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Abstract

We examine the quality of social choice mechanisms using a utilitarian view, in which all of the agents have costs
for each of the possible alternatives. While these underlying costs determine what the optimal alternative is, they may
be unknown to the social choice mechanism; instead the mechanism must decide on a good alternative based only on
the ordinal preferences of the agents which are induced by the underlying costs. Due to its limited information, such a
social choice mechanism cannot simply select the alternative that minimizes the total social cost (or minimizes some
other objective function). Thus, we seek to bound the distortion: the worst-case ratio between the social cost of the
alternative selected and the optimal alternative. Distortion measures how good a mechanism is at approximating the
alternative with minimum social cost, while using only ordinal preference information. The underlying costs can be
arbitrary, implicit, and unknown; our only assumption is that the agent costs form a metric space, which is a natural
assumption in many settings. We quantify the distortion of many well-known social choice mechanisms. We show
that for both total social cost and median agent cost, many positional scoring rules have large distortion, while on
the other hand Copeland and similar mechanisms perform optimally or near-optimally, always obtaining a distortion
of at most 5. We also give lower bounds on the distortion that could be obtained by any deterministic social choice
mechanism, and extend our results on median agent cost to more general objective functions.

1 Introduction
Social choice theory deals with aggregating agent preferences over a set of alternatives into a collective decision via
a social choice mechanism. The social choice mechanism takes as input the preferences of agents, which are usually
total orderings over the set of alternatives, and typically outputs a single alternative as the winner. It is natural to
now ask about the quality of different social choice mechanisms; to do this one needs to define what it means for
a chosen alternative to be “good” or to accurately represent the consensus of the agent preferences. A popular way
of achieving this is to define criteria or axioms for social choice mechanisms, which guarantee that the alternatives
selected by these mechanisms satisfy desirable properties (see Related Work). Another common approach in fields
like welfare economics and algorithmic mechanism design, and which we follow in this paper, is to use a utilitarian
view [4]. Instead of assuming that agents only have ordinal preferences over the alternatives, this approach assumes
that every agent has (possibly latent or implicit) utility or cost values over the alternatives. These values are cardinal,
and represent how happy the agent is with each alternative. The quality of an alternative can then be defined simply as
the sum (or some other objective function) of the utility received by each agent for that alternative. Thus the best, or
optimal, alternative is simply the one that maximizes the total social welfare (or minimizes total cost), as measured by
the total utility received by the agents.

Utilitarian approach has recently received renewed attention in the study of social choice [23, 6, 4, 5]. Indeed, as
argued in [4], although not all social choice problems are amenable to the utilitarian approach (especially the ones
where it is unnatural to assume that agent utilities or costs can be compared) there are many real-life settings which
fit the utilitarian view. For example, in recommender systems and many similar domains from mechanism design and
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Sum Median
Plurality 2m− 1 ∞

Borda 2m− 1 ∞
k-approval 2n− 1 ∞

Veto 2n− 1 ∞
Copeland 5 5

Uncovered Set 5 5

Lower Bound 3 5

Table 1: The worst-case distortion of various social choice mechanisms for both the sum and the median objective
functions. All of the above bounds are provably tight, meaning that we provide example instances where the social
choice function cannot achieve a better bound. The lower bounds of 3 and 5 are for any deterministic social choice
functions.

e-commerce, the computational agents typically use real-valued rather than ordinal utilities (see Related Work and
[4]).

If the social choice mechanism knew exactly what utilities the agents receive from each alternative, then it could
simply pick the alternative maximizing social welfare directly. An important point here, however, is that while we as-
sume that some underlying utility structure exists, it is unreasonable to assume that we (or even the agents themselves)
know exactly what it is. As discussed in [4], it is often difficult for agents to determine their exact cardinal utilities,
and most social choice mechanisms thus take only the ordinal preference orderings of the agents as input, even when
latent utilities exist. Thus, a social choice function will not simply output the alternative that maximizes global utility,
but instead may choose another alternative, since it only has access to ordinal preferences. As a result, one can think of
a social choice function as an approximation algorithm which attempts to choose the best possible alternative (maxi-
mize social welfare or minimize social cost), but only has access to limited information (ordinal preferences instead of
cardinal utilities). To denote the approximation factor of a social choice function, [23] introduced the term distortion
which we will continue to use, although we will define it in terms of social cost instead of social welfare. Informally,
the distortion of a social choice function is the worst-case ratio of the social cost of the alternative selected by the
social choice function over the cost of the optimal alternative.

In this work, we are primarily interested in determining the quality of outcomes chosen by social choice mecha-
nisms, as measured by their distortion. We prove bounds on the distortion of many well-known social choice functions
for both the sum and median objective functions. Our results show that while the distortion is high for some mech-
anisms, the distortion of many important social choice functions is bounded by a small constant, assuming that the
preferences of the agents are spatial. Specifically, we assume that the costs of agents for various alternatives form an
arbitrary metric space. Such metric costs have a very natural interpretation – in the context of voting, as described in
the classic Downsian proximity model [17], we can think of the cost experienced by voter i due to candidate j being
elected as the distance between i and j’s beliefs in some high-dimensional space, as the number of issues they disagree
on, etc. Such spatial preferences have been extensively studied (see Related Work), although usually the metric space
is assumed to be simple, e.g., Euclidean with only one or two dimensions. In contrast, we make no assumptions about
the metric space, other than the fact that it is a metric space. To see how general our metric assumption is, note that,
unlike many common assumptions on spacial agent preferences, our metric assumption does not restrict the set of
possible ordinal preferences in any way (see Proposition 1 and discussion before it).

1.1 Our Contributions
In this work, we bound the worst-case distortion of many well-known social choice functions. In other words, we
show how closely social choice functions approximate the optimal alternative when they are given only the ordinal
preference orderings, instead of the underlying metric costs which generate these preferences.1 We consider two
general objective functions to quantify the quality of alternatives, and give distortion results for both. The first is the
sum objective function which defines the social cost of an alternative as the sum of all agent costs for that alternative.

1This is assuming that agents submit their true ordinal preferences. We leave questions about non-truthful agents as future work.
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This function is very natural, and is the most common measure of social cost. Our other objective function defines
the quality of an alternative as the median of agent costs for that alternative: this captures the objective that the best
alternative is the one in which the cost of the median voter is minimized, instead of the average voter.

Most of our results are summarized in Table 1. First, we consider how well any social choice function could do
when it only knows the ordinal preferences, but is supposed to approximate the social optimum. We show that no
deterministic social choice mechanism can have worst-case distortion better than 3 (for the sum objective), or better
than 5 (for the median objective). With these lower bounds established, we can nevertheless ask: do there exist social
choice rules which meet this lower bound? Are there rules which obtain the minimum possible distortion?

We begin with the bad news: for common positional scoring rules such as plurality, Borda, k-approval, and veto,
we prove that the worst case distortion can be high: either 2m − 1 or 2n − 1 where m is the number of alternatives
and n is the number of agents/voters. There is good news as well, however. For the Copeland social choice rule, we
prove that the distortion is always at most 5. This means that, although the Copeland social choice mechanism knows
nothing about the metric costs other than the ordinal preferences induced by them, and cannot possibly find the true
optimal alternative, it nevertheless always selects an alternative whose quality is only a factor of 5 away from optimal!
Moreover, due to our lower bound, no deterministic mechanism can do better than Copeland for the median objective,
and no deterministic mechanism can do much better than Copeland for the sum objective, because the distortion lower
bound for any deterministic mechanism is 3.

While this bound of 5 holds for both the sum and median objectives, different techniques are required to prove it for
the two cases. In fact, this bound holds not just for Copeland, but for similar voting rules as well, such as uncovered set
[19]. Since Copeland does not perform as well as the lower bound for the sum objective, we also analyze the distortion
of the ranked pairs mechanism. We show that it performs even better than Copeland, but only when certain conditions
on the agent preference profiles are satisfied (see Theorem 8).

In addition to the results in Table 1, we also analyze more general objective functions. Specifically, instead of
the median objective, which sets the quality of an alternative W to be the cost to the median voter, we consider
more general percentile objectives, where the quality of an alternative W is set to be the cost of the voter at the x’th
percentile. We show how the distortion of various mechanisms changes with x, and establish that Copeland remains
the mechanism with the best possible distortion for most values of x.

1.2 Related Work
The focus of much of the existing literature in social choice theory is the design and analysis of social choice functions
with respect to various normative criteria (See for example [11, 1, 8, 16]). Results like Arrow’s impossibility theorem
and Gibbard-Satterthwaite theorem demonstrate non-existence of social choice functions satisfying certain desirable
criteria, and additional assumptions must be made in order to circumvent these results (e.g., [18, 12, 20]).

In this work, we instead adopt a utilitarian view of social choice as described in the Introduction. Social choice with
utilitarian viewpoint has its advocates in welfare economics [24, 21] and has recently received attention from the AI
community [23, 6, 4]. The utilitarian approach has also been investigated in recommender systems [13], information
extraction [26], etc. While assuming that agent utilities can be compared does not make sense for all settings [14], it
is nevertheless reasonable in many applications of interest: see [4] for much more discussion on this subject.

Distortion as a measure of performance of a social choice function in utilitarian settings was introduced first in
[23] and later used in [4]. In both these works, the worst-case distortion of social choice functions was shown to be
unbounded or very high. In our work, however, we show that considering agent costs that form an unknown metric
immediately greatly reduces the distortion of many mechanisms, from unbounded to only a small constant. [6] use an
analogous notion of distortion to analyze the worst-case distortion of embeddings into voting rules: these embeddings
are functions that take as input an agent’s utility function and determine which alternative the agent should select.
Apart from the classic normative criteria, other papers have also used related interpretations of what makes a good
social choice function, such as distance rationalizability [9], rank approximation [7], and dynamic price of anarchy
[5].

In our paper, we assume that agents have spatial preferences resulting from metric agent costs. Spatial prefer-
ences and utility theory in the context of voting have a strong tradition in social choice and political science [10, 17].
Common assumptions include single-peaked preferences [18, 27] and single-crossing preferences [25, 20]; often pref-
erences are assumed to be one-dimensional, while we consider metrics with arbitrary dimension.

Finally, the concept of distortion is related to many other notions of approximation, as it compares the optimal
solution with the solution obtained given only limited information. This is similar, for example, to the competitive
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ratio in online algorithms, which is a measure of how an algorithm performs with limited information (not knowing
the future), compared to how an all-knowing algorithm would perform [3, 22].

2 Preliminaries
Social Choice with Ordinal Preferences. LetN = {1, 2, . . . , n} be the set of agents, and letA = {A1, A2, . . . , Am}
be the set of alternatives. Let S be the set of all total orders on the set of alternatives A. We will typically use i, j to
refer to agents andW,X, Y, Z to refer to alternatives. Every agent i ∈ N has a preference ranking σi ∈ S; byX �i Y
we will mean that X is preferred over Y in ranking σi. We call the vector σ = (σ1, . . . , σn) ∈ Sn a preference profile.
We say that an alternative X pairwise defeats Y if |{i ∈ N : X �i Y }| > n

2 .
Once we are given a preference profile, we want to aggregate the preferences of the agents and select a single

alternative as the winner. A social choice function f : Sn → A is a mapping from a preference profile to an
alternative. Some well-known social choice functions which we consider in this paper are as follows.

• Positional scoring rules. We are given a scoring vector ~s = (s1, s2, . . . , sm) with s1 ≥ s2 ≥ · · · ≥ sm. If
an agent ranks an alternative in position l, then the alternative receives sl points. The total score s(X,σ) of an
alternative X for a preference profile σ is the total number of points that X receives. The positional scoring rule
is f(σ) = argmaxX∈A s(X,σ); that is, it selects the alternative with the highest total score. Many well-known
voting rules can be thought of as positional scoring rules, for example:

– Plurality: ~s = (1, 0, . . . , 0)

– Veto: ~s = (1, 1, . . . , 1, 0)

– Borda: ~s = (m− 1,m− 2, . . . , 1, 0)

– k-approval (1 < k < m): ~s = (1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0)

• Copeland: The score of an alternativeX is |{Y ∈ A : X pairwise defeats Y }|. The alternative with the highest
score, i.e., the alternative with the largest number of pairwise victories, is the winner.

• Ranked pairs: Construct a graph G in the following manner. Let every alternative be a node in G. For every
pair of alternatives X,Y , let w(X,Y ) = |{i ∈ N : X �i Y }|. Sort these w(X,Y ) values in non-increasing
order and iterate over them. For each w(X,Y ) value, add the directed edge (X,Y ) to G if it won’t create a
cycle, and do nothing otherwise. The winner is the source node of the resulting directed acyclic graph.

Cardinal Metric Costs. In our work we take the utilitarian view, and study the case when the ordinal preferences
σ are in fact a result of the underlying cardinal agent costs. Formally, we assume that there exists an arbitrary metric
d : (N ∪ A)2 → R≥0 on the set of agents and alternatives (or more generally a semi-metric, since we allow agents to
be identical and have d(i, j) = 0). Here d(i,X) is the cost incurred by agent i of alternative X being selected as the
winner; these costs can be arbitrary but are assumed to obey the triangle inequality. The metric costs d naturally give
rise to a preference profile. Formally, we say that σ is consistent with d if ∀i ∈ N, ∀X,Y ∈ A, if d(i,X) < d(i, Y ),
then X �i Y . In other words, if the cost of X is less than the cost of Y for an agent, then the agent should prefer X
over Y . Let p(d) denote the set of preference profiles consistent with d (p(d) may include several preference profiles
if the agent costs have ties). Similarly, we define p−1(σ) to be the set of metrics such that σ ∈ p(d).

When making additional assumptions on how the preference rankings of the agents are generated, the set of
possible preference profiles may become restricted. For example, if we restrict agents to one-dimensional single-
peaked preferences, or to single-crossing preferences, then preference profiles with the Condorcet paradox can no
longer be realized [2, 12, 25]. However, having arbitrary metric costs in our model does not restrict the set of possible
profiles σ in any way: metrics are general enough that any preference profile in Sn can be induced.

Proposition 1 For every preference profile σ, there exists a metric d such that σ is consistent with d.

Proof. Consider the metric space (Rm, d), where d is the Manhattan distance d(x, y) =
∑m
k=1 |xk − yk|, for all

x, y ∈ Rm. We will define a mapping g : N ∪A → Rm. Each alternative is mapped to a distinct point on the simplex;
A1 is mapped to (1, 0, . . . , 0), A2 is mapped to (0, 1, . . . , 0), etc. For every agent i, we map it to a vector v and set
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vk = m−l+1
m , where l denotes the position of Ak in agent i’s preference ranking. We can now define a metric d′ on

N ∪ A, where for all x, y ∈ N ∪ A, d′(x, y) = d(g(x), g(y)).
We observe that (g(N ∪ A), d) is a metric space, because it is a metric subspace of (Rm, d). We conclude that

(N ∪ A, d′) is a metric space as well.
Next, we claim that σ is consistent with d′. We observe that for any alternative X ranked in position l by i,

d(i,X) =
∑
Y 6=X

|0− m− σi(Y ) + 1

m
|+
∣∣∣∣1− m− l + 1

m

∣∣∣∣
=

m∑
k=1,k 6=l

[
m− k + 1

m

]
+
l − 1

m

=

m∑
k=1

m− k + 1

m
− m− l + 1

m
+
l − 1

m

=
1

m

m∑
k=1

(m− k + 1) +
−m+ 2l − 2

m

= m+ 1− 1

m

m∑
k=1

k +
−m+ 2l − 2

m

= m+ 1− m(m+ 1)

2m
+
−m+ 2l − 2

m

Thus, d(i,X) strictly increases with l, and so for any agent i, d′(i,X) < d′(i, Y ) iff σi(X) < σi(Y ).

Social Cost and Distortion. We measure the quality of each alternative using the costs incurred by all the agents
when this alternative is chosen. We use two different notions of social cost. First, we study the sum objective function,
defined as SC∑(X, d) =

∑
i∈N d(i,X); this is the most common notion of social cost. We also study the median

objective function, SCmed(X, d) = medi∈N (d(i,X)). As described in the Introduction, we can view social choice
mechanisms in our setting as attempting to find the optimal alternative (one that minimizes social cost), but only having
access to the ordinal preference profile σ, instead of the full underlying costs d. The following proposition establishes
that this is impossible to do: the only way one can determine the optimal alternative while only having access to σ is
if there is a single alternative that is the top preference for all agents. In fact, we cannot even eliminate any alternative
from consideration of being optimal, except in trivial cases.

Proposition 2 For any preference profile σ and alternativeX , there exists a metric d ∈ p−1(σ) such thatX is optimal
with respect to the social cost function SC∑(X, d), except when there exists an alternative Y such that for all i ∈ N ,
Y �i X .

Proof. LetA′ denote the set of alternatives X that do not have an alternative Y such that every agent prefers Y to X .
We will define a metric d such that any arbitrary alternative W ∈ A′ is optimal. For each agent i, set d(i,X) = 1

2 for
all X �i W and d(i,X) = 1 for all X ≺i W . For every pair of alternatives X,Y , set d(X,Y ) = 1. For every pair of
agents i, j, set d(i, j) = 1. It can be easily verified that d is a metric.

Consider any alternative X 6=W . We observe that

SC∑(X, d)− SC∑(W,d) =
∑
i∈N

d(i,X)−
∑
i∈N

d(i,W )

=
∑

i:X�iW

(d(i,X)− d(i,W ))

+
∑

i:X≺iW

(d(i,X)− d(i,W ))

= 0 +
1

2
|{i ∈ N : X ≺i W}|

≥ 1

2
.
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Thus, we conclude that W is optimal.

Since it is impossible to compute the optimal alternative using only ordinal preferences, we would like to determine
how well the aforementioned social choice functions select alternatives based on their social costs, despite only being
given the preference profiles. In particular, we would like to quantify how the social choice functions perform in the
worst-case. To do this, we use the notion of distortion from [23, 4], defined as follows.

dist∑(f, σ) = sup
d∈p−1(σ)

SC∑(f(σ), d)

minX∈A SC∑(X, d)

distmed(f, σ) = sup
d∈p−1(σ)

SCmed(f(σ), d)

minX∈A SCmed(X, d)
.

In other words, the distortion of a social choice mechanism f on a profile σ is the worst-case ratio between the
social cost of f(σ), and the social cost of the true optimum alternative. The worst-case is taken over all metrics d
which may have induced σ, since the social choice function does not and cannot know which of these metrics is the
true one.

Notation. We introduce the following notation, which will be used throughout our proofs, for describing agents with
particular preference rankings.

XY = {i ∈ N : X �i Y }
XY Z = {i ∈ N : X �i Y �i Z}
X∗ = {i ∈ N : X �i Y for all Y 6= X}

XY ∗ = {i ∈ N : X �i Y �i Z for all Z 6= X,Y }
∗X = {i ∈ N : Y �i X for all Y 6= X}
∗XY = {i ∈ N : Z �i X �i Y for all Z 6= X,Y }

3 Distortion of Total Agent Cost
In this section, we study the sum objective function, which measures the quality of an alternative to be the total agent
cost when this alternative is chosen. We prove tight upper bounds for distortion of several well-known social choice
functions. Our main result in this section is that the Copeland voting mechanism (as well as several others) exhibit a
distortion of at most 5; this guarantee is independent of the number of agents or alternatives, and the underlying metric
space is allowed to be completely arbitrary (and unknown).

Before proceeding with showing upper bounds on possible distortion, we ask the question: how well can any
social choice function perform? The following simple theorem tells us that we cannot possibly hope to approximate
the optimal alternative within a factor better than 3.

Theorem 3 No (deterministic) social choice function has worst-case distortion less than 3 for the sum objective.

Proof. Suppose there are only two alternatives X and W . Half of the agents prefer X over W , and the other half
prefer W over X . Suppose without loss of generality that the given social choice function picks W as the winner.
The underlying metric can be as follows. All n/2 agents who prefer X are located exactly at X , i.e., d(i,X) = 0
and d(i,W ) = 2. All n/2 agents who prefer W are approximately halfway between X and W , i.e., d(i,X) = 1 + ε
and d(i,W ) = 1 − ε for some small ε > 0. Then SC∑(X, d) =

∑
i∈N d(i,X) = (1 + ε) · n/2 and SC∑(W,d) =∑

i∈N d(i,W ) = 2 · n/2 + (1− ε) · n/2. Thus, the distortion approaches 3 as ε→ 0.

In fact, it is easy to show that for only two alternatives, any social choice function that picks the winner preferred
by the majority of agents has a distortion of 3, i.e., all such social choice functions achieve the optimal distortion
bound for two alternatives. This is a corollary of Theorem 4. Unfortunately, as the number of agents and candidates
becomes large, the distortion of many social choice mechanisms increases linearly.

Theorem 4 For plurality and Borda social choice functions, the distortion is at most 2m−1; for k-approval and veto
it is at most 2n− 1. Furthermore, these bounds are tight, i.e., they are achieved exactly in some instances.
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Before proving this theorem, we first prove some useful lemmas. Our first lemma consists of bounds on the costs
of agents incurred by alternatives that are used repeatedly throughout all of our proofs. The first two bounds provide
lower bounds for the cost of an alternative, which will be used to lower bound the cost of the optimal alternative. The
last bound is an upper bound which will be used to bound the cost of the winning alternative for agents who prefer the
optimal alternative over the winning alternative. For agents i who prefer the winning alternative W over the optimal
alternative X , we can simply use d(i,X) ≤ d(i,W ). Since we assume the costs of agents come from a metric, all of
these bounds crucially rely on the triangle inequality.

Lemma 5 Let W,X, Y, Z be alternatives. Then the following bounds hold:

∀i ∈WX, d(i,X) ≥ d(X,W )

2
(1)

∀i ∈WY, d(i,X) ≥ d(X,W )− d(X,Y )

2
(2)

∀i, d(i,W ) ≤ d(i,X) + min
Z�iW

(d(X,Z)) (3)

Proof. (1). Since W �i X , we have d(i,W ) ≤ d(i,X). Combining this with the triangle inequality, we have
d(X,W ) ≤ d(i,X) + d(i,W ) ≤ 2 · d(i,X) for all i ∈WX .

(2). We have d(i,X) ≥ d(X,W ) − d(i,W ), by the triangle inequality. Since W is preferred over Y , we get
d(i,X) ≥ d(X,W )− d(i, Y ). Adding this with d(i,X) ≥ d(i, Y )− d(X,Y ) gives us the desired result.

(3). Let Z be any alternative such that W �i Z (note that there always exists such a alternative since W �i W ).
By the triangle inequality, d(i,W ) ≤ d(i, Z) ≤ d(i,X) + d(X,Z). Since this holds for any Z �i W , we conclude
that (3) holds.

Our next lemma parameterizes the distortion by the number of agents that prefer the winning alternative W over
the optimal alternative X .

Lemma 6 For any instance σ and social choice function f , dist∑(f, σ) ≤ 1 + 2(n−|WX|)
|WX| , where W = f(σ) is the

winning alternative and X is the optimal alternative.

Proof. First, we want to upper bound the agent cost incurred by alternativeW . We do this by dividing the agents into
two groups, |WX| and |XW |. For an agent i ∈ |WX|, we know that d(i,W ) ≤ d(i,X), but for an agent i ∈ |XW |,
the best we can do is use the triangle inequality to obtain that d(i,W ) ≤ d(i,X) + d(X,W ). Applying these bounds
to the distortion allows us to derive

SC∑(W,d)

SC∑(X, d)
=

∑
i∈N d(i,W )∑
i∈N d(i,X)

=

∑
i∈WX

d(i,W ) +
∑

i∈XW
d(i,W )∑

i∈N
d(i,X)

≤

∑
i∈WX

d(i,X) +
∑

i∈XW
(d(i,X) + d(X,W ))∑

i∈N
d(i,X)

= 1 +

∑
i∈XW d(X,W )∑
i∈N d(i,X)

= 1 +
|XW | · d(X,W )∑

i∈N d(i,X)

= 1 +
(n− |WX|) · d(X,W )∑

i∈N d(i,X)

Finally, we want to lower bound the cost of the optimal alternative X . It follows from Lemma 5 that d(i,X) ≥
d(X,W )/2 for an agent i with W �i X . Thus we have

∑
i∈N d(i,X) ≥ |WX| · d(X,W )/2. Applying this

inequality to our last equation gives us the desired result.
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Since the bound from Lemma 6 decreases with |WX|, bounding the smallest possible |WX| for a social choice
function will give us an upper bound on the worst-case distortion. This is the technique we use to prove worst-case
distortion results for some positional scoring rules, as we see in the proof of Theorem 4.

Proof of Theorem 4. LetW denote the winning alternative, and letX denote an optimal alternative. Since the bound
from Lemma 6 decreases with |WX|, bounding the smallest possible |WX| for each scoring function will give us an
upper bound on the worst-case distortion.

For plurality, W clearly must be the top preference of at least n/m agents, i.e., |WX| ≥ n
m . For Borda, we

claim that |WX| ≥ n
m . Suppose, by way of contradiction, that |WX| < n/m. Then the agents that prefer X to W

contribute at least (m−1)n
m more to the score of X than they do to the score of W . The agents that prefer W to X can

contribute at most |WX| · (m − 1) more to the score of W than X if all of them rank W first and X last. However,
|WX| · (m− 1) < (m−1)n

m , implying that X has a higher score than the winner W which is a contradiction.
For both k-approval and Veto, W being the winner implies that W has strictly higher score than X , implying at

least one agent prefers W to X , i.e., |WX| ≥ 1.
Applying these |WX| lower bounds to Lemma 6 gives us the desired distortion results for the above positional

scoring rules.
Figure 1 shows tight examples of these bounds for plurality (left-hand side) and Borda (right-hand side), achieving

the distortion bound of 2m− 1 for m = 4 alternatives (all of these examples can easily be generalized to any m ≥ 3).
In these examples, W is the winner and X is the optimal alternative. For plurality, the dummy alternatives Y and Z
split the top preferences of agents preferring X over W . For Borda, these dummy alternatives artificially inflate the
score of W . For k-approval and veto, the tight examples are the same as Borda’s, except there is only one agent with
W � Y � Z � X , while the remaining agents have preference X �W � Y � Z. �

ǫ

W ZX

1 1

Y Y

11

n/4 agents with

W ≻ Y ≻ X ≻ Z

each alternative X, Y, Z

coinciding with

n/4 agents 3n/4 agents with

X ≻ W ≻ Y ≻ Z

coinciding with X
W ≻ Y ≻ Z ≻ X

W

n/4 agents with

X Z

ǫ ǫ ǫ ǫ

Figure 1: Examples showing tightness of distortion bound for plurality (left) and Borda (right) with m = 4. Here W
is picked as winner and X is the optimal alternative. As ε→ 0, distortion approaches 2m− 1. Adding an extra agent
coinciding with the center point makes W the unique winner.

Theorem 4 implies that the distortion for plurality and Borda is unbounded in the number of candidates, and for
k-approval and veto it is unbounded in the number of voters. Informally, this is because the optimal alternative can
be preferred over the eventual winner by a relatively large fraction of the agents, and yet still lose. We now consider
several social choice functions that escape this predicament, resulting in significantly better performance. We state the
results for these social choice functions now, but prove them later.

Theorem 7 For the Copeland social choice function, distortion is always ≤ 5, and this bound is tight.

Remark: In fact, the result for distortion being at most 5 holds whenever for any other alternative Z, the winner W
either pairwise defeats Z or there exists an alternative Y whom W pairwise defeats and Y pairwise defeats Z. This
precisely corresponds to the notion ofW being a member of the uncovered set [19]. Thus the distortion is at most 5 for
several notions of tournament winners other than Copeland such as the winner being selected from minimal covering
set, bipartisan set, banks set, tournament equilibrium set, etc., as all these sets are a subset of the uncovered set [15].

Recall that no social choice function can have distortion less than 3. Thus, Copeland is nearly optimal with a
distortion of at most 5. We can show that the ranked pairs mechanism achieves the best possible distortion bound,
but only in the special case when the majority graph (directed graph in which a link (X,Y ) denotes that X pairwise
defeats Y ) has small circumference (i.e., maximum cycle size). In general, we conjecture that the worst-case distortion
is ≤ 3 for ranked pairs, but our current techniques cannot obtain this bound.

Theorem 8 The distortion of ranked pairs is ≤ 3, as long as the majority graph has circumference ≤ 4.

8



Lemma 9 Let ~v ∈ Rm≥0 with v1 ≥ v2 ≥ · · · ≥ vm. Let α, β ∈ Rm. If ∀k = 1, . . . ,m,
∑k
i=1 αi ≥

∑k
i=1 βi, then∑m

i=1 αivi ≥
∑m
i=1 βivi

Proof. For this proof, we simply use
∑k
i=1 αi ≥

∑k
i=1 βi repeatedly, once for every value of k.

m∑
i=1

αivi = (α1 + β1 − β1) v1 +
m∑
i=2

αivi

≥ β1v1 + (α1 − β1) v2 +
m∑
i=2

αivi

= β1v1 + (α1 + α2 − β1 + β2 − β2) v2 +
m∑
i=3

αivi

≥ β1v1 + β2v2 + (α1 + α2 − β1 − β2) v3 +
m∑
i=3

αivi

...

≥
k∑
i=1

βivi +

(
k∑
i=1

(αi − βi)
)
vk +

m∑
i=k+1

αivi

≥
k∑
i=1

βivi +

(
k∑
i=1

(αi − βi)
)
vk+1 +

m∑
i=k+1

αivi

=

k+1∑
i=1

βivi +

(
k+1∑
i=1

(αi − βi)
)
vk+1 +

m∑
i=k+2

αivi

...

≥
m−1∑
i=1

βivi +

(
m−1∑
i=1

(αi − βi)
)
vm−1 + αmvm

≥
m−1∑
i=1

βivi +

(
m−1∑
i=1

(αi − βi)
)
vm + αmvm

≥
m∑
i=1

βivi.

The next lemma allows us to instantly obtain a distortion upper bound from lower bounds of a specific form for
the optimal alternative X .

Lemma 10 If for any metric d, preferences σ induced by d, and alternatives X,W , we have that
∑
i∈N d(i,X) ≥

1
γ

∑
i∈XW minZ�iW (d(X,Z)) for some 1 ≥ γ, then SC∑(W,d)/ SC∑(X, d) ≤ 1 + γ.

Proof. We begin by using d(i,W ) ≤ d(i,X) for i ∈ WX and Inequality 3 from Lemma 5 for i ∈ XW to upper
bound the cost of the alternative W .

SC∑(W,d)

SC∑(X, d)
=

∑
i∈N d(i,W )∑
i∈N d(i,X)

≤

∑
i∈N

d(i,X) +
∑

i∈XW
(minZ�iW d(X,Z))∑

i∈N d(i,X)

= 1 +

∑
i∈XW minZ�iW (d(X,Z))∑

i∈N d(i,X)

9



Using the assumption that
∑
i∈N d(i,X) ≥ 1

γ

∑
i∈XW minZ�iW (d(X,Z)) and applying it to our previous equation

gives us the desired result.

Proof of Theorem 7. Let W be the winning alternative using Copeland, and X be the optimal alternative. For any
instance where W pairwise defeats X , the distortion is at most 3 by Lemma 6.

Thus, let us now consider an instance where W does not pairwise defeat X , i.e., |XW | ≥ n/2 ≥ |WX|. For
Copeland, we know that this implies there exists a alternative Y such that W pairwise defeats Y and Y pairwise
defeats X (Moulin 1986). Thus we have |WY | ≥ n/2 ≥ |YW | and |Y X| ≥ n/2 ≥ |XY |. We consider the cases
when d(X,Y ) ≥ d(X,W ) and d(X,Y ) < d(X,W ) separately.

Case (i). Suppose that d(X,Y ) ≥ d(X,W ). We know that at least n/2 agents prefer Y over X . Hence, each
of these n/2 agents must contribute at least d(X,Y )/2 ≥ d(X,W )/2 to the social cost of X , by Lemma 6. This
observation is all we need to obtain a distortion upper bound of 5. Formally, we see that∑

i∈N
d(i,X) ≥

∑
i∈Y X

d(i,X)

≥ 1

2

∑
i∈Y X

d(X,Y )

≥ 1

2
|Y X| · d(X,Y )

≥ n

4
· d(X,Y )

≥ n

4
· d(X,W )

≥ 1

4
|XW | · d(X,W )

≥ 1

4

∑
i∈XW

min
Z�iW

(d(X,Z))

We obtain the desired result by applying Lemma 10 to this
∑
i∈N d(i,X) lower bound.

Case (ii). Suppose instead that d(X,W ) > d(X,Y ). Unlike our previous case in which we just considered agents
in Y X while lower bounding

∑
i∈N d(i,X), we must consider the sets WX , Y X , and XWY . This is because the

agents in these sets are the only ones guaranteed to have cost incurred by alternative X . Using bounds from Lemma 5,
we begin by observing that ∑

i∈N
d(i,X) ≥

∑
i∈WX∪XWY ∪Y XW

d(i,X)

≥ 1

2
|WX| · d(X,W )

+ |XWY |
(
d(X,W )− d(X,Y )

2

)
+

1

2
|Y XW | · d(X,Y )

=
1

2
(|WX|+ |XWY |) · d(X,W )

+
1

2
(|Y XW | − |XWY |) · d(X,Y )

Next, we would like to apply Lemma 10, but we need our lower bound to be in terms of agents in XW rather than
WX ∪XWY ∪ Y XW . Thus, we make the following observations that follow from basic set theory and properties
of Copeland,

|WX|+ |XWY | = |WYX|+ |WXY |+ |YWX|+ |XWY |
≥ |WY |
≥ |YW |

10



≥ |Y XW |+ |XYW |
|WX|+ |Y XW | = |WYX|+ |WXY |+ |YWX|+ |Y XW |

≥ |Y X|

≥ 1

2
n

≥ 1

2
(|Y XW |+ |XYW |+ |XWY |)

With these two inequalities, we can now apply Lemma 9 to our previous lower bound for
∑
i∈N d(i,X)∑

i∈N
d(i,X) ≥ 1

2
(|WX|+ |XWY |) · d(X,W )

+
1

2
(|Y XW | − |XWY |) · d(X,Y )

≥ 1

4
(|Y XW |+ |XYW |) · d(X,W )

+
1

4
|XWY | · d(X,Y )

≥ 1

4

∑
i∈XW

min
Y ′�iW

(d(X,Y ′)).

Finally, we have our lower bound for
∑
i∈N d(i,X) in the form necessary to apply Lemma 10, which gives us the

desired upper bound of 5 on distortion.
Now let us prove the tightness of this bound. Suppose there are only three alternatives W , X , Y . Let there be

n
2 − 1 agents corresponding to each of the preference rankings Y � X � W and X � W � Y . Let the remaining
two agents have preference ranking W � Y � X . Observe that W pairwise defeats Y , Y pairwise defeats X , and
X pairwise defeats W . Thus every alternative pairwise defeats exactly one other alternative. In this situation, suppose
Copeland choosesW as the winning alternative. Now let the underlying metric be as shown in Figure 2. (The distances
not shown in the figure can be chosen to be consistent with the metric and the preference profile.) Now we have:∑

i∈N d(i,W )∑
i∈N d(i,X)

=
(n2 − 1) · (2− ε) + (n2 − 1) · 3 + 20

(n2 − 1) · (1 + ε) + 22

Thus as n→∞ and ε→ 0, we get instances with distortion arbitrarily close to 5. �

W

(n/2)− 1 agents
Y ≻ X ≻ W

11

21
2

X 1 + ǫ
Y

2 agents
W ≻ Y ≻ X

1− ǫ
(n/2)− 1 agents

with X ≻ W ≻ Y

10

2− ǫ

coinciding with X

3

Figure 2: W being picked as the winning alternative leads to worst-case distortion arbitrarily close to 5 as ε → 0 and
n→∞.

Proof of Theorem 8. As usual, let W be the alternative chosen by our social choice mechanism, and let X be the
optimal alternative. For any instance where W pairwise defeats X then the distortion is at most 3 by Lemma 6.
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Let us consider instances in which W does not pairwise defeat X . That is, |XW | ≥ n/2 ≥ |WX|. Let G be the
graph generated by the ranked pairs mechanism. Since W is the source of G, then there must be at least one path in
G from W to X . Furthermore, at least one of these paths has the property that the edge weights are ≥ |XW | for all
edges in the path, because otherwise the edge (X,W ) would have been added to the graph constructed by the ranked
pairs mechanism, which contradicts W being the winner. Let P be this path. Then, P is also a subpath of the majority
graph, and P together with (X,W ) form a cycle in the majority graph. By our assumption on the circumference, this
implies that the length of P is at most 3. Assume that P has length 3; the argument for the case when P has lengths 2
is similar and simpler. Then, if P consists of alternative W,Y,Z,X , then W defeats alternative Y pairwise, Y defeats
Z pairwise, and Z defeats X pairwise with |WY |, |Y Z|, |ZX| ≥ |XW |.

Case (i). Suppose that d(X,Z) ≥ d(X,W ). As with the first case of Copeland, we need only consider the agents
i ∈ ZX . Then we know that at least |ZX| ≥ |XW | agents each contribute at least d(X,Z)/2 ≥ d(X,W )

2 to the social
cost of X , by Lemma 5. This is all we need to obtain an upper bound of 3. Formally, we see that∑

i∈N
d(i,X) ≥

∑
i∈ZX

d(i,X)

≥ 1

2

∑
i∈ZX

d(X,Z)

≥ 1

2
|ZX| · d(X,Z)

≥ 1

2
|XW | · d(X,Z)

≥ 1

2
|XW | · d(X,W )

≥ 1

2

∑
i∈XW

min
Z′�iW

(d(X,Z ′))

We obtain the desired result by applying Lemma 10.
Case (ii). Suppose that d(X,W ) ≥ d(X,Z) ≥ d(X,Y ). We begin by making observations about d(i,X) for the

agents in the setsWX and ZXW , because they contribute significantly to the cost ofX . Using Lemma 5, we observe
that ∑

i∈N
d(i,X) ≥

∑
i∈WX∪ZXW

d(i,X)

≥ 1

2
|WX| · d(X,W ) +

1

2
|ZXW | · d(X,Z)

In order to apply Lemma 10, we need to lower bound
∑
i∈N d(i,X) in terms of agents in XW . Thus, we make

the following observations about how the cardinality of the sets we considered relate to |XW | (recall our notation
introduced at the beginning of the supplemental materials).

|WX| = n− |XW |
≥ n− |WY |
= |YW |
≥ | ∗W |

|WX|+ |ZXW | ≥ |ZX|
≥ |XW |
≥ | ∗W |+ | ∗WZ|+ |XWY |

Now we can combine these results with our previous lower bound for
∑
i∈N d(i,X), and use Lemma 9 with α1 =

|WX|, α2 = |ZXW |, β1 = | ∗W |, and β2 = | ∗WZ|+ |XWY |. This allows us to derive that∑
i∈N

d(i,X) ≥ 1

2
|WX| · d(X,W ) +

1

2
|ZXW | · d(X,Z)

12



≥ 1

2
| ∗W | · d(X,W ) +

1

2
| ∗WZ| · d(X,Z)

+
1

2
|XWY | · d(X,Y )

≥ 1

2

∑
i∈XW

min
Z′�iW

(d(X,Z ′))

We can apply Lemma 10 to obtain the desired result.
Case (iii). Suppose that d(X,W ) ≥ d(X,Y ) ≥ d(X,Z). This case is similar to our previous case, except we

need to consider more sets of agents. In particular, we require the following bounds

|WX| ≥ | ∗W |

|WX|+ |Y XW |+ |XY Z ∩XW |
≥ |WX ∩ Y Z|+ |Y XW ∩ Y Z|
+ |XY Z ∩XW |

= |WX ∩ Y Z|+ |XW ∩ Y X ∩ Y Z|
+ |XW ∩XY ∩ Y Z|
≥ |Y Z|
≥ |XW |
≥ | ∗W |+ | ∗WY |

|WX|+ |Y XW |+ |ZXW ∩ ZXY |
≥ |WX ∩ ZX|+ |Y XW ∩ ZX|
+ |ZXW ∩ ZXY |

= |WX ∩ ZX|+ |XW ∩ Y X ∩ ZX|
+ |XW ∩XY ∩ ZX|
≥ |ZX|
≥ |XW |
≥ | ∗W |+ | ∗WY |+ |XWZ|.

As we have done previously, we will lower bound d(i,X) for agents in certain sets using Lemma 5. In this case, we
use the sets WX , Y XW , XY Z ∩XW , and ZXW ∩ ZXY ; these are all disjoint. Then we will use the inequalities
we just derived above so we can apply Lemma 9.∑

i∈N

d(i,X) ≥ 1

2
|WX| · d(X,W )

+
1

2
(|Y XW |+ |XY Z ∩XW |) · d(X,Y )

+
1

2
(|ZXW ∩ ZXY | − |XY Z ∩XW |) · d(X,Z)

≥ 1

2
| ∗W | · d(X,W ) +

1

2
| ∗WY | · d(X,Y )

+
1

2
|XWZ| · d(X,Z)

≥ 1

2

∑
i∈XW

min
Y ′�iW

(d(X,Y ′)).

By Lemma 10, we conclude that distortion ≤ 3.
Case (iv). For the final case, suppose that d(X,Y ) ≥ d(X,W ) ≥ d(X,Z). This case is almost identical to our

previous one. We reuse the following inequalities:

|WX|+ |Y XW |+ |XY Z ∩XW | ≥ | ∗W |+ | ∗WY |

13



|WX|+ |Y XW |+ |ZXW ∩ ZXY | ≥ | ∗W |+ | ∗WY |+ |XWZ|.

Using these inequalities, Lemma 5, and Lemma 9,∑
i∈N

d(i,X) ≥ 1

2
|WX| · d(X,W )

+
1

2
(|Y XW |+ |XY Z ∩XW |) · d(X,Y )

+
1

2
(|ZXW ∩ ZXY | − |XY Z ∩XW |) · d(X,Z)

≥ 1

2
(|WX|+ |Y XW |+ |XY Z ∩XW |) · d(X,W )

+
1

2
(|ZXW ∩ ZXY | − |XY Z ∩XW |) · d(X,Z)

≥ 1

2
(| ∗W |+ | ∗WY |) · d(X,W ) +

1

2
|XWZ| · d(X,Z)

≥ 1

2

∑
i∈XW

min
Y ′�iW

(d(X,Y ′)).

Lemma 10 gives us the desired result.
This concludes the proof that ranked pairs always yields a distortion of at most 3 when the majority graph has no

large cycles. The case in which the path is length 2 is similar (and simpler). The case in which the path is length 1 is
simply the case where W defeats X pairwise. Finally, we give an example to show that this bound is tight. Suppose
that d(X,W ) = d(X,Y ) = d(X,Z) = 1. We construct a preference profile as follows:

There are n
4 agents i with X �i W �i Y �i Z such that d(i,X) = 0, d(i,W ) = d(i, Y ) = d(i, Z) = 1.

There are n
4 agents i with W �i Y �i Z �i X such that d(i,W ) = d(i, Y ) = d(i, Z) = d(i,X) = 1

2 .
There are n

4 agents i with Y �i Z �i X �i W such that d(i, Y ) = d(i, Z) = d(i,X) = 1
2 , d(i,W ) = 3

2 .
There are n

4 agents i with Z �i X �i W �i Y such that d(i, Z) = d(i,X) = 1
2 , d(i,W ) = d(i, Y ) = 3

2 .
We allow the remaining distances to be arbitrary, as long as the triangle inequality is obeyed to ensure that d is a

metric.
We observe that W can be the winner, depending on how ties are resolved. SC∑(X) = 3n

4 · 1
2 = 3n

8 and
SC∑(W ) = n

4 · 12 + n
4 · 1 + n

2 · 32 = 9n
8 . This gives us the desired lower bound of 3. �

4 Distortion of Median Agent Cost
In this section we study the distortion of social choice functions as measured by the median agent cost. We define
the median social cost of an alternative SCmed(Y, d) = medi∈N d(i, Y ) to be the median of the list of distances of
all the agents to the alternative Y . If n is even, we define it to be the (n2 + 1)th smallest value of the distances.
As a shorthand, we will refer to this as med(Y ) when the cost metric d is fixed. The distortion of a social choice
function is now distmed as defined in Section 2. We begin by establishing lower bounds on the distortion achieved by
any deterministic social choice function; this bound is higher than in the sum case, but first note the following trivial
lemma, due to the triangle inequality.

Lemma 11 For any two alternatives Y and Z, we have med(Z) ≤ med(Y ) + d(Y,Z).

Proof. All the agents with d(i, Y ) ≤ med(Y ) have d(i, Z) ≤ d(i, Y ) + d(Y,Z) ≤ med(Y ) + d(Y,Z). Hence the
result follows.

Theorem 12 With m = 2 alternatives, any social choice function that picks the alternative preferred by the majority
has distortion ≤ 3 for the median objective.

Proof. Let X be an optimal alternative. Suppose that majority of the agents prefer another alternative W to X . We
split the analysis into two cases: med(W ) ≥ 3 · d(X,W )/2 and med(W ) ≤ 3 · d(X,W )/2.

Let us consider the first case: let med(W ) = β · d(X,W ) where β ≥ 3/2. Applying Lemma 11, we get
med(X) ≥ (β − 1) · d(X,W ). Hence the distortion is at most β/(β − 1) ≤ 3 as we are assuming β ≥ 3/2.
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Now consider the other case where med(W ) ≤ 3
2 · d(X,W ). If med(X) ≥ d(X,W )/2 then we the desired

distortion bound immediately follows. Hence assume that med(X) < d(X,W )/2. This together with Equation 5.1
implies strictly more than half of the agents prefer X over W — note that if there are even number of agents, we
use d(n2 + 1)eth smallest value of d(i,X) as med(X) — thus contradicting that W is an alternative preferred by the
majority of agents.

The proof of Theorem 12 works verbatim to give us the following corollary for any instance of a social choice
function and any number of alternatives:

Corollary 13 Any social choice function f and metric d such that the winning alternative chosen by f pairwise defeats
an optimal alternative has distortion ≤ 3 for the median objective.

When we do not restrict the number of alternatives to 2, we see that the worst-case distortion increases from 3 to
5 for all social choice functions.

Theorem 14 No (deterministic) social choice function has worst-case distortion less than 5 for the median objective.

Proof. Suppose there are only three alternatives W , X , Y . Let there be n/3 agents corresponding to each of the
preference rankings W � Y � X , Y � X �W and X �W � Y . Without loss of generality, suppose that the given
social choice function picks W as the winner. Consider an underlying metric as shown in Figure 3. (The distances
not shown in the figure can be chosen to be consistent with the metric and the preference profile). In this instance, we
have med(W ) = 5 + ε and med(X) = 1 + ε. Thus, the distortion approaches 5 as ε→ 0.

5 + ǫ

3− ǫ 1 + ǫ

(n/3) agents
Y ≻ X ≻ W

10
12

11

X 1 + ǫ
Y

(n/3) agents

W

W ≻ Y ≻ X

(n/3) agents
X ≻ W ≻ Y

1− ǫ

3 + ǫ

Figure 3: With median objective, W being picked as the winning alternative leads to worst-case distortion arbitrarily
close to 5 as ε→ 0.

As for the sum objective function, the distortion of the common positional scoring rules remains high for the
median objective. In fact, it becomes unbounded for any m > 2 number of alternatives.

Theorem 15 Plurality, Borda, k-approval, and veto have unbounded distortion for any number of alternativesm > 2.

Proof. Consider the instances shown in Figure 1. In both these instances, med(X) ≤ ε and med(W ) ≥ 2 − 2ε.
With plurality, W is a winning alternative in the instance on the left side, thus resulting in unbounded distortion. With
Borda, veto, and k-approval (with k=2,3), W is a winning alternative in the instance on the right side, thus resulting
in unbounded distortion. These instances can easily be generalized for any m > 2 number of alternatives.

Now we show that the Copeland social choice function achieves the optimal distortion bound: due to the lower
bound in Theorem 14 no deterministic rule can have better median distortion than Copeland. Note that this result holds
also for several other notions of tournament winners mentioned in the concluding remark in Section 3.

Theorem 16 For the Copeland social choice function, median distortion is always ≤ 5, and this bound is tight.

Proof. Let W denote the winning alternative and let X be an optimal alternative. Whenever W pairwise defeats
X , then we know that the distortion can be at most 3 (Corollary 13). Hence let us assume that X pairwise defeats
W . In this case, we know from (Moulin 1986) that there exists an intermediate candidate Y such that W pairwise
defeats Y and Y pairwise defeats W . Now we split the analysis into two cases: med(W ) > 5

4 · d(X,W ) and
med(W ) ≤ 5

4 · d(X,W ).
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Let us consider the first case: Suppose that med(W ) = β · d(X,W ) with β > 5/4, i.e., at least half of the agents
have d(i,W ) ≥ β · d(X,W ). Using d(i,X) ≥ d(i,W ) − d(X,W ), we conclude that all these agents must have
d(i,X) ≥ (β − 1) · d(X,W ). Hence the distortion in this case would be at most β·d(X,W )

(β−1)·d(X,W ) ≤ 5 as β > 5/4.
Now consider the case where med(W ) ≤ 5

4 · d(X,W ). We claim that the following holds:

med(X) ≥ max

(
d(X,Y )

2
,
d(X,W )− d(X,Y )

2

)
(4)

The first term in the above inequality is due to half of the agents preferring Y over X (thus each of them having
d(i,X) ≥ d(X,Y )/2). The second term results from at least half of the agents preferring W over Y , and as shown in
Lemma 5, this implies that each such agent has d(i,X) ≥ 1

2 · (d(X,W )− d(X,Y )). Hence we get

SCmed(W,d)

SCmed(X, d)
≤

5·d(X,W )
4

max
(

d(X,Y )
2

, d(X,W )−d(X,Y )
2

)
The above term achieves its maximum value when d(X,W ) = 2 · d(X,Y ), thus giving us the desired distortion

bound. This bound is tight due to Theorem 14.

4.1 Generalizing Median: Percentile Distortion
Instead of considering the happiness of the median voter or agent, it also makes sense to consider the happiness of
the 25th or 75th percentile. We can generalize the median objective function med(Y ) above by using percentiles as
follows. Let α-PC(Y ) be the value from the set {d(i, Y ) : i ∈ N} below which lie an α fraction of the values. Thus
α-PC(Y ) with α = 1/2 is the same as med(Y ). The distortion with α-PC is defined analogously to Section 2.

For various ranges of α, we now give lower bounds on the distortion that any social choice function must have in
Theorem 17, and then give social choice functions that always achieve these bounds in Theorems 19 and 20.

Theorem 17 For any deterministic social choice function:

(a) For α ∈ [ 23 , 1), worst-case α-PC distortion is at least 3.

(b) For α ∈ [ 12 ,
2
3 ), worst-case α-PC distortion is at least 5.

(c) For α ∈ [0, 12 ), worst-case distortion is unbounded.

Proof. Part (a): Suppose half of the agents have preference W � X and the others have X � W . Without loss
of generality, assume that the given social choice function picks W as the winner. Consider the instance shown in
Figure 4. Here for α ≥ 1

2 , we have α-PC(X) = 1 + ε and α-PC(W ) = 3 + ε, making distortion arbitrarily close to 3
as ε→ 0.

ǫ

X

with W ≻ X

n/2 agents

1 1

W
ǫ

1

n/2 agents

with X ≻ W

Figure 4: As ε→ 0, the winning alternative W has distortion arbitrarily close to 3 with α-PC with α ≥ 1
2 .

Part (b): The same argument as in Theorem 14 establishes a lower bound on worst-case distortion of at least 5 for
α-PC agent cost with 2

3 > α ≥ 1
2 .

Part (c): For any α < 0.5, by choosing n suitably large, we can make α-PC(X) = 0 and α-PC(W ) = 1− ε in the
instance described in the proof of Theorem 3. Hence the result follows.

We now give upper bounds of the distortion of plurality and Copeland to show they are optimal for certain values
of α. First, we give the following trivial lemma which will be used in the proof of these upper bounds.

Lemma 18 For any two alternatives Y and Z, we have α-PC(Z) ≤ α-PC(Y ) + d(Y, Z).
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Proof. All the agents with d(i, Y ) ≤ α-PC(Y ) have d(i, Z) ≤ d(i, Y ) + d(Y, Z) ≤ α-PC(Y ) + d(Y,Z). Hence the
result follows.

Theorem 19 For the plurality social choice function, distortion is always ≤ 3 for α-PC objective with α ≥ m−1
m .

Proof. This proof is almost identical to the proof of Theorem 12. Let us first consider the case when α-PC(W ) =
β · d(X,W ) where β ≥ 3/2. Applying Lemma 18, we get α-PC(X) ≥ (β − 1) · d(X,W ). Hence the distortion is at
most β/(β − 1) ≤ 3 as we are assuming β ≥ 3/2.

Now consider the other case where α-PC(W ) ≤ 3 · d(X,W )/2. Now if α-PC(X) ≥ d(X,W )/2 then we already
get the desired distortion bound. Hence assume that α-PC(X,W ) < d(X,W )/2. This together with Equation 1
means strictly more than n/m agents prefer X over W — note that if α · n is an integer then we use d(αn + 1)eth
smallest value of d(i,X) as α-PC(X) — thus contradicting that W is an alternative preferred by at least n/m agents.

Theorem 20 For the Copeland social choice function, distortion is always ≤ 5 for α-PC objective with 1
2 ≤ α < 1,

and this bound is tight.

Proof. To prove the upper bound of 5, the proof of Theorem 16 works verbatim except with median replaced by
α-PC. To prove the tightness of this bound, suppose that there are 2, k + 2, and k + 1 agents corresponding to each
of the preference rankings W � Y � X , Y � X � W and X � W � Y . For any k ≥ 1, W pairwise defeats Y ,
Y pairwise defeats X , and X pairwise defeats W . Thus for any k ≥ 1, every alternative pairwise defeats exactly one
other alternative. In this situation, suppose Copeland chooses W as the winning alternative. Now let the underlying
metric be as shown in Figure 5. (The distances not shown in the figure can be chosen to be consistent with the metric
and the preference profile.) For any α ∈ [ 12 , 1), choose a large enough k so that 2k+3

2k+5 ≥ α.

(located far away)

Y ≻ X ≻ W

X

k + 2 agents

1

2

YW

k + 1 agents
X ≻ W ≻ Y

4

2 agents

W ≻ Y ≻ X

Figure 5: For Copeland and with α-PC as the objective, by choosing a suitable parameter k ≥ 1 for any α ∈ [ 12 , 1),
we get α-PC(W ) = 5 + ε and α-PC(X) = 1 + ε, thus the distortion approaches 5 as ε→ 0.

Now, consider med(W ). Since α ≥ 1/2, we know that k+1
2k+5 < α, and so less than α fraction of the agents are

within distance 3− ε of W . On the other hand, at least α fraction of the agents are within distance 5 + ε of W due to
our choice of k, and so med(W ) = 5 + ε. Similarly, med(X) = 1 + ε. Thus, the distortion approaches 5 as ε→ 0.

Together with the lower bound from Theorem 17, this shows that for α ≥ m−1
m , no deterministic rule can have

better worst-case distortion than plurality, whereas Copeland achieves the optimal worst-case distortion for 1
2 ≤ α <

2
3 .

5 Conclusion and Future Directions
We analyzed the distortion of many common social choice mechanisms in the setting where the agent costs form a
metric space. We showed that despite the process of winner determination having absolutely no extra information
about the underlying metric space except the induced ordinal agent preferences, mechanisms like Copeland achieve a
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small constant-factor approximation to the optimal candidate (and in fact, for median objective function they achieve
the best approximation to an optimal candidate that a deterministic mechanism can ever hope to achieve).

Nevertheless, some important open questions remain. Foremost among them is the question of a social choice rule
which beats Copeland, and maybe achieves the best possible distortion of 3. While we showed some weaker results
for the ranked pairs mechanism, we believe there is a good chance that it performs even better than we anticipate, and
actually guarantees a distortion of 3 for all instances, not just the ones with small graph circumference. Exploring
the space of randomized mechanisms could also be very fruitful. Randomized mechanisms still cannot get arbitrarily
close to the optimal alternative (we can prove a lower bound of 2 on distortion instead of 3), but a small amount of
randomization added to Copeland and ranked pairs has a chance to greatly improve their distortion properties.
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