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Abstract—We develop an algorithmic framework for
studying the evolution of communities in social networks.
We begin with the theoretical foundation, from which we
conclude that an evolution is at most as strong as its weakest
link. This allows us to formulate an efficient algorithm
to identify all evolutionary sequences in a dynamic so-
cial network. We use this algorithm to empirically study
community evolution in several large social networks, to
identify those features of the early stages of a community
that indicate whether a community is going to be short-
lived or not. Our results show that it is possible to correlate
the lifespan of a community tostructural parameters of its
early evolution; these conclusions are robust across all the
social networks we have investigated.

I. I NTRODUCTION

Large data repositories have opened new possibilities
in social network analysis. It is necessary to develop
efficient and accurate algorithms that can bring important
features of a network to the forefront. Communities are
fundamental units of every social network; their structure
and evolution are essential to understanding the structure
and functionality of large networks.

To study community evolution, one must first detect
the communities; detecting communities should be based
on a definition of what groups of users qualify to be
called a community. Detecting all the communities in a
large social network remains unsolved, due to challenges
ranging from the computational burden (some formula-
tions require the solution of NP-hard optimization prob-
lems [15]) to the conceptual definition of communities (a
definition of a social community should emphasize that
communities are locally defined and can overlap [2, 8],
which may yield an excessive number of communities).
Many algorithms have been proposed that attempt to
discover communities, for example [2, 6, 7, 9, 15, 17].
We empirically study the effect of several such algo-
rithms on our understanding of community evolution.
Our contributions are:

(i) A foundational framework for studying commu-
nity evolution, assumingthat all communities at given
instances of time have been provided by some algorithm.
We propose three basic axioms for the definition of an
evolution which imply the consecutive link approach to
detecting evolutions; in particular, the axioms imply that

an evolution is at most as strong as its weakest link.
We use this thesis to develop a low order, polynomial
time, dynamic programming algorithm for identifyingall
evolutions in a network based on the construction of a
multi-partite evolution graph. Given a community, we
can identify its entire evolution tree,i.e., the set of valid
evolutions for the community.

(ii) Empirical evaluation. We use several well-known
algorithms for community detection to analyze four large
social networks: DBLP (a social network of collabora-
tions among CS researchers); IMDB (a social network
of collaborations among actors); BLOGS (a discussion
social network from the LiveJournal blogosphere); WIKI
(a social-semantic collective wisdom network).

(iii) A framework for prediction. Using our detected
community evolutions, we focus on the lifespan of the
communities as one interesting variable to predict. In
particular, we ask what properties of the early evolution
of a community are indicative of the ultimate lifespan
of the community. We identify that thesizeand intensity
of a community are among the two most predictive
properties. Our results are performed within a leave-
one-out cross validation framework to ensure that over-
fitting of the data is minimized, and hence the results
are statistically reliable.

Prior Work. Evolution of communities has recently be-
come active. [4, 18] formulate a community as a hidden
variable, and the communications (or interactions) be-
tween agents as observed. [3, 11] formulate community
detection as an optimization of a weighted sum of cost
functions measuring the evolutionary continuity and the
community quality. [14] uses Laplacian dynamics to
quantify community cohesiveness. [10] defines “natural”
communities as groups of nodes whose cohesiveness is
largely unaffected by small permutations in a network.

An (exponential) algorithmic formulation was given
in [19], which proposes that a community evolution
can be constructed by defining a community over time.
To identify and characterize community evolutions, [1]
utilizes a set of behavioral evolution events.

Our work is algorithmic in nature, based on an ax-
iomatic foundation for the evolution of communities.



Our algorithms are efficient (low-order polynomial) and
hence can be applied to very large networks. Our
work focuses on tracking the evolution when given the
communities. To actually obtain the communities, we
use existing algorithms as mentioned previously. [16]
takes an algorithmic approach toward quantifying social
group evolution specifically for the clique percolation
community detection algorithm. It is not clear how that
framework can apply to evolution in general, since it
relies on specific properties ofhow the communities
are constructed. Our philosophy is that tracking of
evolutions should only need the communities.

II. A XIOMATIC FOUNDATIONS FOREVOLUTION

Notation. We consider dynamic communities in so-
cial networks. Time is discretized into time stepst =
1, . . . , T . Each time step has a physical duration,τ (for
exampleτ = 1 week in blogs);τ should be chosen to
match the time scale of community dynamics that one
is interested in. At every time stept, let Ct denote the
set of communities observed,Ct = {C1,t, . . . , Cnt,t}
(nt is the number of communities at stept). Given
a communityX0 ∈ Ct, an evolution ofX0, or chain
P (X0), is a sequence of communitiesX0,X1, . . . ,Xk

with Xi ∈ Ct+i. The length of the chain isk; the parent
is X0 and the leaf of the chain isXk.

Our goal is to discover all chains which are valid
evolutions ofX0. Formally, assume there is an oracle
F (·) which takes as input a chainP (X0) and outputs
its strengthF (P ) ∈ [0, 1]. The strengthF (P ) measures
how plausible it is that the chainP is as an evolution
of community X0. Then, the chain is accepted as a
valid evolution if its strength is above a (user defined)
thresholdλ. Generally, we are interested in themaximal
valid chains. A valid chain is maximal if it is not a proper
subchain of any other valid chain.

Problem Statement.Given the sets of communities
at each time step,C1, C2, . . ., determine all the valid
maximal chains. The figure illustrates the general setup.
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We have communities at each time step. Illustrated is
one particular communityX0, and all the valid maximal
chains for whichX0 is the parent. The shaded chain
is the longest valid chain for whichX0 is the parent.
Our experimental study will focus on these longest
chains, though we would like to develop algorithms to

find all valid chains. Even given the strength oracleF ,
this is a non-trivial problem. The brute force approach
would test every chain for validity; since there might be
exponentially many chains, this is not computationally
feasible. To develop a useful algorithm, we first study
the properties of the chain strength oracleF (·).

We seek the simplest self evident properties thatF (·)
should have. Part of our contribution is to show that these
simple properties alone are enough to derive non-trivial
implications that allow us to identify evolution in real
data. We will show that, given some intuitive axioms
that the oracleF (·) should satisfy, there is a simple
characterization ofF . This characterization reduces our
problem to that of detecting valid evolutions of length
1, from which we will develop an efficient dynamic
programming algorithm to solve our full problem.

A. Chain Strength Axioms

Axiom 1 [Identity]. For any communityX, any chain
obtained by repeatingX has maximum strength:

F (X,X, . . . ,X) = 1.

Axiom 2 [Monotonicity]. A chain’s strength is at most
the strength of any subchain. So, for0 ≤ i < j ≤ k,

F (X0,X1, . . . ,Xk) ≤ F (Xi,Xi+1, . . . ,Xj).

Axiom 3 [Extension]. If two valid chains have a commu-
nity in common, then the chain constructed byextending
the prefix (up to the common community) of one chain
with the suffix (starting at the common community) of
the other chain is valid. Specifically, letX0, . . . ,Xk and
Y0, . . . , Yℓ be two chains, withXi = Yj for somei ≤ k
and j < ℓ. Then, for everyλ > 0,

F (X0, . . . ,Xk) ≥ λ
F (Y0, . . . , Yℓ) ≥ λ

=⇒ F (X0, . . . ,Xi, Yj+1, . . . , Yℓ) ≥ λ.

X0 Xi
Xk

Y0
Yj Yℓ

The intuition behind the third axiom is that the evolution
of X0 to Xi is valid (because the wholeX-evolution is
valid); now, continuing this evolution along theY -chain
should be valid (becauseXi = Yj and the wholeY -
evolution is valid). These axioms are intuitive, and they
imply a strong property aboutF .

Theorem 1. If F satisfies the identity, monotonicity and
extension axioms, then, for any chainX0, . . . ,Xk,

F (X0, . . . ,Xk) = min
i=0,...,k−1

F (Xi,Xi+1).

We should note that our theorem refers to an abstract
oracleF which can take as input any chainX0, . . . ,Xk



of arbitrary lengthk and output its strength. Of course,
in the realized sets of communitiesC1, C2, . . ., not every
possible chain is present. The oracleF would only be
applied to those chains that appear in the time sequence
of communities. To paraphrase Theorem 1,the strength
of a chain is the strength of its weakest link; an evolution
is valid if and only if every step in the evolution is
valid. An immediate consequence of Theorem 1 relates
to constructing the valid evolutions. If the evolution
P = X0,X1, . . . ,Xk is valid and ends at time stept
(so Xk ∈ Ct), we can extend this to a valid evolution
ending at time stept+1 by considering all communities
at time t + 1. For everyY such thatY ∈ Ct+1 and
F (Xk, Y ) ≥ λ, the chainP ′ = X0,X1, . . . ,Xk, Y is a
valid evolution ending at time stept+1. It is immediately
clear that to compute the valid evolutions we need only
know how to compute the strength of all possible 1-
step evolutions; i.e. we only need to specify the oracle
F (X,X ′) for two arbitrary setsX,X ′.

Corollary 2. An evolutionX0, . . . ,Xk is valid if and
only if F (Xi,Xi+1) ≥ λ for i = 0, . . . , k − 1.

For the remainder of this paper, to make the discussion
concrete, we choose an intuitive set intersection based
measure for the strength of an evolution,

F (X,X ′) =
|X ∩ X ′|

|X ∪ X ′|
.

To study the properties of long evolution chains, we
first need to construct all the maximal valid chains
from the observed time series of communities in the
network. Recall that a valid chain is maximal if it
is not a proper subchain of some other valid chain.

Ci,t

F (Ci,t, Cj,t+1)

Cj,t+1

Time Step

t − 1 t t + 1 t + 2

To compute all valid chains we first compute the
weighted, multipartite graphK = ({Ci,t}, EK , FK),
illustrated above. The nodes are the communities in
every time step. Edges(Ci,t, Cj,t+1) exist between
communities in consecutive time steps that have non-
empty intersections; the edge weight isF (Ci,t, Cj,t+1).
Given K, the maximal paths with parentCi,t can be
computed efficiently (See full version for details).

B. Detecting Communities

If the communities are not given to us ahead of
time, then we need to detect them. At time stept, if
we have a set of interactions among the nodes, then
we can construct communities using a graph clustering

slope = −5.98

Fig. 1. Distribution of community lifetimes in DBLP using LOS
clustering. The tail shows power law decay with exponentα = −5.98

algorithm. Specifically, letGt = (V,Et,Wt) be the
social network graph at time stept; V , the set of nodes
across all time steps; andEt is the set of interactions
at time t with weights in Wt. For example, consider
the DBLP data. For a particular year (the time step)
we two authors share an edge if they co-published a
paper. The edge weight relates to the number of co-
publications in that year, with more weight being given
to co-publications that have fewer additional authors.

The graphGt is the input to a community detection
algorithm. The output isCt, the set of communities at
time step t. For social networks, any community de-
tection algorithm should allow communities to overlap.
We tested several community detection algorithms in
our experiments: LOS[2],K-CP[17], RRW[12], FOG[5],
and SSDE[13].

III. PREDICTION

X0

X1

X2

X3

We consider the first four commu-
nities,X0 . . . X3, of an evolution to
predict the length of the evolution
(see the figure). Lets0, s1, s2, s3 be
the sizes of the communities, where
si = |Xi|. We define the den-
sity of a community as the fraction
of its authors’ collaborative efforts
spent within the community ,di =
Win (Xi)/(Win (Xi) + Wout (Xi)) (see appendix). Let
r0, r1, r2 be the sizes of the consecutive pairwise in-
tersections,ri = |Xi ∩ Xi+1|. We define the cores
q0, q1 as the intersection of these intersections,qi =
|Xi ∩Xi+1 ∩Xi+2|. Finally, we define the hypercore as
the intersection of the cores,c0 = |X0 ∩X1 ∩X2 ∩X3|.
These parameters relate to the shaded regions in the
figure. From these parameters, we derive 26 features that
characterize the early evolution of a community such as
stability and rate of change of the community.



IV. EXPERIMENTS

We consider 4 datasets: coauthorship of academic
papers (DBLP), movie co-stars data (IMDB), LiveJour-
nal blog interactions (BLOG), and wikipedia edit data
(WIKI). Each data set is a bipartite graph with users and
objects. We construct communities over users in disjoint
time intervals to find evolutions. The distribution of evo-
lution lengths follows an inverse power law (Figure 1).

The choice ofλ influences the nature of detected evo-
lutions. A high value ofλ divides true evolutions, while a
low value ofλ classifies meaningless evolutions as valid
ones. We determineλ by comparing detected evolutions
of real communities to those of random communities.
We setλ = 0.25, at which point the majority of random
evolutions have a lifespan of at most 3.

Predicting EvolutionWe consider predicting the lifespan
of an evoution. We only consider maximal evolutions
of length at least 4. The prediction task is to estimate,
based on the features from section III, evolution length.
We use a very simple linear-regression framework with
leave-one-out cross validation (LOO-CV).

We may determine the features which are most useful
for prediction by looking at how often it is found as a
significant feature. We show the features which are found
to be significant more than 40% of the time.

Feature Significance Av. Weight
Density 74% 0.22

Intersection 57% 0.29
Size 48% -0.22

Growth 43% -0.001
Core 43% -0.11

V. CONCLUSION

We have developed a framework for studying evo-
lution of communities. Our results indicate that the
evolutions of detected communities display powerlaw
behavior which is not present in random communities,
which means that the community detection algorithms
detect non-random communities. In particular, these
communities are more stable than random communities
(as measured by average lifespan).

We then studied the predictability of evolution, in
particular lifespan. We found a consistent set of features
from the early evolution that can predict (out-sample)
the lifespan of the community. These features were
consistent over different data sets and community detec-
tion algorithms. In particular, density, intersection, and
core size are quite significant and have strong positive
correlation with lifespan; size shows strong negative
correlation with lifespan. Conclusion:intense, small,
stable communities last longest.
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