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Abstract—We develop an algorithmic framework for an evolution is at most as strong as its weakest.link
studying the evolution of communities in social networks. \We use this thesis to develop a low order, polynomial
We begin with the theoretical foundation, from which we time, dynamic programming algorithm for identifyirad

conclude that an evolution is at most as strong as its weakest uti . twork based h tructi f
link. This allows us to formulate an efficient algorithm evolutions In a network based on the construction of a

to identify all evolutionary sequences in a dynamic so- Multi-partite evolution graph Given a community, we
cial network. We use this algorithm to empirically study can identify its entire evolution treeg., the set of valid
community evolution in several large social networks, to eyolutions for the community.

identify those features of the early stages of a community il Empirical luati Wi | -k
that indicate whether a community is going to be short- (i) Empirical evaluation. We use several well-known

lived or not. Our results show that it is possible to correlate @lgorithms for community detection to analyze four large
the lifespan of a community tostructural parameters of its  social networks: DBLP (a social network of collabora-
early evolution; these conclusions are robust across all the tions among CS researchers); IMDB (a social network
social networks we have investigated. of collaborations among actors); BLOGS (a discussion
social network from the LiveJournal blogosphere); WIKI
o ~ (a social-semantic collective wisdom network).

_ Larg_e data rep05|t0r|es_ have_ opened new p035|b|llt|es(iii) A framework for prediction. Using our detected
in social network analysis. It is necessary to develog,mnity evolutions, we focus on the lifespan of the

efficient and accurate algorithms that can bring importap ., munities as one interesting variable to predict. In

features of a network to the forefront. Communities arﬁarticular, we ask what properties of the early evolution

fundamental units of every social network; their structurgs 5 community are indicative of the ultimate lifespan

and evolution are essential to understanding the structye;,o community. We identify that theizeandintensity

and functionality of large networks. of a community are among the two most predictive

To study gqmmunity evolution, one must first detechoperties. Our results are performed within a leave-
the communities; detecting communities should be basgfe_qut cross validation framework to ensure that over-

on a definition of what groups of users qualify t0 bgiting of the data is minimized, and hence the results
called a community. Detecting all the communities in g, statistically reliable.

large social network remains unsolved, due to challenges ] -
ranging from the computational burden (some formuld2rior Wor.k. Evolution of communities ha§ recently. be-
tions require the solution of NP-hard optimization prob€0me active. [4, 18] formulate a community as a hidden
lems [15]) to the conceptual definition of communities (¥ariable, and the communications (or interactions) be-
definition of a social community should emphasize thd/€€n agents as observed. [3, 11] formulate community
communities are locally defined and can overlap [2, 8f€tection as an optimization of a weighted sum of cost
which may yield an excessive number of communities\Nctions measuring the evolutionary continuity and the
Many algorithms have been proposed that attempt §@Mmunity quality. [14] uses Laplacian dynamics to
discover communities, for example [2, 6, 7, 9, 15, 17]:_1uant|fy ppmmunlty cohesiveness. [10] defines ‘fnatural”'
We empirically study the effect of several such a|gogommun|t|es as groups of nodes Wh_ose (_:ohesweness is
rithms on our understanding of community evolutionlargely unaffected by small permutations in a network.
Our contributions are: An (exponential) algorithmic formulation was given
(i) A foundational framework for studying commu-in [19], which proposes that a community evolution
nity evolution, assumingthat all communities at given can be constructed by defining a community over time.
instances of time have been provided by some algorith@ identify and characterize community evolutions, [1]
We propose three basic axioms for the definition of atilizes a set of behavioral evolution events.
evolution which imply the consecutive link approach to Our work is algorithmic in nature, based on an ax-
detecting evolutions; in particular, the axioms imply thabmatic foundation for the evolution of communities.

I. INTRODUCTION



Our algorithms are efficient (low-order polynomial) andind all valid chains. Even given the strength oraéle
hence can be applied to very large networks. Otinis is a non-trivial problem. The brute force approach
work focuses on tracking the evolution when given theould test every chain for validity; since there might be
communities. To actually obtain the communities, wexponentially many chains, this is not computationally
use existing algorithms as mentioned previously. [16gasible. To develop a useful algorithm, we first study
takes an algorithmic approach toward quantifying soci#the properties of the chain strength oraéle).

group evolution specifically for the clique percolation We seek the simplest self evident properties &)
community detection algorithm. It is not clear how thashould have. Part of our contribution is to show that these
framework can apply to evolution in general, since isimple properties alone are enough to derive non-trivial
relies on specific properties diow the communities implications that allow us to identify evolution in real
are constructed Our philosophy is that tracking of data. We will show that, given some intuitive axioms
evolutions should only need the communities. that the oracleF'(-) should satisfy, there is a simple
characterization of’’. This characterization reduces our
problem to that of detecting valid evolutions of length

Notation. We consider dynamic communities in so, from which we will develop an efficient dynamic
cial networks. Time is discretized into time steps= programming algorithm to solve our full problem.
1,...,T. Each time step has a physical duratien(for , )
exampler = 1 week in blogs);r should be chosen to A. Chain Strength Axioms
match the time scale of community dynamics that ongxiom 1 [Identity]. For any communityX, any chain
is interested in. At every time stefp let C; denote the obtained by repeating has maximum strength:
set of communities observed, = {Ci.,...,Ch, ¢} -

(n; is the number of communities at stép. Given FXX,.. X)=1.
a community X, € C;, an evolution ofX;, or chain Axiom 2 [Monotonicity]. A chain’s strength is at most
P(Xy), is a sequence of communiti€gy, X1,..., X, the strength of any subchain. So, fox i < j < k,

with X; € C;1;. The length of the chain is; the parent

is Xy and the leaf of the chain i&}. F(Xo, X100, Xp) < F(Xi, Xy, X5).

Our goal is to discover all chains which are validaxiom 3 [Extension]. If two valid chains have a commu-
evolutions of X,. Formally, assume there is an oraclgity in common, then the chain constructedexending
F(-) which takes as input a chaiff(X,) and outputs the prefix (up to the common community) of one chain
its strength#'(P) € [0, 1]. The strength?”(P) measures ith the suffix (starting at the common community) of
how plausible it is that the chaif? is as an evolution the other chain is valid. Specifically, I&f, . . ., X} and

of community X,. Then, the chain is accepted as &, . . v, be two chains, withX; = y; for somei < k
valid evolution if its strength is above a (user definedjnd j < ¢. Then, for everyr > 0,

threshold\. Generally, we are interested in theaximal

valid chains. A valid chain is maximal if it is not a properF(XOv s Xp) 2 A

subchain of any other valid chain. F(Yo,....Ye) 2 A
Problem Statement.Given the sets of communities

Il. AXIOMATIC FOUNDATIONS FOREVOLUTION

= F(XOa"'aXi7}/}+17"'7}/€) > A\

at each time step(;,Cs, ..., determine all the valid Xo X
maximal chains. The figure illustrates the general setup.
Yo Yy
Time Step
! 2 3 4 The intuition behind the third axiom is that the evolution

of X, to X; is valid (because the whol&-evolution is
valid); now, continuing this evolution along thé-chain
should be valid (becaus&; = Y; and the wholeY -
evolution is valid). These axioms are intuitive, and they
imply a strong property about.

We have communities at each time step. lllustrated 'Il'sheorem 1. If F satisfies the identity, monotonicity and

one particular community,, and all the valid maximal extension axioms, then, for any chaify, ..., X,

chains for whichX, is the parent. The shaded chain F(Xo,...,Xx) = min F(X;, Xit1).

is the longest valid chain for whiclX, is the parent. =0, k=1

Our experimental study will focus on these longest We should note that our theorem refers to an abstract
chains, though we would like to develop algorithms toracle £ which can take as input any chaity, ..., X,



of arbitrary lengthk and output its strength. Of course, Path distribution log plot for DBLP with LOS clustering
in the realized sets of communiti€s, Cs, . . ., not every
possible chain is present. The oradiewould only be
applied to those chains that appear in the time sequence
of communities. To paraphrase Theorentte strength

of a chain is the strength of its weakest lir evolution

is valid if and only if every step in the evolution is
valid. An immediate consequence of Theorem 1 relates .
to constructing the valid evolutions. If the evolution
P = Xy, X4,...,X is valid and ends at time step
(so X € C;), we can extend this to a valid evolution
ending at time step+1 by considering all communities Fig. 1. Distribution of community lifetimes in DBLP using LOS
at time ¢t + 1. For everyY such thatY € C,y; and clustering. The tail shows power law decay with exponenrt —5.98
F(Xg,Y) > A, the chainP’ = Xy, X3,..., Xy, Yis a

valid evolution ending at time step-1. It is immediately

clear that to compute the valid evolutions we need onpgorithm. Specifically, letG; = (V,E,, W) be the
know how to compute the strength of all possible Isgcial network graph at time steépV, the set of nodes
step evolutions; i.e. we only need to specify the oraclgross all time steps; anH; is the set of interactions

slope = —5.98

Log(Number of Paths)

“1o 15

2.0 2.5 3.0
Log(Path Length)

F(X,X’) for two arbitrary setsX, X". at time ¢ with weights in W,. For example, consider
Corollary 2. An evolutionXy, ..., X, is valid if and the DBLP data. For a particular year (the time step)
only if F(X;, Xis1) > Afori=0,....k— 1. we two authors share an edge if they co-published a

. . . _paper. The edge weight relates to the number of co-
For the remainder of this paper, to make the discussigfiblications in that year, with more weight being given
concrete, we choose an intuitive set intersection basgflco-publications that have fewer additional authors.

measure for the strength of an evolution, The graphG, is the input to a community detection
, | X N X' algorithm. The output i€’;, the set of communities at

F(X,X')= . . : :
X UX/| time stept. For social networks, any community de-

To studv th " £ luti hai tection algorithm should allow communities to overlap.
0 study the properties of long evolution chains, Wy, tested several community detection algorithms in

first need to construct all the maximal valid Chain%urexperimentS' LOS[2J<-CP[17], RRW[12], FOGI[5]
from the observed time series of communities in thgnd SSDE[13] ' ' ' ' ’

network. Recall that a valid chain is maximal if it
is not a proper subchain of some other valid chain.
Time Step Ill. PREDICTION

t—1 t t+1 t+2
Ci . .
POy 4B We consider the first four commu- *
nities, Xy ... X3, of an evolution to
predict the length of the evolution :
(see the figure). Letg, s1, s2, s3 be

the sizes of the communities, where
To compute all valid chains we first compute the; = |X;|. We define the den-
weighted, multipartite grapt = ({Ci.}, Fx, Fk), sity of a community as the fraction
illustrated above. The nodes are the communities @f its authors’ collaborative efforts X
every time step. EdgesC;.,C;:11) exist between spent within the community d; =
communities in consecutive time steps that have nob¥i, (X;)/(Win (Xs) + Wous (X)) (see appendix). Let
empty intersections; the edge weightA$C; ;, C; ;+1). 70,71,72 be the sizes of the consecutive pairwise in-

Given K, the maximal paths with parent;, can be tersections,r; = |X; N X;;1|. We define the cores
computed efficiently (See full version for details). qo,q1 as the intersection of these intersections,=

_ » | X; N X;+1N X2/ Finally, we define the hypercore as
B. Detecting Communities the intersection of the cores; = | XN X; N Xy N X3

If the communities are not given to us ahead ofhese parameters relate to the shaded regions in the
time, then we need to detect them. At time stegf figure. From these parameters, we derive 26 features that
we have a set of interactions among the nodes, theharacterize the early evolution of a community such as
we can construct communities using a graph clusterirsgability and rate of change of the community.



IV. EXPERIMENTS This material is based upon work partially sponsored
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papers (DBLP), movie co-stars data (IMDB), LiveJourd-0150 to Rutgers University and contlnues'under the
nal blog interactions (BLOG), and wikipedia edit datd\rmy Research Laboratory under Cooperative Agree-
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