
Partition Equilibrium Always Exists
in Resource Selection Games?

Elliot Anshelevich, Bugra Caskurlu, and Ameya Hate

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY.

Abstract. We consider the existence of Partition Equilibrium in Re-
source Selection Games. Super-strong equilibrium, where no subset of
players has an incentive to change their strategies collectively, does not
always exist in such games. We show, however, that partition equilib-
rium (introduced in [4] to model coalitions arising in a social context)
always exists in general resource selection games, as well as how to com-
pute it efficiently. In a partition equilibrium, the set of players has a
fixed partition into coalitions, and the only deviations considered are by
coalitions that are sets in this partition. Our algorithm to compute a
partition equilibrium in any resource selection game (i.e., load balanc-
ing game) settles the open question from [4] about existence of partition
equilibrium in general resource selection games. Moreover, we show how
to always find a partition equilibrium which is also a Nash equilibrium.
This implies that in resource selection games, we do not need to sacrifice
the stability of individual players when forming solutions stable against
coalitional deviations. In addition, while super-strong equilibrium may
not exist in resource selection games, we show that its existence can be
decided efficiently, and how to find one if it exists.

1 Introduction

In multi-agent systems, it is common to assume that the agents will change their
existing behavior if they can reduce their cost by doing so. This assumption is
at the heart of the study of Nash equilibrium in various settings. The concept
of Nash equilibrium, however, becomes relevant only in scenarios where agents
cannot form coalitions, and change their behavior as a group. The Strong Equi-
librium [1] solution concept, where any subset of agents can form a coalition and
deviate together if it is beneficial to all of them, addresses the weaknesses of the
Nash equilibrium solution concept for the settings where players can form coali-
tions. A strong equilibrium represents the scenario where any group of players
could form a coalition, and everyone has to strictly benefit from a deviation. In
this paper, we relax these assumptions, and consider the cases where only some
of the subsets of players could group themselves together into a deviating coali-
tion, and where not everyone in a coalition has to strictly improve their utility
in order to deviate.
? This work supported in part by NSF CCF-0914782.

We study these solution concepts in the context of Resource Selection Games
(RSGs). RSGs model a wide range of scenarios, where a set of players are select-
ing exactly one of various resources, with the cost of using a resource depending
on the type of the resource, as well as the number of players selecting this partic-
ular resource. They present a framework that can be used to model the problems
of various communities like operations research, economics, computing systems,
transportation, and communication networks. The atomic selfish routing game
[2, 6, 13, 14] on parallel link networks and selfish machine assignment [3, 5, 10, 14]
for identical jobs are among various problems modeled as RSGs in the algorith-
mic game theory community. RSGs fall into the class of potential games [11,
12] for which existence of a pure Nash equilibrium is guaranteed. Holzman and
Law-Yone [8, 9] proved the existence of strong equilibrium in RSGs as well. How-
ever, Super-Strong Equilibrium (see below) is not guaranteed to exist in RSGs,
which led Feldman and Tennenholtz [4] to define a concept of Partition Equi-
librium and study its existence in the context of Resource Selection Games. In
this paper, we greatly extend their results by showing the existence of partition
equilibrium in every Resource Selection Game, as well as how to compute it.

1.1 Related Solution Concepts

The Strong Equilibrium (SE) solution concept assumes a coalition will deviate
only if the deviation is strictly profitable to all members of the coalition. In a
strong equilibrium, no subset of players is able to deviate with every player in
the group strictly improving their utility.

Super-Strong Equilibrium (SSE) considers weakly-profitable deviations, where
a coalition will deviate provided that no member of the coalition becomes worse
off, and at least one member of the coalition strictly benefits. A super-strong
equilibrium is a solution where no subset of players has such a deviation. This
solution concept makes more sense in many settings, especially if agents will
somewhat care about the utility of other agents (which perfectly make sense if
the agents are friends, colleagues, family members). While strong equilibrium
is guaranteed to exist in RSGs, there are RSG instances where super-strong
equilibrium may not exist, even with 2 identical machines and 3 players [4].
Additionally, if we consider the formation of player coalitions as arising from a
social context (i.e., a group of friends decide to form a coalition together), then
the assumption that any subset of players can form a coalition is quite strong.

Partition Equilibrium was first defined in [4] as an attempt to model coali-
tions that arise from a social context. In this setting, the specification of the
game contains a fixed partition T over the set of players. This partition divides
the players into non-overlapping coalitions. In this solution concept, the only
permissible deviations are the ones where a coalition is one of the sets in the
fixed partition T . A solution is a stable solution if no coalition has an weakly-
profitable deviation, i.e., a deviation where at least one member of the coalition
strictly benefits and no member of the coalition becomes worse off. [4] called
such a stable solution a T -SSE, since a partition equilibrium is a super-strong
equilibrium, but with the only coalitions that are allowed to deviate being the

sets of partition T . Also observe that unlike strong equilibrium or super-strong
equilibrium, partition equilibrium solutions are not a subset of Nash equilibrium
solutions.

Feldman and Tennenholtz [4] studied the existence of partition equilibrium
in the context of resource selection games and proved that partition equilibrium
exists in the following special cases:

– All the resources are identical, i.e., they share the same latency function, or
– There are only 2 resources in the system, or
– Each coalition is composed of 1 or 2 players.

Note that partition equilibrium is a solution concept in a non-transferable
utility game, i.e., money transfers among the players are not allowed. The Collu-
sion Equilibrium solution concept [7] is the analogue of partition equilibrium in
transferable utility games. In this solution concept, there is also a fixed partition
over the players which forms the non-overlapping coalitions. The only difference
is that money transfers among the players are permitted, and therefore a devi-
ation is an improving deviation if it reduces the total cost of the players in the
coalition. Observe that collusion equilibrium is a stronger solution concept in
the sense that an allocation of players to resources that constitutes a collusion
equilibrium (no coalition can reduce its total cost by deviating) is also a parti-
tion equilibrium allocation but not vice versa. Hayrapetyan, Tardos and Wexler
[7] studied the existence and computation of collusion equilibrium in the context
of resource selection games. They proved the existence of collusion equilibrium
(and therefore, partition equilibrium) in the special case where the latency func-
tions of the resources are convex. Their proof is constructive, i.e., they give an
algorithm that produces a collusion equilibrium solution which may not be a
Nash equilibrium solution.

1.2 Our Results

Our main result is the proof of existence (and efficient computation) of an allo-
cation A of players to resources such that A is both a partition equilibrium and
a Nash equilibrium allocation. This result holds for general resource allocation
games, with no assumptions about the latency functions of different resources
(except them being increasing), on the size of the coalitions, or on the number of
machines. This resolves an open question from [4] about the existence of parti-
tion equilibrium for general RSGs. Moreover, our results provide the interesting
insight that for every partition T there exists a solution where no coalition of
T would gain by deviating (i.e., it is a T -SSE), and no single player would gain
by deviating (i.e., it is a Nash equilibrium). This implies that we do not need to
sacrifice the stability of individual players when forming solutions stable against
coalitional deviations.

In Section 2, we present a formal definition of resource selection games and
give a complete characterization of Nash equilibrium solutions for these games.
In Section 3, we give a set of sufficient conditions for coalitions such that if a

coalition satisfies the given conditions on a Nash equilibrium allocation, then
that coalition does not have an improving deviation. In Section 4, we give an
algorithm that produces a Nash equilibrium allocation of players to resources
such that all coalitions satisfy the sufficient conditions given in Section 3. In
Section 5, we show that for any resource selection game instance, the existence of
super-strong equilibrium is efficiently decidable, and if super-strong equilibrium
exists, then we can compute one efficiently.

In summary, this paper shows that we can always find a SSE if one exists,
but even for games which do not admit a SSE, we can find a solution that is
stable for any set in a given partition T , as well as for any individual player.

2 Model and Preliminaries

We now formally define the resource selection game. We have n players (jobs)
and m resources (machines). The strategy of each player is to select exactly one
of the m machines. Each machine i has a strictly increasing latency function
fi(ni) which only depends on the number of players ni that select machine i.
The cost of each player that selected machine i is fi(ni).

In this paper we will consider partition equilibrium and super-strong equi-
librium (SSE), both of which are solution concepts involving stability against
coalitional deviations. Specifically, by an improving deviation by a coalition of
players C, we will mean a weakly-profitable deviation, i.e., a deviation where no
player in C increases their cost, and at least one player of C strictly decreases
their cost.

A SSE is an allocation of jobs to machines, so that no subset of jobs has
an improving deviation. As shown in [4], a SSE does not always exist, although
a strong equilibrium (where a deviation will only occur if every member of a
coalition strictly profits) always exists in resource selection games [8, 9].

Now suppose that we have a fixed partition T = T1, . . . , Tk over the set of
players such that Ti ∩ Tj = ∅, i.e., the sets are not overlapping. Each set Ti

represents a coalition of players that are willing to deviate as a group. Then,
a partition equilibrium or T -SSE is an allocation of jobs to machines such that
no set of jobs in partition T has an improving deviation. Then, it is clear that
a SSE is also a T -SSE for every partition T , as well as a Nash equilibrium. A
T -SSE, on the other hand, is not necessarily a Nash equilibrium.

2.1 Nash Equilibrium

Since we are going to show that the existence of an allocation that is a T -SSE and
a Nash equilibrium, we first give a complete characterization of Nash equilibrium
solutions.

Let u be the minimum makespan of our system, i.e., the minimum value of
maxi fi(ni) that can be achieved for any allocation of jobs to machines. Notice
that since the latency of a machine depends only on the number of jobs assigned
to this machine, then u is easily computable using a greedy algorithm. We classify

the machines into two groups. A resource i is called a ’type 1’ resource if there
exists a positive integer z such that fi(z) = u. In other words, a resource is a
’type 1’ resource if it can attain a latency of u. We say that a resource i is a ’type
2’ resource if it cannot attain a latency of u, i.e., there is no positive integer z
such that fi(z) = u.

For each machine i, define mi as the maximum number of jobs a machine
can accept while i attains a latency at most u, i.e., mi = maxz{fi(z) ≤ u}.

Proposition 1. An allocation A of jobs onto machines is a Nash equilibrium if
and only if each type 2 machine i is allocated exactly mi jobs and each type 1
machine i is allocated either mi or mi− 1 jobs, with at least one type 1 machine
i allocated exactly mi jobs.

Proof. if: Note that when a job deviates it has to move to another machine,
thereby increasing the number of jobs on that machine. If the number of jobs on
any machine increases, then that machine will experience a latency of at least u.
Since all jobs are currently experiencing a cost of at most u, the latency of any
job after moving to a different machine will not decrease. This proves that if all
the above conditions are satisfied then the allocation is a Nash equilibrium.

only if: If the makespan of a solution is more than u, say α, then this means
that some machine i has more than mi jobs on it. This implies that there exists
a machine j that has less than mj jobs on it. Then by transferring a job from
machine i to j we can reduce the latency faced by that job from α to at most u.
Hence a Nash equilibrium will always have a makespan of u. Also if any type 2
machine has less than mi jobs, or a type 1 machine has less than mi− 1 jobs on
it, then by moving a job that faces a latency of u to this machine, we can reduce
its latency. It is trivial to see that any type 2 machine will not have more than
mi jobs on it since that will increase the makespan to more than u. Hence any
such allocation will not form a Nash equilibrium. This proves that in order for
an allocation to be a Nash equilibrium, all the above conditions must be fulfilled.

By Proposition 1, some type 1 machines i are allocated mi jobs and therefore
the jobs on them are experiencing a cost of u, and some type 1 machines are
(possibly) allocated mi−1 jobs and the jobs on those machines are experiencing
a cost strictly less than u. Given a Nash equilibrium solution, we use the term
high machine to refer to a type 1 machine i that has mi jobs and use H to
denote this set of machines. We use the term low machine to refer to all other
type 1 machines and use L to denote this set of machines throughout the paper.
We use R to denote the set of type 2 machines.

Given a game instance (i.e., the set of machines with their latency functions,
the set of players, and the partition specified on it), the set of type 1 and type
2 machines can be readily decided, i.e., the same set of machines will be type
1 machines and the same set of machines will be type 2 machines in any Nash
equilibrium allocation A. However, the splitting of type 1 machines into high
machines H and low machines L depends on the Nash equilibrium solution

selected. Let A and A′ be two different Nash equilibrium allocations and let
H,H ′ and L,L′ be the corresponding high and low machines for these Nash
equilibrium allocations. Observe that |H| = |H ′| (and therefore |L| = |L′|) even
though H and H ′ (and therefore L and L′) may be different sets of machines.
The number of high machines in any Nash equilibrium will be same.

3 Sufficient Conditions for Stability

In this paper, we want to construct a Nash equilibrium solution that is also
a partition equilibrium for any given partition of the players. So, we want to
construct a Nash equilibrium allocation such that none of the coalitions has an
improving deviation. Given a Nash equilibrium allocation A, whether a coalition
Tk has an improving deviation or not depends on the number of jobs of this
coalition allocated to each machine. In this section, we will give a set of sufficient
conditions for a coalition Tk not to have an improving deviation. Observe that
if all the coalitions satisfy these sufficient conditions then none of the coalitions
will have an improving deviation, which implies that the allocation A is also a
partition equilibrium. For a type 1 machine i, we use li to denote fi(mi − 1),
i.e., the latency that it would experience if it were a low machine.

Following lemmas will help in finding the sufficient conditions for stability:

Lemma 1. If the number of jobs on a machine k is the same before and after
an improving deviation, then there exists an equivalent improving deviation (i.e.,
with the same number of jobs on each machine) where no jobs move to or from
machine k.

Proof. Consider a machine k that has the same number of jobs before and after
an improving deviation D by a coalition. Let the latency of this machine be θ.
Since the number of jobs on this machine did not change, for every job j that
left this machine there exists another job i which entered the machine. Denote
the latencies of these before deviation by αj and αi respectively. Similarly, let
the latencies after deviation be βj and βi respectively. We can conclude that
αj = βi = θ. Also, since this was an improving deviation, then αi ≥ θ and
βj ≤ θ.

Now consider another deviation D′ which is exactly the same as the original
except for that fact that the final positions of the jobs i and j are interchanged.
Let the new final latencies be β′i and β′j . Notice that β′j = θ and β′i = βj ≤ θ ≤ αi.
This means that jobs i and j do not increase their latency after deviation D′ as
compared to their original latencies before deviation.

It is clear that the two deviations are equivalent in the sense that they result
in the same number of jobs on each machine. We must still show that deviation
D′ is an improving deviation, i.e., that if one of these jobs reduced their latency
in the original deviation D then this also holds in the new deviation D′. If job j
strictly reduced its latency after deviation D, i.e., βj < θ, then after deviation D′

latency of job i will strictly reduce. This is because now the following inequality
holds true: β′i = βj < θ ≤ αi. If i strictly reduced its latency after deviation

D, i.e., αi > θ, then for the new deviation D′, the following inequality holds:
αi > θ ≥ βj = β′i. Hence job i will also reduce its latency after deviation D′.

All pairs of such jobs can be interchanged to create a new deviation in which
jobs of machine k do not take part. By above arguments, if the original deviation
was improving then the new deviation will also be improving.

Lemma 2. If a coalition Tk, that has 0 or 1 jobs on a high machine i in a Nash
equilibrium allocation A, has an improving deviation D, then Tk has another
improving deviation D′, where no jobs move to or from i.

Proof. Let A′ be the allocation after Tk takes deviation D. Note that if coali-
tion Tk does not have any job on a high machine i in allocation A, then it does
not have any job on i in allocation A′ as well, since otherwise the jobs that move
to i will face a cost of more than u. This would imply that D cannot be an
improving deviation, since all jobs have cost at most u in A.

Assume coalition Tk has exactly 1 job on a high machine i. Tk can have
either 0 or 1 jobs on i in allocation A′. If Tk has 1 job on i in A′ then there
exists an improving deviation where no job moves to or from i by Lemma 1.
Consider the case where Tk has 0 jobs on i in A′. Since the number of jobs on i
has decreased then the number of jobs on some other machine j has increased.
Since no machine can have a latency more than u in A′, then j is a high machine
in allocation A′. We can obtain another improving deviation D′ by moving one
of the jobs of Tk from j to i. In this deviation, the job that ends up on machine
i still has cost of u (just as it did after deviation D), and all other jobs of Tk

have cost after D′ that is no more than their cost after D.
Therefore, if Tk has an improving deviation D and has 0 or 1 jobs on a high

machine i, then it has an improving deviation D′, where no jobs move to or from
i by Lemma 1.

With the use of these lemmas we now state the sufficient conditions for
stability in the following theorem:

Theorem 1. Given a Nash equilibrium allocation A and a coalition Tk, let xi

denote the number of jobs of the coalition Tk allocated to machine i in A. Then
coalition Tk does not have an improving deviation if for every high machine i
such that xi ≥ 2 the following conditions are satisfied:

– for every low machine j such that lj > li, we have that xj ≥ xi and
– for every low machine j such that lj ≤ li, we have that xj ≥ xi − 1.

Proof. For the purpose of contradiction, assume there exists a coalition Tk that
satisfies all the conditions and yet has an improving deviation D. Let A′ denote
the allocation of jobs to machines if coalition Tk takes its improving deviation
D, and x′i be the number of jobs Tk has on machine i in allocation A′. Since the
allocation of the jobs of all coalitions except Tk are the same in both A and A′,
the change in the number of jobs on any machine i is as much as the change in
the number of jobs coalition Tk has on i. No machine i can have more than mi

jobs allocated to it in allocation A′ since otherwise, the jobs on i (at least one
of which is a member of Tk) will experience a latency more than u, which will
imply that the deviation is not an improving deviation.

If coalition Tk has 0 or 1 jobs on a high machine i in allocation A then
there exists another improving deviation D′, where no jobs move to or from i
by Lemma 2. We will assume that D has this property. Notice that if xi < 2
for a high machine i, then i is also a high machine in allocation A′. Let xh =
maxi∈H{xi}. We will first show that xh ≥ 2. Otherwise, all machines in H
remain high after the deviation. If any other machine j 6∈ H became high after
deviation D, then jobs on j would experience a cost of u. However, all jobs with
cost of u in A are on machines of H after the deviation, which means that the
jobs on j have strictly increased their cost due to deviation D, and therefore
D could not be an improving deviation. Thus, if xh < 2, then the set of high
machines is the same before and after D. In addition, if any machine j 6∈ H
has less jobs in A′ than it did in A, then another machine must have more jobs,
which would cause those jobs to experience a cost of at least u. By the argument
above, this cannot happen, and so xh ≥ 2.

Lemma 3. Let H ′ be the set of machines with latency of exactly u in allocation
A′. Then, |H ′| ≤ |H|.

Proof. In allocation A, coalition Tk has
∑

i∈H xi jobs experiencing a latency
of u, whereas in allocation A′, coalition Tk has

∑
i∈H′ x

′
i jobs experiencing a

latency of u. Let xh = maxi∈H{xi} and let xl = mini∈L{xi}. The sufficient
conditions state that xl ≥ xh − 1, since xh ≥ 2 as shown above. If i ∈ H ′ was
a low machine before the deviation, then x′i = xi + 1, and so it has at least as
many jobs of Tk in A′ as any high machine of allocation A. If i ∈ H ′ was a
high machine before the deviation, then x′i = xi. Thus |H ′| > |H| would imply
that

∑
i∈H′ x

′
i >

∑
i∈H xi, which means that coalition Tk has more jobs that are

experiencing a latency of u in allocation A′ than allocation A. However, that
would contradict with D being an improving deviation, and so it has to be that
|H ′| ≤ |H|.

Note that the total number of jobs in any Nash equilibrium allocation A can
be expressed as

∑
i∈Rmi +

∑
i∈H mi +

∑
i∈L (mi − 1). If a type 2 machine i ∈ R

has less than mi jobs in A′ then the number of machines that has latency of
u would be strictly more than |H|, i.e., |H ′| > |H|. Therefore, the number of
jobs coalition Tk has on any type 2 machine in allocation A′ is exactly xi. Since
deviation D does not change the number of jobs Tk has on any type 2 machine,
there exists an equivalent improving deviation where the jobs of type 2 machines
do not change by Lemma 1, and we will assume that D has this property.

Observe that if a type 1 machine i has less than mi− 1 jobs in allocation A′,
then |H ′| > |H|, thus violating Lemma 3. Therefore, every type 1 machine has
either mi or mi − 1 jobs in allocation A′. In other words, by Proposition 1 A′ is
also a Nash equilibrium allocation.

Since A′ is a Nash equilibrium, we can assume without loss of generality that
deviation D made a certain number of high machines become low, and the same

number of low machines become high. Using Lemma 1 we can assume that the
machines on which the number of jobs did not change also did not take part in
deviation D. Let the set of machines the become low after the deviation be H−

and the set of machines that become high after the deviation be L+. We know
that |H−| = |L+|. Now consider the total latency faced by jobs on machines
belonging to H− ∪ L+ before deviation, say α, and after the deviation, say β.

α =
∑

i∈H−

uxi +
∑

j∈L+

ljxj

β =
∑

i∈H−

(xi − 1)li +
∑

j∈L+

(xj + 1)u

We now prove the following lemma:

Lemma 4. For every perfect matching P between the machines of H− and L+

that pairs i ∈ H− with j ∈ L+, it must be true that lj ≤ li and xj = xi − 1.

Proof. Let P be any perfect matching between the machines of H− and L+

(note that |H−| = |L+|). Consider a pair of machines (i, j) ∈ P such that i ∈ H−
and j ∈ L+. If lj > li then we know that xj ≥ xi. This means that the total
number of jobs facing a latency u on machines i, j after deviation: (xj + 1) is
strictly more than before: (xi). If lj ≤ li then we know that xj ≥ xi − 1. This
would mean that the total number of jobs facing a latency u on machines i, j
after deviation: (xj + 1) is at least as much as before: (xi).

This implies that if there exists even one pair of machines (i, j) such that
lj > li, then the total number of jobs facing a latency of u after deviation will
strictly increase. On the other hand if lj ≤ li but xj > xi − 1 then too it is
easy to see that the number of jobs facing a latency of u after deviation strictly
increases.

Hence D is a valid deviation only if for every (i, j) ∈ P , lj ≤ li and xj = xi−1.

Consider any perfect matching P between the machines of H− and L+. We
can now compare the values of α and β:

α =
∑

i∈H−

uxi +
∑

j∈L+

ljxj

=
∑

j∈L+

u(xj + 1) +
∑

j∈L+

ljxj . . . (Lemma 4)

=
∑

j∈L+

u(xj + 1) +
∑

(i,j)∈P

lj(xi − 1) . . . (Lemma 4)

≤
∑

j∈L+

u(xj + 1) +
∑

i∈H−

li(xi − 1) . . . (For every (i, j) ∈ P, lj ≤ li)

= β

This means that the total cost faced by jobs of machines of H− ∪L+ will at
best remain the same. If the latency of some job decreases then the latency of
some other has to increase in order to keep the sum constant. This means that
the latency faced by every job can at best remain the same. But an improving
deviation requires that D must strictly improve the latency of some job. Hence
an improving deviation D does not exist.

4 Partition Equilibrium

We now present an algorithm that constructs an allocation of jobs such that all
the sufficient conditions of Theorem 1 are satisfied. Thus we will create a Nash
equilibrium that is also a partition equilibrium. For this purpose we will use the
properties of Nash equilibrium as described in Section 2. Particularly we will use
the fact that, given the total number of jobs, every Nash equilibrium will have
the same number of high machines, which we denote by q. The algorithm gives
an allocation of jobs over all type-1 machines. Since the sufficient conditions
do not have restrictions on jobs of the type-2 machines, remaining jobs can be
arbitrarily allocated to them so that each machine has mi jobs. We also define
a set of active machines as all machines i that have less than mi jobs on them.
Let q = |H| be the number of high machines in any Nash equilibrium allocation.
The algorithm is as follows:

– Begin with an empty allocation. Note that all machines are active at this
time.

– Obtain an ordering on the set of all active machines based on non-increasing
values of their li.

– For every coalition, place jobs sequentially starting from the first active ma-
chine according to the above ordering. If the number of jobs in this coalition
exceeds the number of active machines then rollover and continue placing
jobs from the first active machine in the ordering.

– If at any step a machine i has mi jobs placed on it, i.e. i becomes high, then
remove it from the set of active machines.

– When q machines become high, place remaining jobs on the active machines
arbitrarily such that they have mi − 1 jobs on them.

Example Consider an example with 4 machines and 2 coalitions in Figure 1.
Coalition 1 has 6 jobs and coalition 2 has 4 jobs. All the machines in this example
are of type-1. Also they have been sorted in non-increasing order of their li-
values. The blocks represent the jobs and height of the j’th block on machine
i is given by fi(j) − fi(j − 1). Figure 1 illustrates various stages during the
implementation of the algorithm. Observe that in any Nash equilibrium for this
input exactly q = 2 machines will be high.

Notice that making sure that our algorithm places no more than mi jobs on
any machine is crucial not only to create a Nash equilibrium, but also to create
a partition equilibrium. For example, in Figure 1, if we did not stop adding jobs

to machines once they have mi jobs, then we would end up with 3 = m2 +1 jobs
on machine 2. If f2(3) > f4(3), then this would not be a partition equilibrium,
since Coalition 1 would have an improving deviation by moving two of its jobs
to machine 4 from machine 2, and one job to machine 2 from machine 4.

1

(b) Active Machines: 1,3,4

Coalition 1 Coalition 2
u

432

(a) Active Machines: 1,2,3,4

(c) (d)

1 432

1 432 1 432

Fig. 1. (a) In the beginning all machines are active. (b) Jobs of coalition 1 are placed
and machine 2 becomes inactive. (c) 3 out of 4 jobs of coalition 2 have been placed
and q = 2 machines have become high. (d) The remaining job is placed on machine 3
making it low. Sufficiency conditions of Theorem 1 are now satisfied.

Theorem 2. The above algorithm produces a partition equilibrium and a Nash
equilibrium.

Proof. The algorithm makes exactly q machines high hence due to the property
of NE we know that there are sufficient jobs to make rest of the machines low,
i.e., put mi−1 jobs on them. Consider a coalition C. If this coalition has only 0 or
1 jobs on every high machine then the conditions of Theorem 1 are fulfilled, and
so C has no improving deviation. Consider a high machine i on which coalition
C has more than one jobs. Let us look at the time-step when the algorithm
has put α jobs of coalition C on i. Now before putting the (α + 1)’th job on i

the algorithm puts one job on every low machine. This is true because the low
machines are exactly the ones that do not run out of space for jobs until the
high machines are completely filled. This implies that for every low machine j,
xj ≥ xi − 1.

Also if a low machine j is such that lj > li then the algorithm puts one job
on every such machine j before i. This follows from the ordering obtained on the
machines on the basis of the li-values. This means that if lj > li then xj ≥ xi.

This proves that both sufficient conditions of Theorem 1 are fulfilled by the
final allocation, which is also a Nash equilibrium by Proposition 1. Hence the
allocation obtained by the algorithm is a partition equilibrium.

5 Existence and Computation of SSE

For a resource selection game, SSE may or may not exist (see [4] for an example
where it does not exist). In this section, we show that for a given instance of a
resource selection game, we can efficiently determine whether there exists a SSE
or not. We also give an algorithm that finds a SSE if it exists.

Theorem 3. Given a resource selection game G, there is a polynomial time
algorithm that returns a SSE allocation if it exists, and returns “no” if G does
not have a SSE.

Proof. Since every SSE is also a Nash equilibrium, then each type 2 machine
i has to have exactly mi jobs in any SSE allocation.

Recall that the total number of jobs in the system is exactly as much as∑
i∈Rmi +

∑
i∈H (mi − 1) +

∑
i∈L (mi − 1) + q in any Nash equilibrium allo-

cation, with q being the number of high machines in any Nash equilibrium. If
all type 1 machines are high machines, i.e., L = ∅, then all the machines in the
system will have exactly mi jobs and no coalition can have an improving devi-
ation. This is because any non-trivial deviation would require moving a job so
that its resulting latency is strictly more than u, and so cannot be an improving
deviation. Therefore, if L = ∅ then any Nash equilibrium allocation is also a SSE
allocation. So, a SSE allocation can be obtained simply by assigning mi jobs to
all machines.

Consider the case, where L 6= ∅. Assume that a high machine i has 2 or more
jobs. Consider a coalition composed of 2 jobs such that both are allocated to
i. If one of the jobs of this coalition moves to a low machine, then the cost of
the moving job will not change, while the other member of the coalition strictly
benefits. Therefore, an allocation where a high machine i has 2 or more jobs is
not a SSE if L 6= ∅. Thus, G does not have a SSE if L 6= ∅ and G does not have
at least q type 1 machines for which mi = 1.

If there are at least q type 1 machines for which mi = 1 then any Nash
equilibrium allocation A where q of the type 1 machines, for which mi = 1 are
high machines, is a SSE. This is because no subset of players has more than
1 job on any high machine in A, and therefore no coalition has an improving
deviation by Theorem 1. SSE allocation then can simply be obtained by placing

1 job on q machines for which mi = 1 and assigning the remaining jobs to all
other machines in a way that every type 2 machine has exactly mi jobs and
every remaining type 1 machine has exactly mi − 1 jobs allocated to it.

References

1. Aumann, R.: Acceptable Points in General Cooperative n-person Games. In:
Contributions to Theory of Games IV, Princeton Univ. Press, Princeton, N.J.
(1959)

2. Awerbuch, B., Azar, Y.,Epstein, L.: The Price of Routing Unsplittable Flow. In:
Proceedings of the thirty-seventh annual ACM symposium on Theory of comput-
ing, pp. 57-66. ACM, New York (2005)

3. Durr, C., Kim Thang, N.: Non-clairvoyant Scheduling Games. In: SAGT 2009.
LNCS, vol. 5814, pp. 135-146. Springer, Heidelberg (2009)

4. Feldman, M., Tenneholtz, M.: Partition Equilibrium. In: SAGT 2009. LNCS, vol.
5814, pp. 48-59. Springer, Heidelberg (2009)

5. Fiat, A., Kaplan, H., Levi, M., Olonetsky, S.: Strong Price of Anarchy for Ma-
chine Load Balancing. In: ICALP 2007. LNCS, vol. 4596, pp. 583-594. Springer,
Heidelberg (2007)

6. Fotakis, D., Kontogiannis, S., Spirakis, P.: Atomic Congestion Games Among
Coalitions. In: ICALP 2006. LNCS, vol. 4051, pp. 572-583. Springer, Heidelberg
(2006)

7. Hayrapetyan, A., Tardos, É., Wexler, T.: The Effect of Collusion in Congestion
Games. In: Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing, pp. 89-98. ACM, New York (2006)

8. Holzman, R., Law-Yone, N.: Strong Equilibrium in Congestion Games. :Games
and Economic Behavior 21, 85-101 (1997)

9. Holzman, R., Law-Yone, N.: Network structure and strong equilibrium in route
selection games. :Mathematical Social Sciences 46, 193-105 (2003)

10. Immorlica, N., Li, L., Mirrokni, V., Schulz, A.,: Coordination Mechanisms for Self-
ish Scheduling. In: WINE 2005. LNCS, vol. 3828, pp. 55-69. Springer, Heidelberg
(2005)

11. Monderer, D., Shapley, L.: Potential Games. In: Games and Economic Behavior
14, 124-143 (1996)

12. Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. In:
International Journal of Game Theory 2, 65-67 (1973)

13. Roughgarden, T.: Selfish Routing with Atomic Players. In: Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1184-1185.
Society for Industrial and Applied Mathematics, Philadelphia (2005)

14. Suri, S., Toth, C., Zhou, Y.: Selfish Load Balancing and Atomic Congestion Games.
In: Algorithmica, 47(1), 79-96 (2007).

