The ac-
tor model is a good candidate because it promotes inde-
pendence of computing entities to support migration, dis-
tribution, dynamic reconfiguration, openness, and efficient
parallel execution.

Several libraries which implement the Actor model of com-
putation have been developed in different object-oriented
languages. Three examples of these frameworks are the Ac-
tor Foundry [29], Actalk [7] and Broadway [33]. Several
actor languages have also been proposed and implemented
to date, including ABCL [39], Concurrent Aggregates [12],
Rosette [34], and Thal [25]. There are several advantages
associated with directly using an actor programming lan-
guage, as compared to using a library for actors:

e Semantic constraints: Certain semantic properties
can be guaranteed at the language level. For example,
an important property is to provide complete encap-
sulation of data and processing within an actor. En-
suring there is no shared memory or multiple active
threads, within an otherwise passive object, is very
important to guarantee safety and efficient actor mi-
gration.

e API evolution: Generating code from an actor lan-
guage, it is possible to ensure that proper interfaces are
always used to create and communicate with actors. In
other words, programmers can not incorrectly use the
host language. Furthermore, evolutionary changes to
an actor API need not affect actor code.

e Programmability: Using an actor language im-
proves the readability of programs developed. Often
writing actor programs using a framework involves us-
ing language level features (e.g. method invocation)
to simulate primitive actor operations (e.g. actor cre-
ation, message sending, etc). The need for a perma-
nent semantic translation, unnatural for programmers,
is a very common source of errors.

Our experience suggests that an active object oriented pro-
gramming language — one providing encapsulation of state
and a thread manipulating that state — is more appropriate
than a passive object oriented programming language (even
with an actor library) for implementing concurrent and dis-
tributed systems to be executed on the Internet.

The ABCL family of languages has been developed by
Yonezawa’s research group [39] to explore an object-oriented
concurrent model of computation, based on Actors. ABCL
has been developed in Common Lisp. One significant differ-
ence is that the order of messages from one object to another
is preserved in their model. There are also three types of



message passing mechanisms: past, now, and future. The
past type of message passing is non-blocking as in actors.
The now type is a blocking (RPC) message with the sender
waiting for a reply. And the future type is a non-blocking
message with a reply expected in the future. SALSA’s more
general continuation passing style can be used to implement
now and future message passing.

THAL, an extension to HAL (High-level Actor Lan-
guage) [23], was developed by Kim [25] to explore compiler
optimizations and high performance actor systems. As a
high performance implementation, THAL has taken away
features from HAL like reflection, and inheritance. THAL
provides several communication abstractions including con-
current call/return communication, delegation, broadcast
and local synchronization constraints. THAL has shown
that with proper compilation techniques, parallel actor pro-
grams can run as efficiently as their non-actor counterparts.
Future research includes studying optimizations of SALSA
actor programs, in particular, the actor model’s data encap-
sulation enables eliminating most of Java’s synchronization
overhead.

Other researchers are trying to eliminate synchronization
redundancies in Java code [31, 16, 13, 4, 6]. There is also
a large effort currently taking place to improve the current
Java memory model [28, 30, 18], especially in the case of
execution on shared memory multiprocessor architectures
with weak memory models, such as the SMP Alpha systems.
More radical approaches include adding different categories
of classes to Java including monitors [22] (e.g. [5]).

Gray et al. present a very complete survey of mobile agent
systems [20] categorized by the programming languages they
support. Agent systems supporting multiple programming
languages include: Ara, D’Agents, and Tacoma. Java-based
systems include Aglets [26], Concordia, Jumping Beans, and
Voyager. Other systems supporting a non-Java single pro-
gramming language include: Messengers [17], Oblig, Tele-
script, and Nomadic Pict [38].

Obliq [8] is a lexically-scoped, untyped, interpreted lan-
guage, with an implementation relying on Modula 3’s net-
work objects. Obliq has higher-order functions, and static
scope: closures transmitted over the network retain network
links to sites that contain their free (global) variables.

Emerald [24], one of the first systems supporting fine-
grained migration, includes different parameter passing
styles, namely call by reference, call by move and call by
visit. Instance variables can be declared attached allowing
arbitrary depth traversals in object serialization.

Web combinators [9] are programming constructs intro-
duced to model human behavior in accessing Web docu-
ments, taking into consideration transmition rates and fail-
ures. Mobile Ambients [10] model object group migration
through different administrative domains (e.g. through fire-
walls).

The authors have proposed the use of casts, actor groups

coordinated by a director actor, as a unit for mobility, secu-
rity and coordination [36] in large-scale distributed systems.
SALSA and the research reported in [35], constitute a first
step towards an implementation of these ideas.

SALSA’s Relationship to Java and Actors

Because SALSA syntax is similar to Java and because
SALSA preprocessors generate Java code for program com-
pilation and execution, it is possible to use Java objects as
part of an actor’s state. The only condition is that Java
code be completely encapsulated within an actor; that is
to say, no internal Java threads must ever leave the state
of the actor, and thread synchronization must ensure safe
shared memory access by multiple internal threads. It is
therefore possible to reuse a large number of existing Java
libraries within SALSA code. Another inherited advantage
from using Java as the base language for implementing ac-
tor systems in SALSA is Java’s support for inheritance and
polymorphism. Actor behavior definitions may specialize
other behaviors motivating code reuse. Variables declared
to be of a super-behavior type, may actually point to differ-
ent sub-behaviors at run-time enabling polymorphism and
more generic software development.

SALSA differs from pure actor languages [1] in several re-
spects. The become primitive has been replaced by a ready
primitive, signaling that an actor has changed its state and
that it is ready to process the next message, following [2].
This is more in spirit with active object oriented program-
ming, where an actor is modeled as an active object and mes-
sages are modeled as potential method invocations buffered
in a mailbox and processed sequentially in a global loop (im-
plicitly invoking ready). More importantly, SALSA’s sup-
port for token-passing continuations, join continuations, and
first-class continuations enables programmers to control con-
currency more easily than only using asynchronous message
passing. Furthermore, the ability to create universal actor
references from URL-like identifiers appears to break the ac-
tor acquaintance laws [3] — an actor may only communicate
with actors for which it has explicitly received an address.
However, actors need to explicitly be made universal, which
can be seen as sending the actor’s address to a well-known
actor (the naming server) which is in turn contacted to get
the actor’s reference.

7. CONCLUSIONS

We have described the design and implementation of an
actor programming language targeting open, dynamically
reconfigurable Internet and mobile computing applications.
SALSA is a concurrent, dynamically-typed, active object
oriented programming language supporting token-passing
continuations and join continuations for coordinating actor
interactions, and tightly incorporating distributed computa-
tion with primitive constructs for Internet-based universal
naming, remote communication and migration.
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APPENDIX

A. GRAMMAR CHANGES TO JAVA

We have based our actor language on Java’s syntax and
therefore we have used the grammar for Java as a start-
ing point. However, to avoid confusion between SALSA and
Java programs; we have changed the name for the most gen-
eral language constructs:  package to module and class
to behavior. In any case, SALSA modules get preprocessed
into Java packages and SALSA behaviors into Java classes
which extend a base UniversalActor class provided by the
SALSA Actor Library. Java interfaces remain the same
in SALSA.

To support asynchronous message passing as the most
basic communication primitive, we have extended Java’s
PrimaryExpression non-terminal from:

PrimaryExpression ::= PrimaryPrefix ( PrimarySuffix )*|
to:
PrimaryExpression ::= PrimaryPrefix ( PrimarySuffix )x*

( MessageSendSuffix )7

MessageSendSuffix ::= "<-" <IDENTIFIER> ( Arguments )?

Note that if the Arguments are not given, we know that it
must be syntactic sugar for (token) within the context of a
token-passing continuation.

Token-passing continuations and join continuations are sup-
ported in SALSA’s grammar with the following rules:

ContinuationExpression
::= "currentContinuation"
| PrimaryExpression
( "@" ContinuationExpression )7
| JoinStatement

JoinStatement
::= "join" "(" ContinuationExpressionList ")"
"@" ContinuationExpression

ContinuationExpressionList
::= ContinuationExpression
( "," ContinuationExpression )*

Note that it is possible to have token-passing continuation
expressions within the list of expressions in a join state-
ment.

Finally, two extra possibilities for valid Statements were
added to the language grammar:

Statement ::= ContinuationExpression ";"
| JoinStatement

The token keyword was also added to the lexical tokens
accepted by the parser, and a semantical check at code gen-
eration is performed to ensure it is correctly located within
an argument list.

standardQutput<-print ("Time: ") @
join(actors<-m())@ done()@
standardOutput<-print @
standardOutput<-println(" ms.");

Figure 17: Join Continuation Code

We have used the JavaCC parser generator and the JJTree
abstract syntax tree creation module® to create the SALSA
preprocessor. We directly manipulate the created abstract
syntax tree to generate Java code. To see SALSA’s full
grammar, we refer the reader to [37].

B. CONTINUATION CODE GENERATION
B.1 Join Continuation Code Generation Ex-

ample
In this appendix, we display the code generated for the por-
tion of SALSA code in the acknowledged multicast protocol,
containing a join continuation.

Figure 17 shows the code in SALSA and Figure 18 shows
the Java code generated by the SALSA preprocessor. First,
a join director is created (see Figure 16) with the ac-
tors participating in the acknowledge multicast protocol.
Then the continuation used by the join director is cre-
ated. This is a token-passing continuation involving this
actor and the standardOutput actor with messages done,
print and println. Notice how the done messages receives
no arguments, while the print messages receive one argu-
ment. Notice also how there is a token being passed to
the standardOutput<-print message, represented by a 0
in the tokens array. Once the continuation is created, it
is given to the join director — with the setContinuation
method. So far, there has been no computing, only get-
ting the structures ready. Now, we can proceed to generate
a token-passing continuation (represented as a Message ob-
ject) with the standardOutput actor and print (‘ ‘Time:’?)
message, followed by the joinDirector<-process() actu-
ally performing the join continuation protocol.

B.2 First-Class Continuation Code Genera-
tion

First-class continuations can be implemented by generating
code that changes the signature of methods to include a
formal parameter representing the Message instance under
which this method is being invoked. Method invocations can
then include a reference to the message object which con-
tains a reference to the current continuation. Currently,
first-class continuations have been designed and included
in the language grammar. However, the current version of
SALSA (v0.3.2) does not yet generate code for first-class
continuations.

8 Available at http://www.metamata.com/



oinDirector _joinDirectorl = null;
{

Actor[] _targetsl = actors;
String[] _methodNamesl = new String[actors.length];
int[] _tokenPositionsl = new int[actors.length];
Object [J[] _argumentsl = new Object[actors.length][];
for (int i = 0; i< actors.length; i++){
_methodNames1[i] = "m";
_tokenPositionsi[i] = -1;
_argumentsi[i] = new Object[0];

try {

_joinDirectorl =
JoinDirector.createJoinDirector
(this,

_targetsli,

_methodNames1,

_argumentsi,

_tokenPositionsi,

null); // to set _continuationi

} catch (NoSuchMessageException _nsme)q{
_nsme.printStackTrace();

¥

Message _continuationl = null;

Actor[] _targets = { this, standardOutput,
standardQutput };
String[] _methodNames = { "done", "print",
"println" };
Object[1[] _arguments = { {}, {null}, {" ms."} };
int [] _tokens = { -1, 0, -1 };
try {
_continuationl =
(Message.createMessage
(this,
_targets,
_methodNames,
_arguments,
_tokens,
_joinDirector1l.getReturnType(),
0));
} catch (NoSuchMessageException _nsme){
_nsme.printStackTrace();
} catch (MessageCreationException _mce){
System.err.println("SALSA Internal Error:"+
_mce.getMessage());
¥
}

_joinDirectorl.setContinuation(_continuationl);

Actor[] _targets = { standardOutput, _joinDirectorl };
String[] _methodNames = { "print", "process" };
Object[1[]1 _arguments = { {"Time: "}, { } };
int [] _tokens = { -1, -1 };
try {
standardOutput.send
(Message.createMessage
(this,
_targets,
_methodNames,
_arguments,
_tokens));
} catch (NoSuchMessageException _nsme){
_nsme.printStackTrace();
} catch (MessageCreationException _mce)q{
System.err.println("SALSA Internal Error:"+
_mce.getMessage());
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Figure 18: Join Continuation Java Code as gener-
ated by SALSA preprocessor




