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Abstract
Settings in which independent self-interested
agents form connections with each other are ex-
tremely common, and are usually modeled using
network formation games. We study a natural ex-
tension of network formation games in which the
nodes cannot form connections themselves, but in-
stead must do it through an intermediary, and must
pay the intermediary to form these connections.
The price charged by the intermediary is assumed
to be determined by its operating costs, which in
turn depend on the total amount of connections it
facilitates. We investigate the existence and worst-
case efficiency (price of anarchy) of stable solutions
in these settings, and especially when the interme-
diary uses common pricing schemes like propor-
tional pricing or marginal cost pricing. For both
these pricing schemes we prove existence of stable
solutions and completely characterize their struc-
ture, as well as generalize these results to a large
class of pricing schemes. Our main results are on
bounding the price of anarchy in such settings: we
show that while marginal cost pricing leads to an
upper bound of only 2, i.e., stable solutions are
always close to optimal, proportional pricing also
performs reasonably well as long as the operating
costs of the intermediary are not too convex.

1 Introduction
Settings in which independent self-interested agents form
connections with each other are extremely common, and
range from computer networks to social networks to eco-
nomic networks. Such settings are usually studied using
network formation games: a rich category of games which
studies properties of networks resulting from agents (nodes)
forming relationships (edges) in a strategic manner to max-
imize their utility (or minimize their cost). The extensive
body of work on network formation games (see [Jackson,
2005] for a survey) looks at many different settings, differ-
ent notions of node utility (e.g. [Jackson and Wolinsky, 1996;
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Fabrikant et al., 2003]), different concepts of network stabil-
ity (e.g., [Epstein et al., 2007; Calvó-Armengol and İlkılıç,
2009]), convergence dynamics (e.g., [Dutta et al., 2005;
Derks et al., 2008]), etc. For example, the classic work of
[Jackson and Wolinsky, 1996] considers an abstract setting in
which both agents must agree to form a connection or link
between them, but a single agent can break this connection;
this work was later extended in many works such as [Bala
and Goyal, 2000; Watts, 2003] and forms the foundation of
the network formation game which we consider in this work.

The above work on network formation games assumes that
agents can form links (connections, relationships, etc.) them-
selves. The key question that we study in our work, how-
ever, is what happens when the agents cannot form connec-
tions themselves, and must instead do it by paying an inter-
mediary. This occurs, for example, when traders exchanging
goods need to pay fees to the freight companies, and in many
other settings (see below) when agents are paying some cen-
tralized service for their connections, instead of forming con-
nections themselves. If the intermediary charges exorbitant
fees which exceed the benefits of forming connections, then
nodes would rather not establish connections at all. On the
contrary, the work mentioned above can be interpreted as the
intermediary being absent, or connections having fixed costs.
We are interested in the natural case when the fees charged
by the intermediary are determined by its operating costs.

A major motivation for our work comes from Internet Ser-
vice Providers (ISPs) forming connections via Internet Ex-
change Points (IXPs). In most basic terms, IXPs are data
centers with huge network switches through which ISPs form
connections with each other in order to exchange traffic. In
return, IXPs recover their operating costs (which depend on
the size of infrastructure needed) by charging fees to each
member ISP. The recurring component of these fees typically
depends on the capacity of the port(s) allocated to each ISP,
see e.g., [LINX, 2015; DEC-IX, 2015]. This interaction be-
tween ISPs and IXPs is extremely important for the modern
Internet: a considerable portion of Internet traffic [Ager et
al., 2012; Cardona Restrepo and Stanojevic, 2012] passes
through an IXP, and thus requires two ISPs to form a con-
nection with each other by paying an IXP to forward their
traffic. In essence an IXP can be thought of as a marketplace
in which the seller (the IXP) sells capacity for forming con-
nections to its clients (the ISPs): this is exactly the setting of



network formation through an intermediary that we study in
this work (see Related Work for more details).
Model Summary. We now outline the model for our net-
work formation game with an intermediary. We assume that
the cost of each agent (i.e., node) consists of two compo-
nents: the connection cost incurred due to all the connections
it forms with its neighbors, and the payment made to the inter-
mediary. For any pair of nodes we assume that as the strength
of their connection increases, the connection cost incurred by
each endpoint due to this connection decreases (e.g., as a pair
of ISPs exchange traffic at a higher rate, the losses due to end-
customer dissatisfaction decrease; as people form a stronger
relationship, they get more benefit from this relationship, etc).
Our concept of a stable solution in this setting is a natural ex-
tension of the notion of pairwise stability from [Jackson and
Wolinsky, 1996]: Using yij to denote the connection strength
between a pair of nodes (ij), we say that a solution is stable
if no pair of nodes (ij) is able to increase the strength yij of
their connection in a mutually beneficial way (i.e., to lower
the cost for both of them), and no node benefits by reducing
the strength of any of its connections. Note that how changing
the strength of a connection affects the cost of a node depends
not only on the change in the connection cost, but also on the
change in the payment made to the intermediary.

We are particularly interested in the case where the pay-
ments made by each node to the intermediary are determined
by the operating costs of the intermediary. Motivated partly
by ISP-IXP interactions, where the operating cost of an IXP
depends on the size of the infrastructure needed to carry the
traffic of all ISPs, we assume the operating cost of an inter-
mediary to be a function c(y), where y is the total strength
of connections formed by all the nodes. Given this, we will
focus on the following two popular notions of pricing:

• Proportional pricing: Let yi denote the total strength
of the connections formed by a node i. In proportional
pricing, the operating cost c(y) of the intermediary is
split among the nodes such that the payment made by a
node i to the intermediary is proportional to yi, i.e., node
i pays yi

y c(y).

• Marginal cost pricing: In marginal cost pricing, node i
makes a payment of c′(y) · yi to the intermediary.

We will also briefly discuss Equal pricing where each node
makes a fixed payment c(y)/n to the intermediary (where n
is the number of nodes), regardless of connection strengths.

Our goal in this work is to investigate the existence and
quality of stable solutions in which payments to the interme-
diary conform to the above pricing schemes. Towards mea-
suring the quality of a solution, we define the social cost of
a solution as the sum of costs of all the nodes and the in-
termediary (the cost of the intermediary is its operating cost
minus the total payment it receives). Thus the optimal solu-
tion for a given instance is the solution which minimizes the
social cost (note that since payments cancel out, the optimal
solution does not depend on the pricing schemes). We use
the popular notion of Price of Anarchy (PoA) to measure the
worst-case efficiency of a pricing scheme: the PoA of a pric-
ing scheme is the maximum possible ratio of the social cost

of a stable solution (with this pricing scheme) to the social
cost of the optimal solution.
Our Contributions. We define network formation games
with an intermediary, which are a natural generalization of the
basic model in [Jackson and Wolinsky, 1996] as discussed in
Related Work. We investigate the existence and PoA of stable
solutions in which payments made to the intermediary sat-
isfy well-known notions of proportional pricing and marginal
cost pricing. We show that despite requiring the payments
to satisfy these pricing schemes, stable solutions always exist
for both pricing schemes. In fact, we show a stronger result
that stable solutions exist for any pricing scheme in which
the payments made by any node u are of the form p(y) · yu,
where p(y) is any continuous and increasing function. We
also provide a characterization of all stable solutions for any
such pricing scheme, in which we show that any stable solu-
tion can be generated recursively from other stable solutions.
Our main results are on bounding the worst-case efficiency
(PoA) of the above pricing schemes. We show that under
marginal cost pricing PoA is upper bounded by 2, and thus
all stable networks of connections are close to optimum in
cost. We also show that under proportional pricing PoA is
upper bounded by max(2, supy≥0

yc′(y)
c(y) ). For example, un-

der a common assumption that the operating cost c(y) of the
intermediary is a convex polynomial of degree at most d, this
bound evaluates to at most d, and thus proportional pricing
becomes very reasonable as long as the operating costs of the
intermediary are not too convex.

2 Related Work
Network formation games have been extensively studied in
the literature under many different settings, see [Jackson,
2005; Page and Resende, 2013; Tardos and Wexler, 2007] and
the references therein.

Our work is most heavily influenced by the classic net-
work formation game introduced in [Jackson and Wolinsky,
1996]. This work considers a setting in which two nodes
can form links with mutual consent (if it benefits both of
them) but any node can sever the connection if it hurts its
utility. Our network formation game with intermediary (in-
cluding the notion of stability) can be viewed as a natural
extension of this abstract setting in the presence of an in-
termediary. Note that we also allow connections with frac-
tional strengths instead of just integral strengths {0, 1}, which
is more natural for both networks of Internet traffic and so-
cial networks. Whereas [Jackson and Wolinsky, 1996] in-
vestigate the structure of the stable solutions and the condi-
tions for which the stable solutions are also optimal, we give
bounds on inefficiency of stable solutions with intermediary
prices satisfying the well-known notions of proportional and
marginal cost pricing. The notions of pairwise stability and
price of anarchy have also been used in many works related
to network formation games such as [Fabrikant et al., 2003;
Calvó-Armengol and İlkılıç, 2009; Corbo and Parkes, 2005;
Anshelevich and Hoefer, 2012].

A major motivation for our work is how internet service
providers (ISPs) form connections through internet exchange
points (IXPs). A typical IXP architecture corresponds to an



ethernet switch through which member ISPs can exchange
traffic [Augustin et al., 2009; Ager et al., 2012]. In return,
each member ISP makes a payment to the IXP of which
the recurring charges are determined by the port capaci-
ties requested by ISPs: see the following sample fee struc-
tures [LINX, 2015; AMS-IX, 2015]. Then each member ISP
can form connections with a subset of other ISPs in order
to exchange traffic [Ager et al., 2012]. A large number of
IXPs, especially in Europe, are operated on a non-profit ba-
sis [Ryan and Gerson, 2012] and the operating costs of an
IXP are largely determined by the cost of the infrastructure
needed for traffic exchange [EuroIX, 2015].

Our setting is generally part of the enormous body of work
on markets and pricing (see e.g., [Johari, 2007; Vazirani,
2007] and the reference therein). Unlike this work, however,
we consider a seller who is selling pairwise connections in-
stead of items to individual buyers, and thus must analyze
pairwise equilibrium solutions with all of the complexities
that this entails.

3 Model and Preliminaries
Let there be n nodes. Denote by yij the strength of the con-
nection between nodes i and j. Let yi =

∑
(ij)3i yij denote

the total strength of connections formed by node i and let
y =

∑
i yi denote the total strength of connections formed

through the intermediary. In our primary motivation of the
ISP-IXP example, yij is analogous to the traffic between two
ISPs and yi is analogous to the total traffic exchanged by an
ISP. The cost of each node is assumed to be the sum of the
following two components:
• Connection cost: As discussed above, we assume that

for any pair (ij) of nodes as yij increases, the connection
cost incurred by each endpoint due to this connection de-
creases. We model the connection cost incurred due to
connection (ij) as λij(Bij−yij), which is a linear func-
tion of the connection strength yij . This connection cost
is incurred by both end points. Here Bij is the budget or
maximum allowed connection strength for the pair (ij).
For the ISP-IXP setting, λij ·Bij is analogous to the ben-
efit obtained by each ISP after exchanging a total traffic
Bij committed to the end-users. Then λij(Bij − yij) is
analogous to the losses incurred by each ISP for failing
to deliver the committed amount of traffic.
• Payment to the intermediary: We will focus on propor-

tional pricing and marginal cost pricing as discussed in
the Introduction. Both these pricing schemes can be ex-
pressed as γ ·yi where γ = c(y)/y for proportional pric-
ing and γ = c′(y) for marginal pricing (recall that c(y)
denotes the operating cost of the intermediary for a total
connection strength of y). This can be also interpreted as
each node paying a price γ per unit connection strength.
This thinking is consistent with the observation that typ-
ically an IXP charges an ISP based on the capacity of
allocated port(s), and thus the charges are proportional
to yi. We will call γ as the price of the intermediary.

Let ~y denote the vector of connection strengths yuv of all
the pairs, which we will also refer to as allocation vector. We
will call a tuple (~y, γ) of an allocation vector ~y along with

an intermediary price γ as a solution. Based on the above
discussion, the cost of a node i in a solution (~y, γ) is given
by

Ci(~y, γ) = γ ·
∑

(ij)3i

yij +
∑

(ij)3i

λij · (Bij − yij) (1)

We assume the operating cost c(y) of the intermediary to be
a strictly convex function of total connection strength y =∑
i 6=j yij , with c′(0) = c(0) = 0. Taking into account the

total payments from the nodes, the cost of the intermediary is
then given by

X(~y, γ) = c(y)− γ ·
∑
i

∑
(ij)3i

yij (2)

We define the social cost of an allocation vector ~y as the sum
of the costs of the nodes and the intermediary. Note that since
the payments cancel out, this summation is a function of only
~y. Thus the social cost of an allocation vector ~y is given by

SC(~y) = c(y) +
∑
i

∑
(ij)3i

λij · (Bij − yij) (3)

Drawing a parallel to the capacity of the physical link con-
necting ISP i to the IXP, we will assume a capacity of Li for
each node, i.e., that yi ≤ Li for a node i. In more general
networks, the capacity Li corresponds to the total amount of
connections that an agent can possibly make and maintain.
Thus an instance of the network formation game with an in-
termediary is completely specified by (~λ, ~B, ~L, c) where ~λ is
the vector of variables λij , ~B is the vector of budget variables
Bij , ~L is the vector of node capacity constraints Li and c(y)
is the cost incurred by the intermediary for maintaining a total
connection strength of y.

We now describe the notion of a stable solution. In the
network formation game analyzed by Jackson and Wolin-
sky [Jackson and Wolinsky, 1996], a stable network was de-
fined as a network where no pair of nodes could add an
edge to lower the cost of both, and no node could remove
an adjoining edge to lower its own cost. Analogous to this
definition (as well as similar definitions of stability in other
works [Corbo and Parkes, 2005; Calvó-Armengol and İlkılıç,
2009]), we consider a solution to be stable in our setting when
no (ij) pair of nodes can increase yij to lower the cost (of
both of them), and no node can reduce yij to lower its own
cost. We formally define below the notion of a stable solution.
We use τ imin(~y) to denote min{λij : (ij) 3 i and yij > 0},
i.e., the minimum λij among the pairs adjoining node i hav-
ing a connection with positive strength.

Definition 3.1 A solution (~y, γ) formed by the allocation
vector ~y and intermediary price γ is said to be a stable solu-
tion whenever every pair of nodes (ij) satisfies the following
conditions:

1. yij > 0 implies λij ≥ γ
2. yij < Bij implies either λij ≤ γ OR at least one of the

endpoints, say i, satisfies yi = Li and λij ≤ τ imin(~y).

To understand above definition, let us first consider the sim-
pler scenario when all Li are infinite. In this scenario, there



is no limit on how much total connection strength any node
is allowed to have, thus the only limiting constraint for a pair
of nodes is the intermediary price and their own budget Bij .
Consider the following equation obtained from Equation 1:

∂Ci(~y, γ)

∂yij
= γ − λij (4)

Thus the relation between γ and λij dictates whether increas-
ing or decreasing the connection strength yij would benefit a
pair by lowering the cost of both endpoints: if λij < γ then
a pair would benefit by decreasing yij whereas if λij > γ
then a pair would benefit by increasing yij (See Equation 4).
Thus in a stable solution yij > 0 implies λij ≥ γ because
if λij < γ then both the endpoints would decrease yij to
lower their cost. Similarly, we obtain that yij < Bij implies
λij ≤ γ for the simplified scenario of all Li being infinite.

Introducing finite node capacity constraints Li does not
change the first condition for stability (i.e., yij > 0 implies
λij ≥ γ). However with finite capacity constraints, even
when increasing yij can benefit a pair (i.e., λij > γ), one of
the endpoints, say i, may not agree on doing so if it is using
all its capacity for more beneficial connections (i.e., yi = Li
and λij ≤ τ imin(~y)). This implies that if yij < Bij then either
λij ≤ γ (same as the case with no capacity constraints) or one
of the endpoints, say i, satisfies yi = Li and λij ≤ τ imin(~y).

To measure the quality of stable solutions, we will use
the popular measure of Price of Anarchy (PoA) (see for ex-
ample [Papadimitriou, 2001; Koutsoupias and Papadimitriou,
1999]). Let ~y∗ be the allocation vector which minimizes the
social cost (see Equation 3) given an instance I . Then the
price of anarchy for marginal cost pricing is given by

PoA = sup
I

sup
(~y,γ) is stable
s.t. γ=c′(y)

SC(~y)

SC( ~y∗)
(5)

In other words, the PoA (for marginal cost pricing) is the
maximum factor by which the social cost of a stable solu-
tion (with marginal cost pricing) can differ from the social
cost of an optimal solution. We can define PoA similarly for
other pricing schemes. Now we proceed to characterizing the
structure of stable solutions, and later bounding their PoA.

4 Characterization and Existence of Stable
Solutions

In this section, we investigate the existence and provide a
characterization of stable solutions in which payments made
to the intermediary satisfy well-known notions of propor-
tional pricing and marginal cost pricing. We show that de-
spite requiring the payments to satisfy these pricing schemes,
stable solutions always exist for both pricing schemes. In
fact, we show a stronger result in Theorem 4.3: that stable
solutions exist for any pricing scheme in which the payments
made by any node i are of the form p(y) · yi, where p(y)
is any continuous and increasing function. In Theorem 4.1,
we provide a characterization of all stable solutions, which
shows that any stable solution can be generated recursively
from other stable solutions.

Let us introduce some notation to begin with. We will use
λk to denote kth biggest value from the set of λij variables for
a given instance. We will also use λ0 to denote any arbitrary
value greater than λ1. For example, if there are three pairs in
an instance with λij values {16, 16, 15} then λ0 is any value
greater than 16, λ1 = 16 and λ2 = 15.

By T (α) we will denote the set of the pairs {(ij) : λij =
α}, e.g., T (λk) is the set of pairs having λij = λk. For rest
of the text, we say that a pair (ij) is tight whenever either
yij = Bij or at least one of the endpoints, say i, satisfies
yi = Li. Thus a pair is tight whenever its connection strength
cannot be increased being constrained by either connection
budget or node capacities.

Before we characterize the recursive structure of stable so-
lutions in Theorem 4.1, we give some intuition behind it. Sup-
pose we are given a stable solution (~f, β) for intermediary
price β such that λ2 < β < λ1. Now using this solution,
let us construct a stable solution (~y, γ) for a lower intermedi-
ary price γ such that λ3 < γ < λ2 as follows: Initially, let
~y = ~0. Now let us set yij = fij for all the pairs in T (λ1).
This ensures that all the pairs in T (λ1) satisfy the conditions
for stability (by virtue of (~f, β) being stable). Now let us
iteratively increase yij for the pairs in T (λ2) until all such
pairs are tight. We claim that this makes (~y, γ) a stable so-
lution. To see this, observe that none of the pairs in T (λ2)
can violate the first condition for stability. Now let us check
for the second condition of stability: All the pairs in T (λ2)
have λij = λ2 > γ. Also, by making these pairs tight, we
have ensured that for every pair (ij) in T (λ2) has at least one
endpoint, say i, satisfying yi = Li (note that i also satisfies
λij ≤ τ imin(~y) by construction).

Thus all the pairs with λij ∈ {λ1, λ2} meet both the con-
ditions for stability, and having yij = 0 for the pairs with
λij < γ < λ2 ensures that no other pair violates stability
conditions. This proves that (~y, γ) is a stable solution. It
turns out that if γ = λ2 then we need not ensure the tightness
of all the pairs in T (λ2) while constructing ~y.

It can be shown that the above approach of constructing
stable solutions can be applied recursively to construct stable
solutions for any price γ and vice versa every stable solution
can be constructed in such a manner. This gives us the fol-
lowing theorem:

Theorem 4.1 (Characterization) A solution (~y, γ) where
γ ∈ (λk+1, λk] is a stable solution if and only if there ex-
ists a stable solution (~f, β) with β ∈ (λk, λk−1) such that

(a) If γ = λk then the allocation vector ~y is obtained by
increasing fij for all the pairs in T (λk) in any arbitrary
manner without violating the budget and capacity con-
straints.

(b) If γ ∈ (λk+1, λk) then then the allocation vector ~y is ob-
tained by increasing fij for all the pairs in T (λk) until
all such pairs are tight.

Proof. [Theorem 4.1, Only if part]: Suppose we are given
a stable solution (~y, γ) with γ ∈ (λk+1, λk]. Now we need
to prove that stable solution (~f, β) exists as described in the
theorem statement.



The definition of stability implies that if λij ≤ λk+1 then
yij > 0. Hence we need to concentrate only on the pairs
with λij ≥ λk in order to prove the theorem. Given this,
we will prove the theorem in two steps. In the first step, we
will prove that a solution (~f, β) is a stable solution where
β ∈ (λk, λk−1) and ~f is ~y restricted to S(β) (where such
a restriction means fij = yij for (ij) ∈ S(β) and fij = 0
otherwise). In the second step, we will prove that ~y can be
obtained by augmenting ~f as described in the theorem state-
ment.

Let us begin with the first step. Consider the solution (~f, β)

where β ∈ (λk, λk−1) and ~f is ~y restricted to S(β). As ob-
served before, yij = 0 for all the pairs with λij ≤ λk+1.
Thus restricting ~y to S(β) to obtain ~f is equivalent to setting
yij = 0 for the pairs with λij = λk. Given this, the first con-
dition for the stability of (~f, β) is straightforward to observe
using stability of (~y, γ). Now suppose there exists a pair for
which the second condition of stability did not hold. Such a
pair must have λuv > β > γ and yuv = fuv < Buv . Now
we break the analysis into four cases:

(a) fu < Lu and fv < Lv: Stability of (~y, γ) implies that
for at least one endpoint, say u, yu = Lu and λuv ≤
τumin(~y). This together with λuv > β tells us that for
each pair (uw) 3 u such that yuw > 0, we must have
β < λuv ≤ τumin(~y) ≤ λuw. Thus restricting ~y to S(β)
would have ensured that fuw = yuw for all (uw) 3 u.
Hence yu = fu = Lu which contradicts the assumption
of fu < Lu made for this case.

(b) λuv > τumin(~f) and λuv > τvmin(~f): It is easy to ob-
serve that this implies λuv > max{τumin(~y), τvmin(~y)}.
This implies that (uv) violates the second stability con-
dition in (~y, γ) as both endpoints violate at least one in-
equality contradicting that (~y, γ) is a stable solution.

(c) λuv > τumin(~f) and fv < Lv (with λuv ≤ τvmin(~f)):
Note that we assume λuv ≤ τumin(~f) as otherwise
we can use the analysis from the previous case. Ob-
serve that λuv > τumin(~f) ≥ τumin(~y). Suppose if we
also have yv < Lv then (~y, γ) could not have been a
stable solution as pair (uv) would violate the second
stability condition in the solution (~y, γ) — this is be-
cause both endpoints would violate at least one inequal-
ity (namely yv < Lv and λuv > τumin(~y)). Hence it
must be true that yv = Lv , giving us fv < yv . This
together with the construction of ~f implies that there
must exist a pair (vx) with λvx = λk with yvx > 0.
This gives us λuv > τvmin(~y). We already know for
this case λuv > τumin(~f) ≥ τumin(~y). Hence we get
λuv > max{τumin(~y), τvmin(~y)}. This implies that (uv)
violates the second stability condition in (~y, γ) as both
endpoints violate at least one inequality contradicting
that (~y, γ) is a stable solution.

(d) fu < Lu and λuv > τvmin(~f): This is same as the previ-
ous case after exchanging the roles of u and v.

This proves that (~f, β) where β ∈ (λk, λk−1) is a stable

solution. This also completes the proof for γ = λk as ~f
was obtained by restricting ~y to S(β) which was discussed
above to be equivalent to setting yij = 0 for the pairs with
λij = λk. Now suppose γ ∈ (λk, λk+1). For every pair
with λij = λk > γ with yij < Bij , the second condition for
stability applied to (~y, γ) tells us that for at least one of the
endpoints, say i, it holds that yi = fi + (yi − fi) = Li. In
other words, ~y is obtained by incrementing fij by yij − fij
for all pairs with λij = λk until all such pairs are tight.

Proof. [If part, Theorem 4.1]: We will focus only on part
(b) of the theorem statement in this case, as proof of part (a)
follows similar reasoning.

Suppose there exists a stable solution (~f, β) with β ∈
(λk, λk−1). Now we need to prove that a solution (~y, γ) con-
structed from this solution as described in part(b) of theorem
statement is a stable solution (where γ ∈ (λk+1, λk)).

For each pair (ij), observe from the construction of ~y that
xij > 0 implies yij ≥ γ where γ ∈ (λk+1, λk). Hence all
the pairs satisfy the first condition of stability in the solution
(~y, γ). Now let us examine whether the second condition of
stability holds for (~y, γ). Notice that stability of (~f, β) im-
plies that whenever λij < λk then fij = 0. This together
with the construction of y gives us that λij < λk implies
yij = 0. Thus in order to examine whether the second condi-
tion holds for (~y, γ), we need to concentrate only on the pairs
with λij ≥ λk. We break the analysis into two cases:

1. Pairs (ij) with yij < Bij and λij > λk: Since we have
assumed the solution (~f, β) to be stable, it means that
for such a pair at least for one endpoint, say i satis-
fies yi = Li and λij ≤ τ imin(~y). Since such an end-
point i has no more spare capacity, constructing ~y from
~f maintains yiw = fiw for all pairs (iw) 3 i. This im-
plies that for the pair (ij) we also have yi = Li and
λij ≤ τ imin(~y). Hence we have proven that all the pairs
with yij < Bij and λij > λk > γ satisfy the second
condition of stability.

2. Pairs (ij) with yij < Bij and λij = λk: For suc a
pair at least one endpoint, say i, satisfies yi = Li by
construction of ~y.

If fi = Li then we have yij = fij since there is no
spare capacity left at node i. This gives us λk = λij ≤
τ imin(~x) along with yi = Li (i.e, the second condition
of stability is satisfied).

On the other hand if fi < Li then for some pair
(iw) 3 i with λiw = λk, it must be true that yij > 0
(since we already have yi = Li as discussed above).
This again gives us λij = λk = λiw ≤ τ imin(~y) along
with yi = Li. Hence we have proven that every pair
(ij) with yij < Bij and λij = λk satisfy the second
condition of stability.

This completes the proof of the if part of Theorem 4.1.

Notice that (~0, λ0) is the unique stable solution for a price
γ = λ0 where λ0 denotes any arbitrary value greater than
λ1. Starting with (~0, λ0), we can keep constructing stable



solutions recursively for lower prices using Theorem 4.1, to
give us the following:

Theorem 4.2 There exists a stable solution (~y, γ) for every
constant price γ ≥ 0. Moreover, whenever all λij are dis-
tinct, there exists a unique stable solution for any constant
price γ in the open interval (λk+1, λk) for all k ≥ 1.

Proof. Let us first prove that there exists a stable solution
for every constant price γ. If γ ∈ [λ1,∞], then it is easy
to verify that (0, γ) is a stable solution. Suppose that γ ∈
[λk+1, λk). Now we can apply Theorem 4.1 recursively to
obtain a stable solution for such a γ ∈ [λk+1, λk). After a
careful thought, we conclude that Theorem 4.1 holds even
when γ ∈ [0,min(ij) λij).

For the uniqueness part when all λij are distinct, let us be-
gin by observing that solution (0, γ) is the unique stable so-
lution for γ > λ1. Beginning with this solution and using the
recursive approach described in Theorem 4.1(b), we obtain a
uniquely stable solution for every γ ∈ (λk+1, λk), since there
is a unique pair to be made tight at each step of the recursive
construction.

Note that Theorem 4.2 guarantees the existence of a stable
solution for any constant price γ independent of any other
parameters (with the node payments to the intermediary be-
ing of the form γ · yi). However, Theorem 4.2 does not
guarantee the existence of a stable solution for any particu-
lar pricing scheme. For example, it could be that for a pricing
scheme in which the price is a function p(y) of total connec-
tion strength y (which is the case for proportional pricing with
p(y) = c(y)/y and marginal cost pricing with p(y) = c′(y)),
the only stable solutions guaranteed by the above theorem
may have the form (~y, γ) with γ 6= p(y). Fortunately, we can
prove Theorem 4.3, which guarantees the existence of stable
solutions for a large class of pricing schemes.

Theorem 4.3 (Existence) There exists a stable solution of
the form (~y, p(y)) for any continuous non-decreasing price
function p(·) with p(0) = 0.

The proof of the above theorem involves beginning with
the stable solution (~0, λ0) (where λ0 is any value greater than
λ1), which has a total connection strength of 0. Then we
recursively construct solutions as described in Theorem 4.1,
slowly increasing the total connection strength of the alloca-
tion vector in the process until the total connection strength
and intermediary price satisfy the relation prescribed by the
price function p(·). Now we describe the proof in details:

Proof. [Theorem 4.3] Recall that λ0 denotes some arbi-
trary value greater than λ1. Let λm denote minij λij and let
λm+1 = 0. Let ~f0 denote the zero vector ~0. Consider a se-
quence of solutions {(~fk, γk)}mk=0 where γk ∈ [λk, λk+1)

and the allocation vector ~fi is obtained recursively from
~fi−1 as specified Theorem 4.1(b) by making all the pairs in
T (λk) tight. Observe that all these solutions are tight for
γk ∈ [λk, λk+1) as any solution obtained in part(b) of The-
orem 4.1 is also stable for intermediary price of λk in Theo-
rem 4.1 part (a). We break the further analysis into two cases:
Case p(fm) < λm: As ( ~fm, γ

m) is a stable solution for

γm ∈ [λm, λm+1) where λm+1 = 0, we conclude that
( ~fm, p(fm)) is a stable solution.
Case p(fm) ≥ λm: This together with p(0) = 0 tells us that
there exists a λk such that p(fk−1) ≤ λk−1 and p(fk) ≥ λk.
Thus we know that there exists an α ∈ [0, 1] such that
p(fk−1+α ·(fk−fk−1)) = λk using continuity of p(·). This
gives us p(~g) = λk where ~g = ~fk−1 +α( ~fk− ~fk−1). Apply-
ing Theorem 4.1 (part (a)), we get that (~g, λk) is a stable so-
lution. This together with the already known fact p(~g) = λk

completes the proof for this remaining case.

Since we assume c(y) is strictly convex with c′(0) = c(0) =
0, the marginal cost pricing scheme satisfies Theorem 4.3.
It can also be shown that under these conditions c(y)/y is
increasing function of y. Thus setting c(0)/0 = 0 makes
Theorem 4.3 hold for proportional pricing.

5 Price of Anarchy
In this section, we provide our main results on bounding the
worst-case efficiency (PoA) of the above pricing schemes.
Hence having a small PoA (See Equation 5) implies that the
quality of all stable solutions will be close to the social opti-
mum despite of nodes behaving in a self-interested manner.

Indeed, we show that under marginal cost pricing PoA
is upper bounded by 2, and thus all stable networks of
connections are close to optimum in cost. We also show
that under proportional pricing PoA is upper bounded by
max(2, supy≥0

yc′(y)
c(y) ). For example, under a common as-

sumption that the operating cost c(y) of the intermediary is a
convex polynomial of degree at most d, this bound becomes at
most d, making proportional pricing very reasonable as long
as the operating cost of the intermediary is not too convex.

The critical step for proving both these PoA results is to
prove Lemma 5.3 which states that to bound PoA, we need to
consider only those instances with all pairs having equal λij
values. However, before that we will first state some elemen-
tary observations, Propositions 5.1-5.2 and Lemma 5.1-5.2
which will be used later to prove our main results.
Observation 5.1 If a, b, c, d are positive numbers, with b −
d > 0 and a/b > c/d then a−c

b−d >
a
b .

Observation 5.2 If a, b, c, d, x, y are positive numbers such
that x > y and a/b > c/d then a+yc

b+yd >
a+xc
b+xd

The following propositions 5.1 and 5.2 allow us to perform
minor perturbations in λij values of a set of pairs while main-
taining stability of a solution (~y, γ). Before we state them,
recall that T (α) denotes the set of pairs {(ij) : λij = α}.
Proposition 5.1 If (~y, γ) is a stable solution with γ ≤ λk,
then it is also stable in the instance obtained by changing λij
for every (ij) ∈ T (λk−1) to some fixed Λ ∈ [λk, λk−2).

Proof. We need to concentrate only on the pairs satisfying
λij = λk−1 as it can easily be observed that even after trans-
forming the instance as specified in the claim, every other pair
continues to satisfy both conditions for stability. It is imme-
diate that all the pairs whose λij was perturbed satisfy the
first condition of stability even after the transformation since
γ ≤ λk. Also, as (~y, γ) was stable before the transformation



with λk−1 > λk ≥ γ, all such pairs must have at least one
endpoint (say i) such that yi = Li and λk−1 ≤ τ imin(~y). This
does not change even after the transformation hence complet-
ing the proof.

The following proposition is immediate after noticing that if
(~y, γ) is a stable solution then every pair (ij) with λij < γ
has yij = 0.

Proposition 5.2 If (~y, γ) is a stable solution with γ > λk,
then it is also stable in the instance obtained by changing λij
for all (ij) ∈ T (λk) to some fixed Λ ∈ (0, γ).

Lemma 5.1 If (~y, γ) is a stable solution with γ < λ1 and ~g
is any other allocation vector then∑

i

∑
(ij)3i

s.t. (ij)∈T (λ1)

Bij ≥
∑
i

∑
(ij)3i

s.t. (ij)∈T (λ1)

(2 · gij − yij)

Proof. Consider the allocation vector ~z obtained by setting
zij = yij for (ij) ∈ T (λ1) and zij = 0 otherwise. In
other words, ~z is obtained by restricting ~y to T (λ1). This
construction makes all the pairs in T (λ1) satisfy both the
conditions for stability with the allocation vector ~z. Thus the
solution (~z, γ) becomes stable if we eliminate all the pairs
with λij < λ1. Thus proving the above lemma is equivalent
to proving the following claim:

Claim: For an instance I with all pairs (ij) having same
value of λij = λ, if (~z, γ) is a stable solution with γ < λ
and ~g is any other allocation vector then∑

i

∑
(ij)3i

Bij ≥ 2 ·
∑
i

∑
(ij)3i

gij −
∑
i

∑
(ij)3i

zij

Notice that it is sufficient to prove the above claim taking ~g
to be the allocation vector with maximum value of

∑
ij gij

and we will assume ~g to be such a vector for rest of the
proof. Let ~f denote the flow vector obtained by setting
fuv = min{zuv, guv} from every pair (uv) (i.e., ~f is the
common component of z and g). Consider another instance
I1 obtained from I by iterating over all the pairs (uv) and
subtracting fuv from each Buv , Lu and Lv in each iteration.
Let L′u denote the capacity of node u in and B′uv denote the
budget corresponding to (uv) in the instance I1.

Notice that in the instance I1, the objective of a node
Ci(~y, γ) (See Equation 1) is equivalent to maximizing∑

(ij)3i yij since all the pairs have equal λij’s and the in-
termediary price satisfies γ < λ. With these settings the
stability conditions for (~y, γ) reduce to a simple form that
yij < B′ij implies that least one of the endpoints, say i, sat-
isfies yi = L′i. This stability condition and the equivalent ob-
jective of maximizing

∑
(ij)3i yij is the same as authors have

in [Anshelevich et al., 2013] for M2H games with α = 0. By
our construction, it can also be seen that ~z − ~f is a stable so-
lution in I1. Although in M2H games with α = 0 the authors
have budgets Bij ∈ {0, 1} and node capacities are assumed
to be integral, we can adapt the proof of (Theorem 10 part 1,
keeping α = 0) in [Anshelevich et al., 2013] to obtain the

following:

2 ·
∑
i

∑
(ij)3i

(zij − fij) ≥
∑
i

∑
(ij)3i

(gij − fij)

With simple algebraic manipulations, the above equation can
also be written as∑

i

∑
(ij)3i

(zij − fij) ≥
∑
i

∑
(ij)3i

(gij − zij) (6)

From the instance I , we also have∑
i

∑
(ij)3i

Bij ≥
∑
i

∑
(ij)3i

(gij + zij − fij)

Using Equation 6 in the above equation, we get the desired
result.

The following lemma says that budgets Bij have a simplified
form in an instance that achieves the worst-case PoA.
Lemma 5.2 Consider an instance that achieves the worst-
case PoA with intermediary price function p(·). Then we have
Bij = max{fij , gij} where ~g denotes the allocation vector
corresponding to the minimum social cost and (~f, p(f)) is a
stable solution of maximum social cost in this instance.

Proof. The ratio SC(~f)/SC(~g) is given by

SC(~f)

SC(~g)
=

c(f) +
∑
i

∑
(ij)3i λij · (Bij − fij)

c(g) +
∑
i

∑
(ij)3i λij · (Bij − gij)

If Bij > max(fij , gij) for any pair (ij), then we can obtain
another instance by reducing Bij by a tiny positive ε without
affecting the stability of (~f, p(f)). Using Observation 5.1,
it can be shown that in this process the ratio SC(~f)/SC(~g)
strictly increases. Thus the original instance could not have
been an instance achieving the worst-case PoA.

The following critical lemma says that worst-case PoA is
achieved in an instance where all pairs have equal λij .
Lemma 5.3 Consider an instance that achieves the worst-
case PoA with price function p(·) and suppose that PoA > 2.
Then for all pairs (ij) we have λij = λ for some λ > 0.

Proof. Let τ~y denote min{λij : yij > 0} for a given alloca-
tion vector ~y, i.e., τ~y corresponds smallest λij that a pair with
positive connection strength can have in ~y. In the instance
that achives the worst-case PoA, let ~g be an allocation vector
corresponding to the minimum social cost and let (~f, p(f))
be a stable solution of maximum social cost. This means that
the ratio SC(~f)/SC(~g) equals the worst-case PoA in the in-
stance under consideration.

The proof of the above lemma involves proving a series of
claims, each requiring a careful analysis. The first claim in-
volves proving that for the instance under consideration that
achieves the worst-case PoA, τ~g ≥ τ~f . The second claim in-
volves showing that λij ∈ {τ~g, τ~f} for every pair (ij). Given
this, the final claims involves proving τ~g = τ~f .

The theme of proving all these claims is to make use of
Proposition 5.1-5.2 to create an instance by perturbing λij



values for some intelligently chosen class of pairs, while
maintaining the stability of the solution (~f, p(f)). Later
carefully applying Lemma 5.1-5.2 we show that in the newly
created instance, the ratio SC(~f)/SC(~g) strictly increases.
This contradicts our initial assumption that the original
instance achieves the worst-case PoA. Now let us proceed to
prove each of these individual claims.

Claim: τ~g ≥ τ~f .
Suppose we had τ~f > τ~g on the contrary. We break the
further analysis into two cases:

(a) Case when p(f) > τ~g: Recall that connection cost in-
curred by a pair (ij) for a connection strength of yij is
given by λij(Bij − yij). Now ee claim p(f) > τ~g , im-
plies that the pairs in the class T (τ~g) incur strictly pos-
itive connection cost in total for the allocation vector ~f
but incur zero connection cost for the allocation vector
~g. Note: recall that T (τ~g) is the set of all pairs with
λij = τ~g .

Note that p(f) > τ~g implies that the intermediary
charges a price higher than τ~g in the solution (~f, p(f)).
Thus by the first stability condition, fij = 0 for (ij) ∈
T (τ~g). This, together with Lemma 5.2 implies Bij =
gij for (ij) ∈ T (τ~g). Hence the pairs in T (τ~g) incur
zero cost for the allocation vector ~g. At the same time,
the definition of τ~g implies that at least one pair with
λij = τ~g has gij > 0. Combining it with fij = 0 and
Bij = gij (as discussed above), we get that the pairs in
T (τ~g) incur strictly positive cost in total for the alloca-
tion vector ~f .

Now let us obtain another instance by increasing λij
for all the pairs in T (τ~g) to any fixed Λ in the open inter-
val (p(f), τ~g) while Proposition 5.2 ensures the stability
(~f, p(f)). Notice that in this procedure, the connection
cost of the pairs in the set T (τ~g) strictly increases for the
allocation vector ~f . However as Bij = gij , they still in-
cur zero connection cost for the allocation vector ~g even
in the transformed instance. Thus during this transfor-
mation SC(~g) does not change but SC(~f) strictly in-
creases. Thus the ratio SC(~f)/SC(~g) becomes strictly
greater in the transformed instance, contradicting the as-
sumption that the original instance achieves the worst-
case PoA.

(b) Case when p(f) ≤ τ~g (and λ1 ≥ τ~f > τ~g): In this case,
we claim that the following holds true

λ1 ·
∑
i

∑
(ij)3i

s.t. (ij)∈T (λ1)

(Bij − fij)

λ1 ·
∑
i

∑
(ij)3i

s.t. (ij)∈T (λ1)

(Bij − gij)
≤ 2 (7)

To see it, suppose that the following held true:∑
(ij)∈T (λ1)

fij ≥
∑

(ij)∈T (λ1)

gij (8)

If the condition in Equation 10 holds true then it trivially
implies the bound in Equation 9. Now suppose that the
condition in 10 does not hold. By our assumptions, we
have p(f) ≤ τ~g < τ~f < λ1. Thus the bound given in
Lemma 5.1 holds true. It can be shown that the left hand
side term in Equation 9 gets maximized when the bound
in Lemma 5.1 is met with equality to give us a desired
upper bound of 2.

Now if it were true that PoA > 2 then we can create
another instance by reducing λ1 by a tiny ε such that
0 < ε < λ1 − λ2. Note that (~f, p(f)) still stays a stable
solution in the transformed instance by Proposition 5.1.
However, reduction in λ1 leads to an increase in the ratio
SC(~f)/SC(~g) by Observation 5.2. This contradicts the
assumption that the original instance achieves the worst-
case PoA.

Thus assuming τ~f > τ~g leads us to contradictions in both
above cases. Hence it must be true that τ~g ≥ τ~f .

Claim: λij ∈ {τ~f , τ~g} for any pair (ij).
We already know that τ~g ≥ τ~f . We also know by Lemma 5.2
that Bij = 0 whenever λij < τ~f ≤ τ~g , thus we can ignore all
such pairs. We break the further analysis into two cases:
(a) Suppose there exists a pair with λij > τ~g: This implies

λ1 > τ~g . Now we claim that the following holds true

λ1 ·
∑
i

∑
(ij)3i

s.t. (ij)∈T (λ1)

(Bij − fij)

λ1 ·
∑
i

∑
(ij)3i

s.t. (ij)∈T (λ1)

(Bij − gij)
≤ 2 (9)

To prove our claim, suppose that the following holds:∑
(ij)∈T (λ1)

fij ≥
∑

(ij)∈T (λ1)

gij (10)

If the condition in Equation 10 holds true then it triv-
ially implies the bound in Equation 9. Now suppose that
the condition in 10 does not hold. We already know that
p(f) ≤ τ~f from the first stability condition and the def-
inition of τ~f . Combining this with our assumptions, we
have p(f) ≤ τ~f ≤ τ~g < λ1, giving us p(f) < λ1.
Thus the bound given in Lemma 5.1 holds true. It can
be shown that the left hand side term in Equation 9 gets
maximized when the bound in Lemma 5.1 is met with
equality to give us a desired upper bound of 2.

Now if it were true that PoA > 2 then we can create
another instance by reducing λ1 by a tiny ε such that
0 < ε < λ1 − λ2. Note that (~f, p(f)) still stays a stable
solution in the transformed instance by Proposition 5.1.
However, reduction in λ1 leads to an increase in the ratio
SC(~f)/SC(~g) by Observation 5.2. This contradicts the
assumption that the original instance achieves the worst-
case PoA.

(b) Suppose there exists a pair with τ~g > λij > τ~f : Note
that by definition of τ~g that these pairs satisfy gij = 0.



Thus for these pairs, Bij = fij . Since we only allow
Bij > 0 in our problem settings, we have fij > 0 for
all these pairs. This implies that these pairs have zero
connection cost in the allocation vector ~f (because of
Bij = fij) but strictly positive connection cost in the
allocation vector ~g (because of gij = 0).

Now Consider all the pairs (uv) which satisfy the con-
dition λuv = min{λij : τ~g > λij > τ~f}. By applying
Proposition 5.1, we can reduce λuv of all such pairs to
τ~f without affecting the stability of (~f, p(f)). In this
process, the connection cost of all these pairs stays zero
in the allocation vector ~f but strictly decreases in the
allocation vector ~g. Hence in this process SC(~f) does
not change but SC(~g) strictly decreases, increasing the
ratio SC(~f)/SC(~g) leading to a contradiction with the
assumption that the original instance achieves the worst-
case PoA.

Claim: τ~g = τ~f .

We already proved above that in the instance achieving
worst-case PoA we have λij ∈ {τ~f , τ~g} for every pair (ij)

and τ~g ≥ τ~f . Now if τ~g > τ~f , then we can apply the analysis
from case (b) of proof of the claim τ~g ≥ τ~f to prove that
we can construct another instance by reducing λ1 = τ~g by a
tiny ε keeping (~f, p(f)) stable while the ratio SC(~f)/SC(~g)
strictly increases in this transformation. This leads to the
contradiction that the original instance could achieve the
worst-case PoA hence proving our claim.

Proving the above claim completes the proof of Lemma 5.3
as discussed in the beginning the proof.
Theorem 5.1 (PoA of proportional pricing) With propor-

tional pricing, PoA ≤ max

(
2, sup
f≥0

f ·c′(f)
c(f)

)
where we define

c′(0)/c(0) = 0.
Proof. Assume PoA > 2 as otherwise there is nothing to
prove. Consider an instance achieving worst-case PoA with
proportional pricing. Let ~g be an allocation vector corre-
sponding to the minimum social cost and let (~f, p(f)) be a
stable solution of maximum social cost in this instance. Since
we have assumed PoA > 2, this implies that Lemma 5.3
holds. This gives us λij is the same for all pairs (ij) and
furthermore λij = τ~g = τ~f holds for each pair. Thus we get
the following equation (where we denote

∑
i

∑
(ij)3iBij by

B):

SC(~f)

SC(~g)
=

c(f) + τ~g · (B − f)

c(g) + τ~g · (B − g)
(11)

We break the further analysis into two cases:
(a) Suppose g > f : This gives us c(f)/c(g) < 1. This lets

us apply Observation 5.1 to Equation 11 gives us
SC(~f)

SC(~g)
=
c(f) + τ~g · (B − f)
c(g) + τ~g · (B − g)

≤
τ~g · (B − f)
τ~g · (B − g)

=
B − f
B − g

(12)

We now claim that whenever g > f , we have λ1 > γ
(where γ = c(f)/f for proportional pricing). We know

that for the instance under consideration, all λij values
are equal. Furthermore, we have τ~g ≥ c′(g) from the
optimality of ~g and using g > f with convexity of c(·)
also gives us c′(g) > c′(f) > c(f)/f . This gives us
λ1 = τ~g > γ. Since all the λij are equal for the instance
under consideration, this gives us λ1 = τ~f = τ~g >

c(f)/f = γ. Having λ1 > γ lets us apply Lemma 5.1
to give us B ≥ 2g − f . Then we can apply Observa-
tion 5.1 to subtract (B− (2g− f)) from both numerator
and denominator on the right hand side of Equation 12 to
obtain SC(~f)/SC(~g) ≤ 2. This contradicts our initial
assumption that PoA > 2.

(b) Suppose f ≥ g: This implies (B − f) ≤ (B − g).
This lets us use Observation 5.1 to subtract τ~g · (B − f)
from the numerator and the denominator of the ratio in
Equation 11 to give us

SC(~f)

SC(~g)
≤ c(f)

c(g) + τ~g · (f − g)

≤ c(g) + c′(f) · (f − g)

c(g) + τ~f · (f − g)
. . . by convexity

≤ c′(f)

τ~f
. . . by Observation 5.1

From the stability conditions and the definition of propor-
tional pricing, we get τ~f ≥ γ = c(f)/f . Substituting it in
the above expression completes the proof of the theorem.

In particular, for a common assumption of c(y) being a poly-
nomial of degree d (without a constant term as we assume
p(0) = 0), Theorem 5.1 gives us the following:
Theorem 5.2 PoA ≤ d with proportional cost sharing when-
ever the operating cost of intermediary c(y) is a polynomial
of maximum degree d without a constant term.

Theorem 5.3 (PoA of marginal cost pricing) For marginal
cost pricing, PoA ≤ 2.

The proof of Theorem 5.3 is almost similar to that of Theo-
rem 5.1 except that we use τ~f ≥ γ = c′(f) in the very last
step. It is worth noting that the above bound is tight, i.e.,
there exist stable solutions under marginal pricing which are
a factor of 2 away from optimum.

To see the tightness of PoA bound with marginal cost
pricing, consider an instance with 4 nodes p, q, u, v. Set
Bpq = Bqu = Buv = 1 and let λpq = λqu = λuv = 100.
Let Bij = 0 as well λij = 0 for all other pairs. Set
Lp = Lq = Lu = Lv = 1. Let the intermediary cost function
be εy2, where ε > 0 is an extremely tiny constant, thus the
only cost nodes need to consider while forming a connection
is the connection cost and node capacities. It can be verified
that ~g is an optimal allocation vector where gpq = guv = 1

and gij = 0 for all other pairs. The solution (~f, c′(f)) is a
stable solution in these settings with fqu = 1 (and fij = 0
for all other pairs), as no other pair can increase their con-
nection strength constrained by node capacities (see the sec-
ond stability condition). Thus we have SC(~f) ≈ 200 and
SC(~g) ≈ 100. This proves that the PoA bound for marginal
cost pricing is tight.



We would like to mention in passing that equal pricing
where each node makes a payment of c(y)/n to the interme-
diary has an unbounded worst-case efficiency. This happens
because the connection costs of pairs with high λij can get
subsidized because of the fees paid by the pairs with less ben-
eficial connections (i.e., small λijBij). As a result, in stable
solutions the pairs with high λij can end up setting connec-
tions of very high strength to increase the operating costs c(y)
in a disproportionate manner. This does not happen in propor-
tional pricing or marginal cost pricing as the payment p(y)·yi
made by a node i depends on total connection strength y as
well as the strength of the connections yi formed by a node.

For an example of arbitrarily high worst-case efficiency
with equal pricing, consider an instance with a pair (vw) with
λvw = 2 and Bvw = m with 2m2 + 1 other nodes with tiny
λij as well as tinyBij for all other pairs. Let the intermediary
function be c(y) = y2. Let the node capacity be infinite for all
the nodes. It can be verified that in the optimal solution, only
pair of nodes to have non-zero connection strength is (vw)
and in the optimal allocation vector ~g will have gvw = 1 and
gij = 0 for the rest. Thus the minimum social cost SC(~g) is
approximately (m − 1) · 4 + 4 = 4m. With equal pricing,
the price charged by the intermediary in a solution ~y to each
node is c(y)/(2m2 + 1) ≤ c(

∑
i

∑
j Bij)/(2m

2 + 1). Since
the pairs other than (vw) has negligible budgets, this upper
bound is strictly less than 2 in any solution. This together with
Equation 4 and having infinite node capacities in the instance
under consideration implies that in any candidate stable solu-
tion the pair (vw) has a connection strength of its full budget
Bvw. It can be verified that a solution (~f, c(f)/(m2 + 1)) is
a stable solution with equal pricing where fvw = Bvw and
fij = 0 for all other pairs. Thus SC(~f) evaluates to approx-
imately 4m2. Thus we get SC(~f)/SC(~g) ≈ m. This bound
can be made arbitrarily high and hence equal pricing has an
unbounded worst-case PoA.

6 Conclusion
Although different kinds of network formation games have
been extensively studied in the literature, the natural setting
where nodes need to pay an intermediary in order to form
connections has not been explored. Based on the classic net-
work formation game introduced in [Jackson and Wolinsky,
1996], and inspired especially by IXP pricing, we formulated
a model of network formation games with intermediaries. For
this model, we showed how to efficiently determine stable
prices and allocations (and the fact that such prices exist) for
a natural class of pricing schemes. Moreover, we proved that
all stable solutions are close to optimal for marginal cost pric-
ing (factor of 2 away), and the same is true for proportional
pricing as long as the intermediary costs are not too convex.
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