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Abstract

We consider a model of next-hop routing by self-interested agents. In this model,
nodes in a graph (representing ISPs, Autonomous Systems, etc.) make pricing decisions
of how much to charge for forwarding traffic from each of their upstream neighbors,
and routing decisions of which downstream neighbors to forward traffic to (i.e., choos-
ing the next hop). Traffic originates at a subset of these nodes that derive a utility
when the traffic is routed to its destination node; the traffic demand is elastic and the
utility derived from it can be different for different source nodes. Our next-hop rout-
ing and pricing model is in sharp contrast with the more common source routing and
pricing models, in which the source of traffic determines the entire route from source
to destination. For our model, we begin by showing sufficient conditions for prices to
result in a Nash equilibrium, and in fact give an efficient algorithm to compute a Nash
equilibrium which is as good as the centralized optimum, thus proving that the price
of stability is 1. When only a single source node exists, then the price of anarchy is
1 as well, as long as some minor assumptions on player behavior is made. The above
results hold for arbitrary convex pricing functions, but with the assumption that the
utilities derived from getting traffic to its destination are linear. When utilities can be
non-linear functions, we show that Nash equilibrium may not exist, even with simple
discrete pricing models.

1 Introduction

The ubiquitous impact of the Internet on modern life is a testimony to its growth in the past
two decades. One of the principal factors behind this growth has been the decentralization
of control, which also allows it to be modeled naturally as a system of interacting but inde-
pendent, self-interested agents. More specifically, the Internet can be viewed as a collection
of ISPs or ASes (Autonomous Systems) that are interested in routing and pricing traffic
to maximize their individual revenues [2, 7, 15]. Similar frameworks have also been applied
to the study of relaying/routing of traffic in wireless ad-hoc networks [19, 20]. The study
of large decentralized networks of self-interested agents, with regard to their efficiency, has
sparked an enormous amount of interest, as the insight thus earned can be used to extract
maximum utility from existing infrastructure, as well as to make good policy decisions.

We consider the interactions of self-interested agents in a network at a very abstract
level, where each agent is modeled as a self-interested node in a graph. Traffic originates
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at a subset of these nodes that derive a utility when the traffic is routed to its destination
node, which may be many hops away. We consider next-hop routing, where each node on
the path of the traffic individually determines which node(s) the traffic should be forwarded
to (i.e., chooses the “next hop”). Nodes are allowed to charge their upstream neighbors
for the traffic that they are asked to forward, as is typically done in contracts formed by
neighboring Autonomous Systems in the Internet. Thus, a node obtains payments from
its upstream neighbors for accepting their traffic for forwarding, and must in turn pay its
downstream neighbors for receiving its traffic (i.e., the traffic it has accepted to forward,
plus the traffic that it originates). Moreover, the nodes, being self-interested, will always
choose to send traffic to the downstream neighbors with the cheapest price. As remarked
in [3], for example, there is an interplay between setting the price to forward traffic, and
choosing the routing policies of a node, since both decisions can change the profit/cost of
a node (Autonomous System). In this paper, we consider both decisions to be under the
control of each node, and study the properties of the equilibrium solutions of this game,
which we believe captures the fundamental aspects of next-hop routing by self-interested
agents.

Our next-hop routing and pricing model is in sharp contrast with the more common
“source routing” and pricing models (see e.g., [6,10,14,17]). In the latter models, the source
node of the traffic determines its entire route from the source to the destination. Next-hop
models provide a better representation of the routing protocols and pricing practices in the
current Internet, as well as those that are likely to dominate the future multi-hop wireless
networks [15]. In the Internet, traffic flow and service pricing negotiations occur at the
inter-domain level, between an ISP and its neighboring ISPs (i.e., ISPs with which it shares
a POP (Point-Of-Presence) and has a customer/provider/peering relationship) [11]. Inter-
domain routing follows the BGP protocol, where hops at the AS level are determined one at
a time [16]. Even though BGP determines this next hop based on information on the entire
AS-level path, the benefits of making it strictly next-hop has been argued recently [18]. Our
next-hop routing and pricing model also closely captures the Path Vector Contract Switching
framework proposed for the future Internet [21], where neighboring ISPs establish contracts
(on the amount of flow and its pricing) towards forwarding traffic for a specific destination.
Source routing requires knowledge of the entire path at the source node, and this practical
limitation has restricted the use of source routing in the Internet, while next-hop routing
involves decision making by agents that is much more local and distributed.

In addition to its focus on next-hop routing, our model differs from most existing models
in several other aspects as well. We assume that links in our network have fixed capacities,
which represents the constraints associated with routing somewhat better than having linear
cost functions that depend on how much traffic is being routed. An important feature of
our model is the existence of multiple sources that have elastic demands with non-uniform
utilities. See the Related Work section on further contrast with existing models.

Model Summary We now give a brief outline of our model. A more detailed description
is given in Section 2.

We are given a directed acyclic graph G = (V,E) containing a special sink node t, and
edge capacities ce. As commonly done when analyzing competition in networks [4, 6, 15],
we assume that all edges of this DAG, except the ones that are incident on the sink node,
have a special non-monopolistic property. For our model, this property essentially ensures
that enough capacity exists that no node could charge an infinitely high price for forwarding
traffic, and yet have other nodes pay this price because they have no alternative.
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The players of our game are all vertices of G except the sink node. An edge e = (u, v) ∈ E
with capacity ce denotes that player u has the capacity to send a flow of size ce to player v.
Additionally, every player v has an associated source utility λv. This means that if a player
v sends fv amount of its own flow (flow originating form vertex v) to the sink t, then the
player will obtain a utility of λvfv. Thus, the player demands are elastic, since each player
can choose an amount of traffic to send in order to maximize its utility. We consider an
extension of this model in Section 5 where source utilities are allowed to be non-linear.

Players choose prices on their incoming edges. For every edge e = (u, v) player v chooses
a price pe such that if u sends a flow of size fe on edge e then u pays an amount pefe to v.
Players route flow on outgoing edges such that this minimizes their cost, but are obligated
to forward all flow that they receive. Finally, the utility of a player is the total amount of
money it receives from upstream players and the utility obtained by sending its own flow
minus the amount of money paid to the downstream nodes.
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λa = 100,  λb = 3,  λj < 3
ce = 1

c(j,k)=c(k,l)=c(l,t)=2

Figure 1: An example illustrating our model, and the “long-range” effects that node utilities
can have on edge prices.

Example. To illustrate some key consequences of our model, consider the example in Fig-
ure 1. The utility values of all nodes except the ones mentioned are 0. Edge (j, k), (k, l), (l, t)
have capacity 2 and all other edges have capacity 1. Not all the edges in the graph are pic-
tured: for every edge (u, v) shown in the figure that does not satisfy the non-monopolistic
property, there also exist (non-pictured) edges (u,w), (w, t) of capacities 1 such that w has
a high source utility (say 1000). In any optimal solution edge (u,w) will not have any flow
on it whereas (w, t) will be saturated. Now it is not difficult to see that any optimal solution
will consist of the flow indicated in Figure 1, where the double walled edges are saturated
with flow, except edge (j, k) has a flow of size 1 whereas its capacity is 2.

A more careful analysis shows that any Nash equilibrium strategy that yields this optimal
flow will have the following edge prices: p(j,k) = p(k,l) = λj , p(b,d) = 3. Also p(c,d) ≥ p(c,f) ≥
p(f,g) ≥ p(g,h) ≥ p(h,i) ≥ p(i,k) ≥ λj . This means that the price of edge (c, d) depends on the
source utility value of node j, and thus there are “long-range” interactions between source
utilities and edge prices.

Results Our main goal involves understanding the properties of stable solutions in this
pricing game: specifically we focus on pure Nash equilibrium. In Section 3 we give an efficient
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algorithm that constructs a Nash equilibrium strategy that is as good as the optimal solution.
In other words, we show that the price of stability is 1, and thus it is always possible to
implement traffic pricing that maximizes social welfare. This holds for an arbitrary number
of sources with elastic demands of heterogenous value. We also show in Section 4 that in
case of a single source, under some reasonable behavioral assumptions for the players, the
price of anarchy is 1, and in fact player prices at equilibrium are unique.

Until this point, the source utilities λv and the allowed price functions pe were considered
to be linear. In Section 5, we instead consider the more general case where the source utility
can be an arbitrary concave function Λv(fv), and the prices can be arbitrary convex functions
Πe(fe). We show that the above results still hold if arbitrary convex prices are allowed, and
thus allowing non-linear prices does not impact the quality of equilibrium solutions. On
the other hand, if source utilities can be non-linear functions, then we show that pure Nash
equilibrium may no longer exist, even for discrete pricing models.

Related work Selfish routing and pricing games have been studied in many contexts
(see e.g., [1–4, 9, 10, 12, 13, 17], and the many references in [8, 14]). As mentioned before,
most of the work in this area has been done using source routing, where a source of traffic
chooses the entire path that the traffic takes. In one such model, [5, 6] consider a game
where there are two sets of players. One set of players own edges of the network (edges have
finite capacities) and sell capacity to players of the second set. The second set of players
obtain utility for routing a unit amount of flow from its source to destination and hence
buys capacity on edges along the route if it is profitable to do so. The essential difference
between source routing models like the one in [5, 6] and ours is that in our model when a
node changes its price on an incoming edge, only its upstream neighbors are immediately
affected and may change their routes; whereas in the source routing model, any change in
prices by the first set of players is seen by all players of the second set, and can immediately
result in a globally different routing. Thus next hop routing operates much more on local
knowledge [18].

Perhaps the most relevant paper to ours is by Papadimitriou and Valiant [15], in which
they define a next hop routing model where players are edges of a network, and argue for
the importance of next-hop routing models. The strategy of players in their game is similar
to our model: players charge neighbors for processing and forwarding flow. Unlike our
model where edges have capacities, their model has edges with (linear) latencies, and deals
only with a single source with a fixed demand. Although their results can most likely be
extended to networks with multiple sources, the crucial complications in our model arise
from the fact that we consider sources with elastic demands and non-uniform utilities. This
leads to complex interaction of prices as illustrated by the example in Figure 1, and prevents
us from using the methods from [15] for analysis. To further illustrate the differences between
our model and the one from [15], notice that in our model, the price of anarchy for single
source games is 1, while in [15], the price of anarchy can be large.

Another recent next-hop routing model is discussed by Xi and Yeh [20]. As in [15], their
model only considers a single source with a fixed amount of traffic demand. The links in [20]
have latency functions instead of capacities. For these reasons, just as with [15], equilibrium
solutions in [20] are very different from the ones in our model, and have a very different
structure. In essence, the complexity in our game arises from the interplay between different
source utilities and edge capacities, while in [15] and [20] it arises due to the presence of
latency functions. Finally, [3] considers a somewhat general routing game that can also
include next-hop routing as a special case, but uses a very different pricing mechanism from
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the one considered here.

2 Model

We are given a directed acyclic graph G = (V,E) containing a special sink node t, and
edge capacities ce. To arrive at a meaningful model of price competition, we assume that
all edges of this DAG, except the ones that are incident on the sink node, have a special
non-monopolistic property. This property says that for any edge e = (u, v), even if this edge
is removed from the graph, the total capacity of outgoing edges of node u will be greater
than the total capacity of its incoming edges. The rationale behind this property will be
explained once the model has been illustrated in more detail.

The set of players in our game consists of all vertices of G, except the sink node. An
edge e = (u, v) ∈ E with capacity ce denotes that player u has the capacity to send a flow
of size ce to player v. Additionally, every player v has an associated source utility λv. This
means that if a player v sends fv amount of its own flow (flow originating form vertex v) to
the sink t, then the player will obtain a utility of λv · fv. We consider an extension of this
model in Section 5 where source utilities are allowed to be non-linear.

Player Strategy The core behavior of our model is that a vertex can charge a price for
the flow being sent through it. For example, since edge e = (u, v) is incident on v, node v
can set a price pe on this edge. If vertex u sends a flow fe on this edge then vertex u has to
pay an amount equalling fe · pe to vertex v. (We will consider a model where the price per
packet changes with the amount of flow being sent on the edge in Section 5.)

So apart from gaining utility by sending their own flow, vertices also gain utility for
receiving flows and lose utility by paying the next-hop vertices that receive their flow. Also,
observe that for the flow to reach the sink, it is essential that intermediate nodes forward
the flow reliably. Hence every player is required to forward all incoming flow (alternatively,
we can think of there being a very large penalty for accepting payment for incoming flow
that the player has no intention of forwarding). The forwarding of all flow is always possible
since the non-monopolistic property ensures that for every node the total outgoing capacity
is always greater that the total incoming capacity.

Imagine a situation where in order to route all its incoming flow, node u always has
to forward some flow to vertex v. Since it is obligatory for u to forward all its incoming
flow, v can charge an exorbitantly high price on edge (u, v), and u would have to pay it. In
other words, v can act as a monopoly. Similarly to [15], existence of such a structure in G
may lead to no meaningful equilibrium and the non-monopolistic property for edge (u, v)
obviates precisely this situation. Since the sink node is not a player, it does not set prices
for edges that are incident on it (we assume that price is fixed at 0, and that wlog these
edges are always saturated); neither do these edges need to satisfy the non-monopolistic
property, as long as the outgoing capacity of each node is at least as large as the incoming
capacity.

In order to provide a more formal definition of the player strategies and the resulting
flow, we define the following terminology. Let Ein

v and Eout
v be the set of incoming and

outgoing edges for node v respectively. The vector of flows on the incoming edges of vertex
v is denoted by f inv and on the outgoing edges is denoted by foutv . Similarly, the vector of
prices on the incoming edges is denoted by pinv and on the outgoing edges is denoted by poutv .
Let fv be the amount of own flow (flow originating at vertex v) sent by vertex v to sink t.

5



We assume that a vertex always sends or forwards flow by choosing the outgoing edges
that have the lowest price and have free capacity. Also, if there exists an outgoing edge
with free capacity and has pe < λv then the node will always send its own flow on such
an edge, and will never send its own flow on edges with pe > λv. To make this precise,
we define a notion of valid flows, which are flows where every vertex forwards flow in order
to maximize its utility. Specifically, given the prices poutv and flows f inv , we define the set
of valid resulting flows foutv to be Fv(f inv , poutv ), which are all flows satisfying the following
conditions:

• ∀e ∈ Eout
v : fe ≤ ce (usual capacity constraint);

fv =
∑

e∈Ein
v
fe −

∑
e∈Eout

v
fe ≥ 0 (usual flow conservation)

• ∀e ∈ Eout
v : fe > 0 only if for every e′ ∈ Eout

v \e with pe′ < pe, e
′ is saturated

(send on cheapest edges first),

• ∀e ∈ Eout
v : pe < λv implies that e is saturated (send own flow if profitable), and

pe > λv and fe > 0 imply that fv = 0 (don’t send own flow if unprofitable).

Any way of forwarding flow to maximize v’s utility obeys these conditions. The last
condition holds since if v is sending its own flow, but fe > 0 for some edge e ∈ Eout

v with
pe > λv, then v could re-distribute its flow so that it is sending its own flow on edge e, and
then improve its utility by sending less of its own flow.

When all prices in poutv are distinct from each other and λv, then Fv(f inv , poutv ) is a
unique flow resulting from forwarding flow from all from all incoming edges, beginning with
the edges of least cost, and then sending its own flow on remaining edges with free capacity
and cost pe < λv. Now consider instead a situation where two or more outgoing edges have
the same price. So long as they have the same price, the utility of player v is not affected
by the choice of edge on which it sends a flow. Similarly, when there exists an outgoing
edge with free capacity and pe = λv, the vertex is indifferent towards the choice of sending
its own flow on the edge. In this model we assume that both these tie-breaking choices are
left up to the players and are part of their strategy. More formally, since each valid flow
in Fv(f inv , poutv ) corresponds to a tie-breaking rule selected by player v, we associate these
tie-breaking rules with a flow generation function γv which, given the incoming flows and
out going prices, produces an outgoing flow. The set of these flow generation functions is
denoted by Γv:

Γv = {γv| ∀f inv , poutv : γv(f inv , poutv ) = foutv ∈ Fv(f inv , poutv )}

In other words, Γv contains all functions that generate only valid out-flows. Hence the

strategy set of each player v is R|E
in
v |

+ ×Γv, and a strategy of the player is given by the tuple

{pinv , γv} where pinv ∈ R
|Ein

v |
+ and γv ∈ Γv. We denote the collective strategy of all players

by {P, γ}.

Outcome Each flow generating function γv needs incoming flow and prices on outgoing
edges in order to compute the resulting flow. Given a strategy {P, γ}, the prices are already
known. The algorithm to produce the resulting flow is then simply: Iterate over v ∈ V in
topologically sorted order (recall that our graph is a DAG), and set foutv = γv(f inv , poutv ).
We denote the resulting flow by f(P, γ): this is the outcome of the strategy {P, γ}.
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Utility and Best Response Given the output flow f(P, γ), the utility of player v is
given by the following expression:

utilityv(P, γ) =
∑

e∈Ein
v

fe · pe −
∑

e∈Eout
v

fe · pe + λv · fv

Consider a player v who is computing its best response to a strategy {P, γ}. Notice
that by changing its prices pinv , the resulting flow f inv may become completely different from
f(P, γ). If this were not the case, then v could always raise its incoming price, knowing that
this would increase its utility since the flow would remain the same. In essence, players in
this game anticipate changes in flow that result from price changes, but myopically assume
that the prices of all other nodes remain the same when computing their own best response.
Such behavior is reasonable in ISP routing settings, for example, since price setting takes
place on a much slower time scale than routing.

3 Uniform Nash Equilibrium and Price of Stability

We first prove useful sufficient conditions for a strategy to be a Nash equilibrium.

Theorem 1 If flow f(P, γ) and prices P satisfy the following conditions, then strategy
{P, γ} is a Nash equilibrium:

(a) For every node u, the price on all edges of Eout
u , except edge (u, t) if it exists, is the

same. Let this price be denoted by yu.

(b) If fu > 0 then yu = λu; if fu = 0 then yu ≥ λu.

(c) For ∀v 6= t, if edge (u, v) has a positive flow on it, then yu ≥ yv.

(d) For ∀v 6= t, if edge e = (u, v) is unsaturated (fe < ce), then yu ≤ yv.

We first prove the following lemmas, which state that if a player deviation includes
increasing its price on some incoming edge, then no flow is sent on this edge after such a
deviation.

Lemma 1 Let {P, γ} satisfy the conditions of Theorem 1. Consider a unilateral deviation
by player v where v changes its strategy from (pinv , γv) to (pin

′

v , γ′v) such that for some edge
e = (u, v), p′e > pe. Let {P ′, γ′} denote the resulting collective strategy of all players. Then
the flow on edge e in f(P ′, γ′) equals 0.

Proof. We will let f denote the flow f(P, γ), and f ′ denote the flow f(P ′, γ′). Consider
first the case where node u is not sending its own flow in f(P ′, γ′), i.e., f ′u = 0. Since
p′e > pe, condition (a) of Theorem 1 says that ∀e′ ∈ Eout

u \e, pe′ < p′e. Also because of the
non-monopolistic property we know that total capacity on the set of edges Eout

u \e is at least
as much as the capacity on edges Ein

u . Therefore the flow generating algorithm will route
all incoming flow to u on edges of Eout

u \e in f(P ′, γ′).
Now suppose instead that f ′u > 0. By condition (b), we know that yu ≥ λu, and thus

that p′e > λu. Thus no valid flow f(P ′, γ′) will send any flow on edge e (since node u loses
utility by sending flow on edge e). Hence in f(P ′, γ′) there would be no flow on edge e.
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We are now ready to prove Theorem 1.

Proof. Let {P, γ} satisfy the conditions of Theorem 1, and suppose to the contrary that
for some player v, there exists a strictly improving unilateral deviation from {P, γ}, where
v changes its strategy from (pinv , γv) to (pin

′

v , γ′v). Denote by {P ′, γ′} the collective player
strategy after v’s deviation, and let f = f(P, γ), f ′ = f(P ′, γ′).

Let the set of incoming edges of v be partitioned into the following:

• Einc ⊆ Ein
v such that ∀e ∈ Einc : p′e > pe

• Edec ⊆ Ein
v such that ∀e ∈ Edec : p′e < pe

• Efree ⊆ Ein
v such that ∀e ∈ Efree : p′e = pe and fe < ce

• Esat ⊆ Ein
v such that ∀e ∈ Esat : p′e = pe and fe = ce

Note that Einc ∪ Edec ∪ Efree ∪ Esat = Ein
u . Now, utility of node v in strategy (P, γ)

can be stated as follows:

utilityv(P, γ) =
∑

e∈Einc∪Edec∪Efree∪Esat

fe · (pe − yv) + fv · (λv − yv) + c(v,t) · yv. (1)

This is because for every unit of flow that node v is forwarding or sending, it must pay
yv to an outgoing edge, except for c(v,t) units of flow, which can be sent to t with price 0
(we will use the convention that c(v,t) = 0 is edge (v, t) does not exist).

Notice that each term fe(pe − yv) is nonnegative due to condition (c), and the term
fv(λv − yv) equals zero due to condition (b). Similarly, the utility of v in strategy {P ′, γ′}
is the same as in Equation 1 with f ′ replacing f and p′e replacing pe. Note that, since we
assumed that every edge (v, t) is saturated (since node v can always forward or send its own
flow to fill up edge (v, t) to capacity without decreasing its utility), then the term c(v,t) · yv
is present both before before and after the deviation. We now analyze the effect of price
changes from pe to p′e on the sum in Equation 1 for each of the four subsets of Ein

v .

• Einc: According to Lemma 1, all edges with price increase will not have any flow in
f(P ′, γ′). Hence the term

∑
e∈Einc

f ′e · (p′e − yv) equals 0 ≤
∑

e∈Einc
fe · (pe − yv).

• Edec: Since p′e < pe for edges in Edec, then the only way that it is possible for
f ′e · (p′e − yv) be greater than fe · (pe − yv) is if f ′e > fe. This implies that edge e is
not saturated in f , i.e, fe < ce. According to condition (d), edges in Edec that have
free capacity in f(P, γ) have pe ≤ yv. Thus (p′e − yv) < (pe − yv) ≤ 0, and so it is not
possible that f ′e ·(p′e−yv) > fe ·(pe−yv) because each term fe ·(pe−yv) is nonnegative.
Therefore,

∑
e∈Edec

f ′e · (p′e − yv) ≤
∑

e∈Edec
fe · (pe − yv).

• Efree: For an edge e ∈ Efree, we know by condition (d) that p′e = pe ≤ yv. Since each
term fe(pe − yv) is nonnegative, this implies that 0 = fe(pe − yv) ≥ f ′e(p′e − yv). Thus∑

e∈Efree
f ′e · (p′e − yv) ≤

∑
e∈Efree

fe · (pe − yv).

• Esat: Since these edges are saturated in f(P, γ), then f ′e ≤ fe. Also from condition (c)
we know that p′e = pe ≥ yv. It follows that

∑
e∈Esat

f ′e ·(p′e−yv) ≤
∑

e∈Esat
fe ·(pe−yv).

• fv: As mentioned above, we know because of condition (b) that fv · (λv − yv) = 0.
The only way that f ′v · (λv − yv) > 0 is if λv − yv > 0, which contradicts condition (b).
Thus, this term equals 0 both before and after v’s deviation.
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Hence the change in node v’s strategy can only result in a drop in utility of node v. Thus
the collective strategy {P, γ} is a Nash equilibrium.

Theorem 1 gives sufficient conditions for a strategy to be a Nash equilibrium. We will
call such strategies uniform, since all the outgoing prices are the same for every node in
such a solution. As we will show below, good uniform Nash equilibria always exist, and can
be efficiently computed.

Definition 1 Uniform Nash equilibrium: Any Nash equilibrium strategy that satisfies the
conditions of Theorem 1 is a uniform Nash equilibrium.

3.1 Computing a Nash Equilibrium As Good as the Optimal Solu-
tion

By an optimal solution to this game, we will mean one in which the sum of the utilities
of all players is maximized. Since the price paid by players to each other cancels out in
the sum, optimal solutions are ones in which

∑
v λvfv is maximized. We will call a flow f∗

socially optimal if
∑

v λvf
∗
v is maximum over all flows that obey capacity constraints and

where f∗v flow originates at node v, with all flow ending at the sink t (it is easy to see that,
without loss of generality, all edges incident on t are saturated). Clearly,

∑
v λvf

∗
v is the

social welfare in an optimal solution, since if all prices are set to 0, and γ is such that f∗ is
the resulting flow, then this results in social welfare of

∑
v λvf

∗
v . We now prove that flow

f∗ can also be achieved by a Nash equilibrium solution, i.e., that the price of stability of
this game is 1.

Theorem 2 Given a socially optimal flow f∗, there exists a collective strategy {P, γ} such
that f(P, γ) = f∗ and {P, γ} is a uniform Nash Equilibrium. In other words, the price of
stability is 1.

Proof. We will prove this theorem by constructing a strategy {P, γ} such that f(P, γ) =
f∗, and then showing that P and f(P, γ) satisfy the conditions of Theorem 1.

We first set the prices P . Let VS be the set of nodes that send their own flow in f∗ (i.e.,
f∗v > 0), and VNS be the set of nodes that do not send their own flow in f∗. Since our goal
is to form prices that satisfy condition (a) of Theorem 1, we will set all prices on outgoing
edges in P to be the same for each node: denote these prices as yv for node v. For every
vertex v ∈ VS , set yv = λv, thus satisfying condition (b) as well. We now need to assign
prices to the vertices of VNS .

Let Gr be the residual graph of f∗, i.e., it contains an edge (v, u) for every edge e = (u, v)
with f∗e > 0 (call these backward edges), and an edge (u, v) for every edge e = (u, v) with
f∗e < ce (call these forward edges). The following lemma is a simple consequence of the fact
that f∗ is socially optimal.

Lemma 2 If u ∈ VS is reachable from v in Gr, then λu ≥ λv.

Proof. To see that λu ≥ λv, consider the path from v to u in Gr. This path is an
augmenting path of the flow f∗. Since u ∈ VS , we know that f∗u > 0. We can thus use a
flow path from u to t together with the augmenting path from v to u in order to augment
the flow f∗ by decreasing the flow f∗u by ε > 0, and increasing the flow f∗v by ε, while still
satisfying all capacity constraints. If λu < λv, this would result in a flow with higher social
welfare than f∗, giving us a contradiction. Thus, λu ≥ λv. This is the only place where we
use the fact that f∗ is a socially optimal flow.
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To assign prices to nodes of VNS , we now proceed to obtain upper and lower bounds on
the yv values of nodes v ∈ VNS .

Lemma 3 In every uniform Nash equilibrium strategy {P ∗, γ∗} with f(P ∗, γ∗) = f∗ and
prices yv, we have that for all u ∈ VS and v ∈ V with u being reachable from v in Gr, it
must be that λu ≥ yv.

Proof. We can show this inductively on the distance from v to u in Gr. Since this is a
uniform Nash equilibrium and u ∈ VS , then by condition (b) we know that λu = yu. Now
consider a node v such that there is an edge (v, w) in Gr with u being reachable from w
in Gr by a path of length at most k. By the inductive hypothesis, λu ≥ yw. If (v, w) is
a forward edge, then by condition (d), we know that yv ≤ yw ≤ λu, as desired. If instead
(w, v) is a backward edge, then by condition (c), we similarly know that yv ≤ yw ≤ λu.

Let Rh
v be the set of nodes u ∈ VS such that u is reachable from v in Gr. Then, using

Lemma 3 we know that hv = minu∈Rh
v
λu is an upper bound for yv in any uniform Nash

equilibrium that results in flow f∗.

Lemma 4 In every uniform Nash equilibrium strategy {P ∗, γ∗} with f(P ∗, γ∗) = f∗ and
prices yv, we have that for all u ∈ VS and v ∈ V with v being reachable from u in Gr, it
must be that λu ≤ yv.

Proof. The proof is the same as the proof of Lemma 3, with conditions (c) and (d)
reversed.

Let Rl
v be the set of nodes u ∈ VS such that v is reachable from u in Gr. Then, using Lemma

4 we know that lv = maxu∈Rl
v
λu is a lower bound for yv in any uniform Nash equilibrium

that results in flow f∗.
We now set the yv values for v ∈ VNS in the following manner: For every vertex v,

yv = hv.
Now that we have fully defined the prices P , we can choose flow generation functions

γv ∈ Γv for all v such that f(P, γ) = f∗. To do this, simply set γv to be such that
γv(f in∗v , ~yv) = fout∗v , where f in∗v and fout∗v are the flows into and out of v in flow f∗, and ~yv
is a vector of prices which equals yv on every edge of Eout

v . To show that this is a valid flow
generation function, we just need to prove that fout∗v ∈ Fv(f in∗v , ~yv), so we check all the
necessary conditions listed in Section 2. Clearly, the capacity and conservation conditions
are satisfied since f∗ satisfies them. All edges have the same outgoing price, so v’s utility
remains the same no matter which edges its flow is forwarded on. Finally, notice that for all
v, we have that yv ≥ λv, since if v ∈ VS then yv = λv, and if v ∈ VNS , then this also holds
due to Lemma 2, which implies that hv ≥ λv. Thus, with these prices it is never strictly
profitable for a node v to send its own flow, and pe = yv can only be strictly greater than
λv when v ∈ VNS , i.e., when f∗v = 0, as desired. Thus, we have fully defined a strategy
{P, γ} such that f(P, γ) = f∗. All that is left to prove is that {P, γ} is a uniform Nash
equilibrium:

Condition (a). We know that condition (a) is satisfied since all edges of Eout
v were given

the same price yv.

Condition (b). Condition (b) is satisfied by the prices generated by our algorithm, since
we set prices of all v ∈ VS to λv, and by Lemma 2, yv = hv ≥ λv for all v ∈ VNS .
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Condition (c). Consider an edge e = (u, v) with f∗e > 0. Then, edge (v, u) is a backward
edge in Gr. If u ∈ VS and v ∈ VNS , then Lemma 3 immediately implies that yu = λu ≥
hv = yv.

Since Gr has an edge (v, u), then all nodes reachable from u in Gr are also reachable
from v. Thus by Lemma 3, if u, v ∈ VNS , then hu ≥ hv, and so yu ≥ yv, as desired.

If u ∈ VNS and v ∈ VS , then let w be the node of VS reachable from u in Gr such that
hu = λw. Since w is reachable from u, then w is also reachable from v in Gr. Therefore, by
Lemma 2, we know that yu = λw ≥ λv = yv.

Finally, if both u and v are in VS , then Lemma 2 immediately implies that yu = λu ≥
λv = yv, as desired. Hence condition (c) is satisfied.

Condition (d). Consider an edge e = (u, v) with f∗e < ce. Then, edge (u, v) is a forward
edge in Gr. If v ∈ VS and u ∈ VNS , then Lemma 3 immediately implies that yu = hu ≤
λv = yv.

Since Gr has an edge (u, v), then all nodes reachable from v in Gr are also reachable
from u. Thus by Lemma 3, if u, v ∈ VNS , then hu ≤ hv, and so yu ≤ yv, as desired.

If v ∈ VNS and u ∈ VS , then let w be the node of VS reachable from v in Gr such that
hv = λw. Since w is reachable from v, then w is also reachable from u in Gr. Therefore, by
Lemma 2, we know that yv = λw ≥ λu = yu.

Finally, if both u and v are in VS , then Lemma 2 immediately implies that yu = λu ≤
λv = yv, as desired. Hence condition (d) is satisfied.

Hence we have shown that a collective strategy {P, γ} can be computed in polynomial
time such that it is a uniform Nash equilibrium and f(P, γ) = f∗.

4 Reasonable Assumptions and Price of Anarchy

Consider a game where all players with non-zero λv value are not neighbors of the sink.
Now consider a strategy for this game where every vertex charges a very high price (say
bigger than the highest λv value). Given this pricing strategy, no vertex will send its own
flow and still every vertex will have no incentive to deviate, i.e., the strategy will be in Nash
equilibrium. This is because no vertex would unilaterally reduce the prices of its incoming
edges, given that they will have to pay a large amount to forward any flow sent to them.
Nodes that have edges incident to the sink will not change their prices as there is no hope of
obtaining any flow and hence, any profit. In this Nash equilibrium strategy the total utility
of players is 0 and hence the price of anarchy is unbounded. These “bad equilibria” cannot
be eliminated even after introducing pairwise deviations.

In order to eliminate such unrealistic solutions from consideration, work dealing with
similar scenarios made some reasonable assumptions about player behavior. For example,
[15] assumes that if a player does not receive any flow on its incoming edge, then she
never charge an unnecessarily large price for this edge. In this section, we make the same
assumption on the players’ pricing strategy:

Property 1 If a vertex v does not receive any flow on edge (u, v), then it sets p(u,v) to be
the price of the cheapest unsaturated outgoing edge of v, if one exists.

We call pricing strategies that satisfy this property reasonable. This property simply says
that given an edge (u, v) that has no flow on it, node v will charge the minimum price such
that potential flow on this edge will not result in loss of utility for v. Below we show that,
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at least for single-source games (i.e., games where only one node has a non-zero λ value),
this additional assumption on player behavior causes all equilibria to become as good as the
optimum solution.

Theorem 3 For a single source game where players form reasonable pricing strategies, the
price of anarchy is 1.

Proof. Let the source node be s. Any node that is not reachable from s can never receive
a flow and hence the strategy of such a node will not have consequence on the outcome of
the game. Hence we assume w.l.o.g. that no such node exists. Note that if there exists an
edge from the source to sink then it will always be saturated. Hence we also assume w.l.o.g.
that no such edge exists.

Due to the non-monopolistic property of the network, the capacity of the minimum cut,
and hence the size of the largest s− t flow, will be the sum of the capacities of the outgoing
edges of s. So in the socially optimal solution, all outgoing edges of s are saturated.

In order to prove the theorem we make use of the following notation. Let Ns be the set
of neighboring vertices of the source s. If ce is the capacity of the edge e then the size of
the socially optimal flow is

∑
v∈Ns

c(s,v). Let Nt be the set of nodes adjacent to the sink t.

Lemma 5 In any Nash equilibrium for a single source game where players form reasonable
pricing strategies, for all (u, v) ∈ E such that u 6= s, p(u,v) = 0.

Proof. We prove this lemma by induction. Consider a topological sort order of the net-
work, with the first element in the order being node s followed by the nodes belonging to
Ns. The last element will be the sink node t whereas the penultimate element will be a
node v such that v ∈ Nt. According to the topological ordering, all outgoing edges of v
will be incident to t and hence all outgoing edges of v will have price pe = 0 in any Nash
equilibrium strategy, say {P, γ}. Let this be the base case for induction.

Now consider an arbitrary node vi in the ordering s, v1, v2, . . . , vk, t. We assume that
the prices of all outgoing edges of vi+1, vi+2, . . . , vk in {P, γ} are 0. Suppose to the contrary
that in strategy {P, γ}, the price of edge (vi, vj), where (i < j ≤ k), is non-zero, and assume
wlog that (vi, vj) is such an edge with largest price. Then consider the following two cases:

Case 1. Under strategy {P, γ}, there does not exist any flow on the edge (vi, vj). In this case,
Property 1 tells us that node vj would set the price of (vi, vj) to 0. This contradicts
our assumption that (vi, vj) has non-zero price.

Case 2. Under strategy {P, γ}, there does exist a non-zero flow on edge e = (vi, vj). This
implies that node vi is not sending its own flow, by the last property of the flow
generation function (i.e., it would be unprofitable for vi to send its own flow since
its λ value equals 0, and it sends positive flow on edge e with price greater than 0).
From the non-monopolistic property of the network, and since vi is not sending its
own flow, we know that there exists another node vj′ such that the edge e′ = (vi, vj′)
is not saturated. Also from the inductive hypothesis we know that the price of all
outgoing edges of vj′ is 0. Let f = f(P, γ).

In this case, consider a deviation by node vj′ in which it changes the price on edge e′

to pe − ε while keeping the rest of its strategy the same, where pe > 0 is the price of
edge e, and

ε <
pe min{fe, ce′ − fe′}

ce′
.
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Call this new collective strategy {P ′, γ}. We claim that the utility of vj′ strictly
increases after this deviation. Consider the flow generation of f(P ′, γ). All outgoing
prices and incoming flow vectors are the same as in {P, γ} until node vi, so the incoming
flow into node vi is the same in both f(P, γ) and f(P ′, γ).

First consider the change in flow on e′. By setting its price to be smaller than pe,
vj′ has guaranteed that it receives at least min{fe, ce′ − fe′} extra flow on edge e′,
since flow is sent on edges with smallest price first. Thus the utility of vj′ due to edge
e′ changes from at most pe · fe′ (we assumed that pe is the largest price of all edges
leaving vi), to at least (pe − ε)(fe′ + min{fe, ce′ − fe′}). The utility due to this edge
strictly increases, since ε(fe′ + min{fe, ce′ − fe′}) ≤ εce′ < pe min{fe, ce′ − fe′}.
Now consider the utility of vj′ due to other incoming edges. All edges from nodes
earlier than vi in the topological ordering are sending the same amount of flow to
vj′ as before the deviation. All edges from nodes after vi in the topological ordering
have price 0, and so flow on them does not change the utility of node vj′ . Combined
with the fact that all outgoing edges from node vj′ have price 0, we know that the
utility of vj′ strictly increases after the deviation. This contradicts our assumption
that strategy {P, γ} is a Nash equilibrium.

Hence by induction we have shown that there does not exist any Nash equilibrium strategy
where p(u,v) > 0 for any u 6= s. This proves the lemma.

Using the result of Lemma 5, we will now show that in any Nash equilibrium strategy,
the outgoing edges of s will be saturated. This will imply that every Nash equilibrium is
socially optimum, since for a single source s, the social welfare of a solution with flow f is
simply λs · fs.

Suppose to the contrary that in some Nash equilibrium strategy, the edge (s, v) is not
saturated. In this case node v can price edge (s, v) just below λs so that (s, v) is saturated
by the flow algorithm. This will always be a beneficial deviation for v since Lemma 5 tells
us that the price on all outgoing edges of v is 0. This is clearly a contradiction and hence
no such edge exists.

The above proof implies that prices at Nash equilibrium are unique. It also fairly easy
to see that a strategy (P, γ) where all neighbors v of s price the edges (s, v) at λs is a
Nash equilibrium satisfying Property 1, and it results in the socially optimum flow given
the appropriate choice of functions γ.

5 Non-linear Utility and Price Functions

In previous sections we analyzed the case where the utility of sending one unit of own flow
(will also be referred to as ‘per packet’) was constant for the player. We will now study
the case where the utility is a concave function of the amount of flow sent. This mirrors
the fact that sending more flow usually has diminishing returns for the player. We denote
this utility function as Λv(fv) where fv is the total amount of own flow sent by node v
and Λv is continuously differentiable, concave, and non-decreasing. Additionally, denote the
derivative of Λv by λv: in the old model this was a constant, but now it is a non-increasing
function.

Similarly when players receive flow on an incoming edge, the processing cost for each
unit of flow generally increases with the total amount of flow. Hence we look at the case
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where the price charged by each player for incoming flow is a convex function. We denote
this by Πe(fe) where fe is the flow on edge e and Πe is a continuously differentiable convex
non-decreasing function. Let πe be the derivative of Πe: in the old model this was called pe
and was a constant; now it is a non-decreasing function.

This more general model is formally defined as follows. Note that our assumptions of
the graph being acyclic and non-monopolistic still hold.

Strategy: Once the price functions Πe for every outgoing edge Eout
v and quantity of

incoming flow f inv are set, player v is assumed to forward the flow and send its own flow
in order to maximize its utility. In the earlier model where price per packet πe was always
constant, a node would start with sending flow on an edge with the cheapest price per packet
and saturate it before moving on to other edges. In this model however, the price per packet
on an edge may increase with the amount of flow present on the edge. Hence, if we ignore
capacities, a node will always send flow on outgoing edges such that πe(fe) is equal on all
outgoing edges that have flow on them. It is easy to show that such a choice will minimize
the node’s cost.

Similarly, a node will only send its own flow if the utility of sending a packet is at least
as much as the cost of sending it, otherwise sending own flow would result in lowering the
player’s utility. Hence a player would send its own flow until the utility of the marginal
packet λv(fv) is equal to its price.

To state the above observations formally, consider a node v that has incoming edges Ein
v

and outgoing edges Eout
u . Given the set of price functions Πout

v and incoming flows f inv , we
define the set of valid resulting flows foutv to be Fv(f inv ,Πout

v ), which are all flows satisfying
the following conditions:

1. ∀e ∈ Eout
v : fe ≤ ce and

∑
e∈Ein

v
fe + fv =

∑
e∈Eout

v
fe

2. ∀e ∈ Eout
v , if fe > 0 then ∀e′ ∈ Eout

v \e : πe(fe) ≤ πe′(fe′) or fe′ = ce′

3. ∀e ∈ Eout
v : πe(fe) < λv(fv) implies that e is saturated, and

if fv > 0 then ∀e ∈ Eout
v , fe > 0 : πe(fe) ≤ λv(fv)

The first condition just says that the generated flow should obey flow conservation and
edge capacities. The second condition says that flow is first sent to the edges with smallest
marginal price. Finally, the third condition says that traffic is sent by node v if the marginal
utility of sending a packet is less than the cost of sending it, and is not sent by v if the
marginal utility of sending a packet is more than the cost of sending it. It is easy to show
(through first order conditions for maximizing utility) that satisfying the above conditions
maximizes utility for players. Note that these subsume the conditions in Section 2, replacing
pe with πe(fe) and λv with λv(fv): hence this model is a strict generalization.

As in the previous model, each of these valid flows correspond to a tie-breaking rule
selected by player v. We associate these tie-breaking rules with a flow generation function
γv, which, given the incoming flows and outgoing prices, produces an outgoing flow. The
set of these flow generation functions is denoted by Γv, defined in exactly the same manner
as in Section 2. Hence the strategy of a player v is given by the tuple {Πin

v , γv}. We denote
the collective strategy of all players by {Π, γ}.

Outcome and Utility: Also like the previous model, the flow outcome can be easily
determined if the nodes are considered in the topological sort order and is denoted by f(Π, γ).
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Given the resulting flow f(Π, γ), utility of player v is given by the following expression:

utilityv(Π, γ) =
∑

e∈Ein
v

Πe(fe)−
∑

e∈Eout
v

Πe(fe) + Λv(fv)

5.1 Non-Linear Prices

In this section we assume that utility functions Λv are linear, and show that all our results
for linear price functions also hold for arbitrary convex price functions, thus showing that
allowing players to set non-linear prices does not make the system any worse. To do this,
we prove analogues of Theorems 1 and 3. By proving that the conditions from Theorem
1 imply that a solution is a Nash equilibrium, even when changing your strategy to an
arbitrary price function is allowed, we immediately get the consequence that the price of
stability is 1, since we already showed how to create an optimal solution satisfying these
conditions in Theorem 2.

Theorem 4 For instances with linear utility functions and non-decreasing, convex price
functions: if flow f(Π, γ) and pricing strategy Π satisfy the following conditions, then strat-
egy {Π, γ} is a Nash equilibrium:

(a) For every node u, the price function on all edges of Eout
u , except edge (u, t) if it exists,

is identical and linear, i.e., π(u,v)(x) = pe for all x and constant pe. Let the constant
price per packet pe be denoted by yu.

(b) If fu > 0 then yu = λu; if fu = 0 then yu ≥ λu.

(c) For ∀v 6= t, if edge (u, v) has a positive flow on it, then yu ≥ yv.

(d) For ∀v 6= t, if edge e = (u, v) is unsaturated (fe < ce), then yu ≤ yv.

Proof. Let {Π, γ} satisfy the conditions of Theorem 4, and suppose to the contrary that
for some player v, there exists a strictly improving unilateral deviation from {Π, γ}, where
v changes its strategy from (Πin

v , γv) to (Πin′

v , γ′v). Denote by {Π′, γ′} the collective player
strategy after v’s deviation, and let f = f(Π, γ), f ′ = f(Π′, γ′).

For any edge e = (u, v) ∈ Ein
v which has constant price per packet pe before deviation,

let Π′e be the price function after deviation. We define the following terms:

• Let f le be the flow of f ′e that “costs at most pe”. Formally, let L = {x|π′e(x) ≤ pe} be
the set of flow amounts that cost less than pe per packet, and let L be the supremum
of L. Then, f le = min(L, f ′e).

• Let fhe = max(0, f ′e − f le) be the rest of the flow of f ′e.

Note that f le+fhe = f ′e. Since for all e, all functions πe(x) = pe are constant by condition
(a), then just as in the proof of Theorem 1, the utility of node v in strategy {Π, γ} can be
stated as follows:

utilityv(Π, γ) =
∑

e∈Ein
v

fe · (pe − yv) + fv · (λv − yv) + c(v,t) · yv (2)

Notice that each term fe(pe − yv) is nonnegative due to condition (c), and the term
fv(λv − yv) equals zero due to condition (b).
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Similarly, the utility of v in strategy {Π′, γ′} is the same as in Equation 2 except for the
fact that the edge prices can now be arbitrary non-decreasing convex functions. It can be
stated as follows:

utilityv(Π′, γ′) =
∑

e∈Ein
v

[Π′e(f
′
e)− f ′e · yv] + f ′v · (λv − yv) + c(v,t) · yv (3)

Note that, since we assumed that every edge (v, t) is saturated (since node v can always
forward or send its own flow to fill up edge (v, t) to capacity without decreasing its utility),
then the term c(v,t) · yv is present both before before and after the deviation.

We now analyze the effect of price function changes from Πe(x) = pe · x to Π′e(·) on the
sum in Equations 2 and 3 for each edge in Ein

v . For any edge e ∈ Ein
v , the first two terms

of Equation 3 can be represented as follows:

Π′e(f
′
e)− f ′e · yv =

∫ f l
e

0

π′e(x)dx− f le · yv +

∫ f ′
e

f l
e

π′e(x)dx− fhe · yv (4)

We first claim that for ∀e ∈ Ein
v , f

h
e = 0. Suppose to the contrary that there exists

an edge e = (u, v) ∈ Ein
v such that fhe > 0. Condition (b) of Theorem 4 says that λu ≤

pe < π′e(f
′
e). Then from condition (3) of definition of flow generating function we know

that node u does not send its own flow in f ′, i.e., node u only forwards incoming flow in
f ′. Since f ′u = 0, the non-monopolistic property for edge e requires that either f ′e = 0 or
∃e′ ∈ Eout

u \e such that e′ is not saturated in f ′. Also, condition (a) of the theorem says that
∀e′ ∈ Eout

u \e, π′e′ = pe. Now, since we have assumed fhe > 0, it has to be that ∃e′ ∈ Eout
u \e

such that π′e′(f
′
e′) = pe < π′e(f

′
e) where edge e′ is not saturated. But this violates condition

(2) of definition of the flow generating function.

Hence fhe = 0 and the term
∫ f ′

e

f l
e
π′e(x)dx− fhe · yv = 0.

In order to analyze the term
∫ f l

e

0
π′e(x)dx− f le · yv, we look at two cases.

• e is saturated in fe: In this case f le ≤ fe = ce. Also, π′e(x) ≤ pe for 0 ≤ x ≤ f le
(by definition of f le). Combined with the fact that fe · (pe − yv) ≥ 0, it implies that∫ f l

e

0
π′e(x)dx− f le · yv ≤ f le(pe − yv) ≤ fe · (pe − yv).

• e is unsaturated in fe: In this case condition (d) of the theorem says that π′e(x) ≤
pe ≤ yv for 0 ≤ x ≤ f le. Since the term fe(pe − yv) is nonnegative, this implies that

0 = fe(pe − yv) ≥
∫ f l

e

0
π′e(x)dx− f le · yv.

Hence for every edge e ∈ Ein
v , fe · (pe − yv) ≥ Π′e(f

′
e)− f ′e · yv.

Also we know because of condition (b) that fv · (λv − yv) = 0. The only way that
f ′v · (λv − yv) > 0 is if λv − yv > 0, which contradicts condition (b). Thus, this term equals
0 both before and after v’s deviation.

Hence the change in node v’s strategy can only result in a drop in utility of node v. Thus
the collective strategy {Π, γ} is a Nash equilibrium.

In section 4 we showed that when prices have to be linear, the price of anarchy is 1
for networks with a single source under the mild assumption that players do not set large
prices without a good reason (Property 1). In this section, we show that the same result
holds if prices are allowed to be convex non-decreasing functions. Note that utilities are still
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linear. Since edge prices are allowed to be functions, we call pricing strategies that satisfy
the following property as reasonable:

Property 2 If a vertex v does not receive any flow on edge (u, v), then it sets Π(u,v)(x) =
p(u,v)x where p(u,v) is the cheapest marginal price of all unsaturated outgoing edges of v, if
one exists.

We now prove the theorem.

Theorem 5 If node utilities are linear and edge prices are allowed to be convex non-
decreasing functions then, for a single source game where players form reasonable pricing
strategies, the price of anarchy is 1.

Proof. Let the source node be s. Any node that is not reachable from s can never receive
a flow and hence the strategy of such a node will not have consequence on the outcome of
the game. Hence we assume w.l.o.g. that no such node exists. Note that if there exists an
edge from the source to sink then it will always be saturated. Hence we also assume w.l.o.g.
that no such edge exists.

Due to the non-monopolistic property of the network, the capacity of the minimum cut,
and hence the size of the largest s− t flow, will be the sum of the capacities of the outgoing
edges of s. So in the socially optimal solution, all outgoing edges of s are saturated.

In order to prove the theorem we make use of the following notation. Let Ns be the set
of neighboring vertices of the source s. If ce is the capacity of the edge e then size of the
socially optimal solution will be given by

∑
v∈Ns

c(s,v). Let Nt be the set of nodes adjacent
to the sink t.

Lemma 6 If node utilities are linear and edge prices are allowed to be convex non-decreasing
functions then, in any Nash equilibrium for a single source game where players form rea-
sonable pricing strategies, for all (u, v) ∈ E such that u 6= s, Π(u,v) = 0.

Proof. We prove this lemma by induction. Consider a topological sort order of the net-
work, with the first element in the order being node s followed by the nodes belonging to
Ns. The last element will be the sink node t whereas the penultimate element will be a
node v such that v ∈ Nt. According to the topological ordering, all outgoing edges of v
will be incident to t and hence all outgoing edges of v will have price Πe = 0 in any Nash
equilibrium strategy, say {Π, γ}. Let this be the base case for induction.

Now consider an arbitrary node vi in the topological ordering s, v1, v2, . . . , vk, t. We
assume that the prices of all outgoing edges of vi+1, vi+2, . . . , vk in {Π, γ} are 0. We will
first show that all outgoing edges of vi satisfy the following property:

Property 3 If fe is the flow on edge e then Πe(x) = pex for 0 ≤ x ≤ fe for some constant
pe ≥ 0.

Suppose to the contrary that in strategy {Π, γ}, the price of edge (vi, vj), where (i < j ≤ k),
does not satisfy Property 3. Let edge (vi, vj) have a concave non-decreasing price function
Πe(x), and a flow of size fe (possibly zero).

Then consider the following two cases:

Case 1. Under strategy {Π, γ}, there does not exist any flow on the edge (vi, vj), i.e., fe = 0.
In this case, Property 2 tells us that node vj would set the price of (vi, vj) to 0. This
contradicts our assumption that (vi, vj) does not satisfy Property 3.
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Case 2. Under strategy {Π, γ}, there does exist a non-zero flow on edge e = (vi, vj), i.e., fe > 0.
Now consider a deviation to a new price function for edge e: Π′e(x) = p′ex for 0 ≤ x ≤ fe
and Π′e(x) = Πe(x) for x > fe such that p′e < πe(fe) and fe · p′e >

∫ fe
0
πe(x)dx. Note

that such a constant p′e exists since πe(x) is a monotonic non-decreasing function and
πe(x) < πe(fe) for some x ≤ fe.
Call this new collective strategy {Π′, γ}. We claim that the utility of vj strictly
increases after this deviation. Consider the flow generation of f(Π′, γ). All outgoing
prices and incoming flow vectors are the same as in {Π, γ} until node vi, so the
incoming flow into node vi is the same in both f(Π, γ) and f(Π′, γ).

First consider the change in the flow on e. We know that node vi is only forwarding flow
and not sending any of its own (since it is sending flow on an edge with non-zero price).
Also, since edge e received a flow of size fe in f(Π, γ), condition (2.) of definition of
flow generating function says that for all e′ ∈ Eout

vi \e, either πe′(fe′) ≥ πe(fe) > p′e or
e′ was saturated. Hence e would receive a flow of size at least fe in f(Π′, γ). For node

vj , the utility due to this edge strictly increases, since fe · p′e >
∫ fe
0
πe(x)dx.

Now consider the utility of vj due to other incoming edges. All edges from nodes
earlier than vi in the topological ordering are sending the same amount of flow to
vj is before the deviation. All edges from nodes after vi in the topological ordering
have outgoing price 0, and so flow on them does not change the utility of node vj .
Combined with the fact that all outgoing edges from node vj have price 0 and that vj
is not sending its own flow, we know that the utility of vj strictly increases after the
deviation. This contradicts our assumption the strategy {Π, γ} is a Nash equilibrium.
Therefore in every Nash equilibrium strategy, (vi, vj) must satisfy Property 3.

Hence all outgoing edges of vi will satisfy Property 3. We will use this observation to
show that all outgoing edges of vi in fact have price functions Πe = 0.

Suppose to the contrary that in strategy {Π, γ}, the price of edge (vi, vj), where (i <
j ≤ k), is non-zero. We have already shown that this edge will satisfy Property 3. Assume
w.l.o.g. that (vi, vj) is such an edge with the largest pe as defined by Property 3. The
argument that this is not possible is essentially the same as in Lemma 5. Hence by induction
we have shown that there does not exist any Nash equilibrium strategy where Π(u,v) 6= 0
for any u 6= s. This proves the lemma.

Using the result of Lemma 6, we will now show that in any Nash equilibrium strategy,
the outgoing edges of s will be saturated. This will imply that every Nash equilibrium is
socially optimum, since for a single source s, the social welfare of a solution with flow f is
simply λs · fs.

Suppose to the contrary that in some Nash equilibrium strategy, the edge (s, v) is not
saturated. In this case node v can price edge (s, v) just below λs so that (s, v) is saturated
by the flow algorithm. This will always be a beneficial deviation for v since Lemma 6 tells
us that the price on all outgoing edges of v is 0. This is clearly a contradiction and hence
no such edge exists.

5.2 Non-linear Utilities Can Cause Non-Existence of Equilibrium

In this section we show that, if utility functions Λv can be non-linear, then there may not
exist a pure Nash equilibrium.
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Theorem 6 If the player utilities Λv are concave non-decreasing functions, then pure Nash
equilibrium may not exist.

Proof. Consider the example in Figure 2.

b

a

c t
1

1

1

1

Figure 2: Λc(f) = −9f2 + 37f for f ≤ 2. Λa = Λb = 0. All edges have capacity 1.

Lemma 7 For any Nash equilibrium strategy for example in Figure 2, there exists another
equilibrium strategy where the price functions for edges (c, a) and (c, b) are linear.

Proof. Note that in all Nash Equilibrium solutions, there will always be some flow on edge
(c, a). If there is no flow on edge (c, a) then node a’s utility if 0, whereas by lowering the
price Π(c,a) sufficiently, a can ensure that it receives some flow on the edge, which provides
positive utility. The same argument symmetrically holds for edge (c, b).

We first show that in Nash equilibrium strategy {Π, γ} for this example, all edges must
satisfy Property 3.

If this is not the case then let {Π, γ} be a Nash equilibrium strategy where we assume
wlog that edge (c, a) has a concave non-decreasing price function Πe(x), and a positive flow
of size fe and (c, a) does not satisfy Property 3. The utility of node a can be stated as :

utilitya = Πe(fe) =

∫ fe

0

πe(x)dx (5)

Now consider a deviation to a new price function for edge (c, a): Π′e(x) = p′ex for

0 ≤ x ≤ fe and Π′e(x) = Πe(x) for x > fe such that p′e < πe(fe) and fe · p′e >
∫ fe
0
πe(x)dx.

Note that such a constant p′e exists since πe(x) is a monotonic non-decreasing function and
πe(x) < πe(fe) for some x ≤ fe (since (c, a) does not satisfy Property 3).

Note that in {Π′, γ}, the price function of edge (c, b) is the same whereas the marginal
price for edge (c, a) has decreased. By condition (3.) of definition of the flow generating
function we know that:

λc(fc) ≥ πe(fe) > p′e (6)

This means that node c would send a flow of size at least fc after deviation. If edge (c, b)
was saturated in the flow f(Π, γ) then edge (c, a) would receive a flow a size at least fe after
deviation. If (c, b) was not saturated in flow f(Π, γ) then from condition (2.) of definition
of flow generating function we know that π(c,b)(f(c,b)) ≥ πe(fe) > p′e. Therefore, in this case
too, edge (c, a) would receive a flow a size at least fe after deviation.
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And since fe · p′e >
∫ fe
0
πe(x)dx, utility of node a as given by Equation 5, will increase.

This contradicts the assumption that strategy {Π, γ} was in Nash equilibrium. Therefore
in all Nash equilibrium pricing strategies, edges will satisfy Property 3.

Now consider a new pricing strategy Π̄ constructed from a Nash equilibrium strategy
{Π, γ} as follows: for every edge e with flow fe on it and πe(fe) = pe let Π̄e(f) = f · pe for
f > 0. We have already shown that in f(Π, γ), ∀e ∈ E: for 0 < f ≤ fe, Πe(f) = f · pe.

Note that the only difference between the pricing strategies Π and Π̄ is that ∀e ∈ E,
πe(f) ≥ pe for f > fe where as π̄e(f) = pe for f > fe. Therefore there exists a tie-breaking
strategy γ̄ such that f(Π̄, γ̄) = f(Π, γ). Since the utility of players a and b depend only on
the flow received from node c, their utility is identical in both strategies.

Now, if there exists a profitable deviation for say node a in strategy {Π̄, γ̄} then the
same deviation will be profitable in strategy {Π, γ}. For example since the utility of node
a depends only on flow from node c, it could reduce price of edge (c, a) to obtain more
flow. But this deviation would also be valid in {Π, γ}. Since we assumed {Π, γ} to be a
Nash equilibrium strategy, no such deviation exists. Hence {Π̄, γ̄} is also a Nash equilibrium
strategy, thus proving statement of the Lemma.

Since we have shown in Lemma 7 that for every Nash equilibrium strategy, there exists
one with linear prices, we need only show that such Nash equilibria do not exist.

Suppose such an equilibrium exists for this example: let pa be the price per packet of
edge (c, a), and pb be the price per packet of edge (c, b) in this equilibrium: the prices of the
other two edges must be 0 since they are edges to the sink.

Note that in all Nash Equilibrium solutions, there will always be some flow on edge
(c, a). If there is no flow on edge (c, a) then node a’s utility if 0, whereas by lowering the
price p(c,a) sufficiently, a can ensure that it receives some flow on the edge, which provides
positive utility. The same argument symmetrically holds for edge (c, b).

Lemma 8 In any Nash equilibrium strategy for the example in Figure 2, edges (c, a) and
(c, b) will have the same price.

Proof. Suppose to the contrary that pa > pb. Then, by increasing its price by ε < pa−pb,
node b will still receive the same amount of flow on edge (c, b) according to the flow generating
algorithm, since (c, a) has positive flow on it at price pa, and so (c, b) will be saturated at
both price pb and pb + ε. This deviation increases the utility of node b, and thus this cannot
be a Nash equilibrium.

Lemma 9 In any Nash equilibrium strategy for the example in Figure 2, edges (c, a) and
(c, b) will be saturated.

Proof. By Lemma 8 we know that in any Nash equilibrium, pa = pb. Now consider a Nash
equilibrium strategy with resulting flow f , where edge (c, a) is not saturated. We know that
f(c,a) > 0 and f(c,b) > 0. Consider a deviation by node a where it sets its incoming price
to pa − ε for ε < pa min{1 − f(c,a), f(c,b)}. Now edge (c, a) becomes the preferred edge
and hence receives more flow (flow that was being routed to (c, b)). Specifically, edge (c, a)
must now receive at least min{1− f(c,a), f(c,b)} more flow, and thus node a now receives at
least (pa − ε) min{1, f(c,a) + f(c,b)} utility. This is strictly larger than the utility a received
before the deviation, since paf(c,a) + εmin{1, f(c,a) + f(c,b)} < pa min{1, f(c,a) + f(c,b)}. This
contradicts our assumption that the strategy is in Nash equilibrium, and the same argument
symmetrically holds for node b.
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Now consider the flow amount fc sent by node c in a Nash equilibrium in Example 2.
We know that if p = pa = pb is the price per packet set on both edges out of c, then node
c will send a flow of size at most fc such that λc(fc) = p (since any more flow would be
unprofitable). Hence, we can define the inverse function such that λ−1c (p) = fc. Specifically,
here Λc(f) = −9f2 + 37f and hence λc(f) = −18f + 37 and λ−1c (p) = (37− p)/18. Lemma
9 says that in any Nash equilibrium both edges (c, a) and (c, b) have to be saturated. For
that be true, node c has to send 2 units of its own flow. This means that the price per
packet on the outgoing edges of c cannot be more than 1, and thus the utility of node a in
any Nash equilibrium can be no more than 1.

Now consider a deviation where node a increases its incoming price pa to 10. In this
situation, a will still receive a flow of size λ−1c (10)−1 = 0.5 giving it a utility of 10∗0.5 = 5.
This means that for all strategies that satisfy the conditions laid down by Lemma 9, there
exists an improving deviation for player a. Hence there does not exist any Nash equilibrium
solution for this example.

Discrete Prices The non-existence of Nash equilibrium in the previous example relied
heavily on the fact that the prices could be changed by an infinitesimal amount. We now
show that even if the prices were to be discrete, the existence of Nash equilibrium is not
guaranteed. Let us assume that players are allowed to pick discrete prices and say the
smallest unit is δ (e.g., we can say that players can pick integer prices, and thus δ = 1).

Using this Lemma we show that for the example in Figure 2, there does not exist a Nash
equilibrium strategy.

Theorem 7 If utility functions are non-linear then there exists an instance that does not
have a pure Nash equilibrium strategy, even with discrete price structures.

Proof. Consider the example in Figure 2 and let δ be the smallest unit of discrete price
that players allowed to pick. For this proof, we will assume that δ is much smaller than
1: we can handle the general case with simple re-scaling of the function Λc and the edge
capacities. Let e = (c, a) and e′ = (c, b). We can still assume that prices are linear, so let
pe be the price per packer on edge e, and pe′ be the price per packet on edge e′. We first
prove the following lemma.

Lemma 10 If fe > 0 and fe′ > 0 in a Nash equilibrium solution, then |pe − pe′ | ≤ δ.

Proof. Suppose to the contrary that pe < pe′ − δ. According to the flow generating
algorithm, e will be saturated since a higher-priced edge, e′, has flow on it. Now by increasing
the price of edge e by δ, node j can receive the same amount of flow but at a higher price thus
making it an profitable deviation. This is a contradiction since the strategy was supposed
to be in Nash equilibrium.

We first claim that there does not exist a Nash equilibrium strategy in which node c
emits a flow of size less than or equal to 1. In order to prove this claim, suppose to the
contrary that ≤ 1 flow is being emitted. Then, without loss of generality, let edge (c, a) be
the edge that receives less flow (can be equal) out of the two. This implies that pe ≥ pe′ .
Recall that the function λ−1c (p) = (37 − p)/18 gives the total amount of flow emitted by c
when the price of both of its outgoing edges is p. The flow on edge e is at most λ−1c (pe)/2
when pe = pe′ . When pe = pe′ + δ instead, then it is still true that the flow on edge e is
at most λ−1c (pe)/2. To see this, notice that this is trivially true if λ−1c (pe) ≥ 2, since the
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capacity of edge e is 1. Otherwise, the flow on edge e is at most λ−1c (pe)− 1 < λ−1c (pe)/2,
since we can assume that λ−1c (pe) < 2. Thus we can give an upper bound on the utility of
node a as follows:

utilitya ≤
peλ
−1
c (pe)

2
=
pe · (37− pe)

2 · 18

Given this upper bound for utility of a, it can be shown through simple differentiation
that the maximum occurs at pe = 18.5. Note that since we are assuming that fc ≤ 1, then

pe ≥ 19. Therefore, utilitya ≤ 19·(37−19)
2·18 = 9.5. But in this case node a can improve its

utility by reducing the price of edge (c, a) to 18 and thereby getting completely saturated
and obtaining a utility of 18. This is clearly a contradiction since we assumed the strategy
to be in Nash equilibrium.

This means that if there exists an equilibrium, then fc > 1, and thus price pe < 19.
Consider such an equilibrium strategy. From Lemma 10 we know that the price of the two
edges (c, a) and (c, b) can differ by at most δ. Let us suppose first that the prices are the
same.

Now, if the amount of flow on edge (c, a) is fa then the utility of node a is fape. If a
deviates by reducing its price by δ, then it will be saturated (since pe < 19, and thus c sends
at least 1 unit of flow). Since we are assuming that the current strategy is Nash equilibrium,
this deviation should not be profitable. Hence:

fape ≥ pe − δ

The same holds for node b:
fbpe ≥ pe − δ

Adding the two inequalities gives the following:

pe(fa + fb) ≥ 2(pe − δ)
=⇒ peλ

−1
c (pe) ≥ 2pe − 2δ

=⇒ pe
(37− pe)

18
≥ 2pe − 2δ

=⇒ p2e − pe − 36δ ≤ 0

=⇒ pe ≤
1 +
√

1 + 144δ

2

Let us assume that δ is sufficiently small so that pe ≤ 3. At this price, even if node a
receives all the flow it can, its utility will be at most 3. But this means that it can profitably
deviate by increasing its price to 10, giving it a flow of size 0.5 and thus utility 5.

This contradicts the assumption that the strategy is in Nash equilibrium. A similar
analysis works if we assume that the price of edges (c, a) and (c, b) differ by δ.
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