
Identifying long lived social communities using
structural properties

Mark Goldberg, Malik Magdon-Ismail, and James Thompson
Computer Science Department

Renssalear Polytechnic Institute, Troy, NY 12180
Email:{goldberg, magdon, thompja}@cs.rpi.edu

Abstract—We present a two step procedure to identify long
lasting communities, or evolutions, in social networks. First,
we use axiomatic foundations to ‘rigorously’ establish shorter,
strongly-connected evolutions. In the second step, we use heuris-
tics to combine these shorter evolutions to form longer evolutions.
We apply the procedure on data generated from two networks -
the DBLP co-authorship database and LiveJournal blog data.We
visually validate our algorithms by examining the topic evolution
of the associated documents. Our results demonstrate that our
algorithms, based solely on structural properties of the data (who
interacts with whom), are able to track thematic trends in the
literature. We then use a machine learning framework to identify
the structural features of the early stages of a community’s
evolution are most useful for predicting the lifetime of the
community. We find that (in order) size, intensity and stability
are the most important features.

INTRODUCTION

Social networks constantly change because of the many
different interactions individuals of the network participate in.
Bloggers constantly comment on different posts; people par-
take in different activities each day; and proteins interact with
different proteins in different situations. Due to advances in
technology and the growth of available information, the under-
lying behaviors of such networks have become an increasingly
studied subject. In order to examine these characteristicsof a
network, it is important to be able to determine community
structure and evolutionary dynamics of the network. We focus
on social collaboration networks, but our methods are general.

A common way to examine temporal network behavior is
to partition time into discrete intervals and study the structural
characteristics of the static networks within each interval.
Sometimes, communities within the social network are well-
defined, such as conferences within a research network or
user-defined communities of a social networking site. These
situations provide a great opportunity to examine the patterns
of membership in communities. Backstrom et al. [1] predict
an individual’s future membership of a community based on
features such as the number of neighbors the individual has
who are already members of the community, much like a
diffusion model. Tantipathananandh et al. [2] have formulated
community membership detection as a graph coloring prob-
lem, using greedy heuristics in order to match individuals to
communities in any given time interval.

Generally, however, information on community structure
is unavailable and can not be determined without using a

discovery method. Any of the myriad researched clustering
algorithms [3] can be used to detect communities at each
time interval individually, but some approaches consider more.
Hopcroft et al. [4] use minor perturbations on each of the
static graphs in order to find communities that are stable
throughout. In [5], Aynaud et al. propose a similar approach,
finding static community structure that fits reasonably well
with a number of consecutive time steps. Chakrabarti et al. [6]
use the communities detected in previous intervals to enforce
some level of continuity in newly detected communities.

Many approaches to examining the evolution of social
communities have focused on constructing an underlying event
framework which defines specific behaviors a community
can exhibit, then searching for occurances of these behaviors
within the network. Palla et al. [7] utilize six behaviors such as
birth, growth, and merging for evolution detection. Asur etal.
[8] include events for individual members of the network, such
as joining or leaving a community. Both of these approaches
require all events to take place between two consecutive time
intervals. Greene et al. [9] and Takaffoli et al. [10] utilize
events, but allow an evolution to ‘skip’ time intervals. Chen et
al. [11] use a Hidden Markov Model to define group evolution.

Each approach utilizes a rigorous event based on algorithmic
framework in order to identify communities and evolutions.
This can cause evolutions that do not exactly prescribe to
a specific framework to go undetected. [12] develop an ax-
iomatic algorithmic framework for tracking community evo-
lution that is “non-parametric” in that it is not based on
communities that have a specific form. Our algorithms are
based on this axiomatic framework.

A. Our Contributions

We study community evolution in social networks, in partic-
ular social networks that can be obtained through interactions
via social media (for example social collaboration media such
as blogs or coauthorship data). The first step in studying
community evolution is detecting the community evolution.
We develop a two step approach toward detecting community
evolution. First, based on a sound axiomatic foundation of
community evolution described in [12], we build (short) tightly
connected evolutions in which there is a strong similarity
between the communities at successive time steps in the
evolution. We then develop a class of similarity measures
to compareevolutions and use a particular instance of this

similarity measure tomerge similar evolutions, thus extending
the shorter ‘tighter’ evolutions into longer evolutions.

The first step is stringent and is able to discover evolutions
which represent minor changes in the community as the
community’s ‘goals’ more or less remain intact. One can view
this step as constructing short, but well-defined, ’evolution
stubs’. The second step is less stringent, and is able to discover
larger shifts in a community as it (for example) changes
the topic of its discourse. Our algorithms are very efficient,
nearly linear time in the size of the interaction data, and we
demonstrate our algorithms on the DBLP author collaboration
database, and LiveJournal blog data. In both cases, we first
obtain communities over a set of disjoint time intervals, and
using these communities we extract the evolution. We present
visual validation of our results by using the associated text
data to study the correlation between the community evolution
and an observed evolution in the topic of the text. As an
illustration of this visual validation we present an evolution
of a community in DBLP with a lifespan of 21 years whose
topic gradually morphed over those 21 years from functional
programming and logic to fuzzy neural systems and learning to
asynchronous cellular arrays. Naturally it would be interesting
to study the topical trends of all the community evolutions
discovered, but that is beyond the scope of the present work.

We then develop a cross-validation machine learning frame-
work in which we build a linear regression system to predict
the lifespan of a community based on structural features
extracted from the early evolution of the community. These
features include the intensity of the community as measuredby
some structural edge density measure; the size and growth of
the community; the stability of the community as measured by
its turnover; etc. Within this cross-validation linear regression
framework, we are able to extract those features which are
useful in predicting the lifespan of a community. In particular
we find that the three most useful features for predicting
community lifespan (from a set of approximately 80 structural
features) are its size and growth-rate, and intensity.

The short story is that we present a general methodology
for extracting community evolution that we have visually
validated. This is the first step toward understanding of how
communities evolve in social media. We illustrate by identi-
fying those features correlated with long lived communities.

BACKGROUND

Notation: We consider networks that can be represented as
a graphG = (V,E) whereV is the set of vertices with each
vertex representing an actor in the network andE is the set
of edges representing interactions among actors. Every edge
in E is weighted with a value representing the strength of the
interaction, and has a timestamp denoting when the interaction
took place. There are typically many duplicate edges in this
graph with different weights and timestamps.

We discretize time into intervalst = 1, 2, . . . , T , each
with a duration ofτ , with τ chosen as a reasonable duration
considering the nature of the interactions in the specific media.
We defineGt = (Vt, Et) with Et consisting of all the edges

having a timestamp within time intervalt, andVt consisting
of the endpoints of the edges inEt. After the setEt has been
constructed, we drop the timestamps and replace duplicate
edges with a single edge with a weight equal to the sum of
the weights of the duplicate edges.

Let Ct = C0,t, . . . , Cnt,t be the communities detected with
Gt. These communities are taken to be the results of some
clustering algorithm onGt. Each communityCi,t has a size
|Ci,t| and a density. We define the density of a community
C in a graph to be the ratio between the number of inter-
actions exclusively between members of community and the
number of interactions involving at least one member of the
community :

D(C) =
Win(C)

(Win(C) +Wout(C, (̄C)))
,

where we explicitly show thatWout consists of the edges
betweenC and its complement.

Starting at a communityX0 ∈ Ct, a chainX is a set of
communitiesX0, X1, . . . , Xn where communityXi ∈ Ct+i.
The parent of the chain isX0, andXn is the leaf. To define a
valid chain, or evolution, we use a ‘goodness’ function,F (·),
that takes a chain as input and computes a value representing
the viability of the chain as a real evolution. IfF (X) has a
high value, the communities inX are very similar to each other
in some way. If the value ofF (X) is small, the communities
of X are unrelated to each other. We take a chainX as a valid
evolution if F (X) is above a certain threshold,λ. The choice
of a value forλ depends on the implementation used forF (·)
and user discretion. An axiomatic foundation for the form of
F was given in [12]. There, it was proven that an acceptable
function is one that satisfiesF (X) = min(F (Xi, Xi+1)). We
choose the Jaccard coefficient forF (X,Y)(= |X∩Y |

|X∪Y |) and
λ = 0.2 to detect “tight”, short evolutions as the first step
in community detection.

Our goal is to discover all of the disjoint pairs of evolutions,
(X = (X0, . . . , Xk),Y = (Y0, . . . , Yl)), that should be
considered a valid evolution even thoughF ((X ,Y)) was not
large enough. Similar toF (·), we take a functionM(·, ·) that
calculates a similarity value between two evolutions. Unlike
theF (·) value, which is often based on the similarity between
consecutive, pairwise communities [8]–[10], theM(·, ·) value
is based on the membership characteristics of multiple commu-
nities from each evolution. This value is a quantitative measure
of the plausibility ofX andY actually being a single evolution
that was mis-regarded as two separate tight evolutions. The
chain (X , Y) is considered a valid evolution ifM(X ,Y) is
above a thresholdµ. The value forµ, like λ, depends upon
the implementation ofM(·, ·) and user discretion.

Problem Statement: Given a set of tight evolutionsX, deter-
mine all of the valid evolutions (under relaxed requirements)
that are unions of the given tight evolutions. For a given
evolutionX0, a union of evolutions (X0, . . . ,Xn) is maximal
if there is no other valid union containingX0 that spans a
larger number of time steps. Using a brute force approach
to discovering these maximal chains would be impractical as

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Evolution Length Distributions Using Different Thresholds

Evolution Length

N
um

be
r

of
 E

vo
lu

tio
ns

Original Evolutions
2−sigma Extensions
1−sigma Extensions
Mean (0−sigma) Extensions

Number of Evolutions
Length Original + 2σ + σ Avg M value
2 39335 32795 27900 18731
3 15429 14468 13565 10779
4 9509 9483 9375 8901
5 4212 4529 4830 5293
6 3288 3670 3961 4837
7 1372 1747 2096 2861
8 1440 1613 1872 2568
9 509 728 957 1512
10 618 797 1001 1432
11 223 383 510 868
12 292 376 470 826
13 81 176 262 514
14 125 187 292 420
15 36 83 112 252
16 74 100 137 254
17 8 30 72 174
18 40 57 64 98
19 9 25 33 63
20 23 37 40 45

Fig. 1. Distributions of evolution lengths for original evolutions and evolutions found using different merging thresholds. A large number of merges occurs
between smaller evolutions, causing the distributions to even out as the threshold is lowered. The figure displays the most drastic changes in evolution length
distributions across thresholds and the table shows corresponding values.

there could be a large number of evolutions to consider and an
exponential number of possible unions to compute theM(·, ·)
value for. We use pre-processing of evolutions and dynamic
programming techniques in order to avoid long run times.

DETERMINING COMMUNITIES AND EVOLUTIONS

The first step to discovering evolutions within a network is
to identify short, “tight” evolutions. We consider communities
and evolutions discovered by using the process described in
[12]. The graphs of each time step,Gt, are clustered inde-
pendently to find static communities. The static communities
are then analyzed to detect evolutionary behavior. Specifically,
the communities are discovered using LOS clustering [13] and
evolutions with anF (·) value above 0.2 were taken to be valid.
Both networks resulted in about 50,000 evolutions.

It is probable that this approach does not detect all of the
real evolutions (nor only the real evolutions) within a social
network. Too high of a threshold for the value ofF (·) may
split an evolution into multiple parts where the similarity
between two timesteps just wasn’t large enough. Lowering
the threshold too far results in chains of communities with
no real underlying similarity to be considered an evolution. In
addition, some communities may not be identified in certain
timesteps, either because some information was not gathered
or the clustering algorithm did not detect it. This, again, would
split an evolution in smaller, disjoint evolutions. The second
step of our approach attempts to recover these split evolutions.

Similarity Between Tight Evolutions

The second step to our approach slightly relaxes the def-
inition of an evolution, and merges the short evolutions into
longer ones. LetX = (X0, . . . , Xk) andY = (Y0, . . . , Yl) be
two chains whereXk ∈ Ct andY0 ∈ Ct+1. We consider the
last three communities ofX – (Xk−2, Xk−1, Xk), and the first
three communities ofY – (Y0, Y1, Y2). Let A = (A0, . . . , An)
be the set of members of the union of the six communities

(Xk−2 ∪Xk−1 ∪Xk ∪ Y0 ∪ Y1 ∪ Y2). Define the function

I(Ai, Ci) =

{

1, if Ai ∈ Ci;

0, if Ai /∈ Ci.

We associate two values with everyAi. First, the number of
communities out of the last three communities ofX that Ai

is a member of, and second, the number of communities out
of the first three communities ofY thatAi is a member of:

Ai,X =

k
∑

j=k−2

I(Ai, Xj) Ai,Y =

2
∑

j=0

I(Ai, Yj).

Using these values, we construct two vectorsAX =
[A0,X , . . . , An,X] and AY = [A0,Y , . . . , An,Y] representing
the community memberships of the end of evolutionX and the
beginning of evolutionY , and calculate the cosine similarity
between the vectors as theM -value between two evolutions.

M(AX , AY) =
AX ·AY

|| AX || ∗ || AY ||

Figure 2 shows how to calculate theM -value between two
evolutions. The more similar the members of the communities
at the end ofX are to the members to the communities at the
beginning ofY , the larger the value of M will be.

More general approaches to constructing the vectorsAX

andAY may weight the participation of nodes in a community
based on the number of time steps separating the community
and the evolution split. In other words, the values associated
with eachAi could be of the form:

Ai,X =

k
∑

j=k−2

wk−jI(Ai, Xj) Ai,Y =

2
∑

j=0

wjI(Ai, Yj)

wherewj = 2−j. These vectors would result in an M-value
that takes the full membership of the evolutions into account,
but places more importance on membership near the end ofX

DC

BA

Xk−2

D

BA

Xk−1

ED

CB

Xk

F

BA

Y0

FD

BA

Y1

F
ED

CB

Y2

Node Participation
Node Xk−2 Xk−1 Xk Y0 Y1 Y2

A 1 1 0 1 1 0
B 1 1 1 1 1 1
C 1 0 1 0 0 1
D 1 1 1 0 1 1
E 0 0 1 0 0 1
F 0 0 0 1 1 1

Participation Vectors
AX =

[

2 3 2 3 1 0
]

AY =
[

2 3 1 2 1 3
]

M(X, Y) = (2∗2)+(3∗3)+(2∗1)+(3∗2)+(1∗1)+(0∗3)
(2+3+2+3+1+0)∗(1+3+1+2+1+3)

= 1
6

Fig. 2. Calculating theM -value between two evolutions. The nodes in the
last three communities of evolutionX, and the first three evolutions ofY are
shown at the top, followed by the specific calculation.

and the beginning ofY . In our choice,wj is 1 if j < 3 and0
otherwise. Ifwj is 1 when j = 0 and0 everywhere else, the
M values are equal to the originalF -values.

To construct maximal evolutions, the beginning set of
evolutionsX is broken into setsEi and Bi+1. The setEi

consists of all evolutions that end at time stepi and, similarly,
Bi+1 is the set of all evolutions that begin at time step
i + 1. Since evolutions require a community to be present
in every consecutive time step, evolutions inEi can only be
extended by evolutions inBi+1. From this point, we emulate
the similarity calculation in [12], only calculating anM value
for pairs of evolutions that do not have completely disjoint
membership, and using dynamic programming to construct the
maximal union sets of evolutions.

EXPERIMENTS

We demonstrate results on graphs constructed from two
real social networks: the DBLP co-authorship database and
LiveJournal (BLOG). Both data sets represent a bipartite graph
with users and objects. Users collaborate on creating objects.
For example, DBLP consists of authors collaborating to write
research papers. In the BLOG data, users collaborate in a
conversation in the form of a comment thread. Furthermore,
each collaboration has a time stamp associated with it. For
papers in DBLP, this time stamp is the paper’s publish date.
In the BLOG data, an object is a certain comment thread, and
the users connected to it are those who authored a comment
in the thread together with the original blog poster.

Determining µ: The data is split into groups of collabora-
tions that occured within each time step. Table I shows the
length of a single time step and how many time steps are
available in each data set. Collaborations in a time step form
a bipartite graph with users and objects, but we can infer a
graph on the users alone. Two users are connected if they
collaborated on an object. The weight of this edge represents
the number of such collaborations. In the DBLP network, two
authors would be connected by an edge in time stept if they
coauthored a paper published in time stept. The weight of this
edge is the number of papers coauthored with a publish date in
time stept. In the BLOG data, two users who post a comment
in the same thread during the same week are connected.

The contribution of a single collaboration to the weight of an
edge could be scaled to reflect the quality of the collaboration.
For example, if two users,i andj, participate in a collaboration
of n total users, the contribution of the collaboration toward
the weight of edge{i, j}, wi,j , may be defined as 1

n−1
. For

simplicity, we use weight as just the number of collaborations.
The choice of value forµ dictates the extent of relaxation to

the axiomatic definition of evolution. Lowµ values allow for
a larger deviance from the axioms and extends evolutions with
unrelated members. High values extend evolutions with closely
related members, but may disqualify some valid extensions.
We choose a high value forµ in order to examine the viability
of combining the most similar evolutions. IfM is the set of
all M -values of potential evolution extensions, we setµ to be
the average ofM plus two standard deviations (M̄+2∗σ(M)).

Figure 1 shows the evolution length distribution of the orig-
inal evolutions compared with the distributions of evolutions
after combining evolutions using different values forµ: M̄ ,
M̄ + σ(M) andM̄ + 2 ∗ σ(M). All of the distributions follow
an inverse power law, but asµ is reduced, the tails of the
distributions grow larger, as expected. This change becomes
much more pronounced whenµ gets closer toM̄ , suggesting
that any value ofµ somewhat larger than̄M should yeild well-
defined results.

For the rest of the paper, we useµ = M + 2σ to obtain
a set of extended evolutionsXe containing merges from the
original set of tight evolutions,X.

Validation

Due largely to the ambiguity concerning the definition of
communities within a social network, a chronic problem when
working with community detection and evolution is validation
of results. We use human judgement based on examining the
subject matter of interactions within communities. In DBLP,
this requires looking at the titles and abstracts of papers written
by authors of a community. In the BLOG data, the content of
the posts are used in place of abstracts.

To construct a visual representation of the interactions for
a community, we collect all the abstracts or posts associated
with the links of the community and create a word cloud. The
larger a word appears in the word cloud, the more relevant
it is as the main topic of interest within the community.
Valid communities will have main interests that are easily

Name Description |V | |E| τ (N) C ρ α

DBLP Authors of academic Computer Science papers are linked if they coauthored
a paper

4x105 1x106 1 yr(19) 3.5x105 0.28 2.7

BLOG A user is linked to users that comment on its blog post or respond to a
comment it made

2x105 1x106 1 wk(66) 2x105 0.01 2.22

TABLE I
DESCRIPTION OF THE DATA SETS USED IN OUR STUDY. N IS THE NUMBER OF CONSEQUTIVE TIME STEPS WITH DATA. C IS THE SIZE OF THE LARGEST

CONNECTED COMPONENT IN THE USER-USER GRAPH OF THE FULL DATA SET. ρ IS THE CLUSTERING COEFFICIENT OF THE GRAPH, AND α IS THE

SCALE-FREE PARAMETER.

gleaned from the word clouds while valid evolutions will have
consistency or logical development of ideas throughout its
communities.

Figure 5 shows the word clouds constructed for two evolu-
tions that were merged to form a longer evolution in the DBLP
data set. The break between evolutions was located between
the tenth and eleventh communities. When constructing the
original evolutions, we used the Jaccard index to measure
similarity and a threshold of 0.2. The similarity between the
tenth and eleventh communities in this evolution was 0.167.

Some of the major keywords discovered within the merged
evolution are shown in Figure 4. It shows that in the beginning
of the first evolution, the authors main focus was on using
inductive inference to solve problems. In the first evolution,
the focus quickly becomes learning, a more general topic
that includes inductive inference. Alongside learning comes
the interest in using or studying languages. The end of the
first evolution and the beginning of the second share the
main common topic of validation, a logical progression from
developing techniques for learning. Finally, the continuity of
the second evolution is made clear when the focus on learning
returns strongly, with the other keywords appearing frequently
as well.

X0

X1

X2

X3

Fig. 3. Early stages of an
evolution

Prediction: We consider the first
four communities,X0 . . . X3, of an
evolution and try to predict the
length of the evolution (see Fig-
ure 3). The same analysis could be
used using any number of the be-
ginning communities of an evolu-
tion. Using four communities pro-
vides a long enough chain to give
confidence that the evolution is not
random, and also allows for the ex-
amination of most of the detected
evolutions.

Let si = |Xi| and di = D(Xi) be the size and density
of a community, repectively. We letri = |Xi ∩ Xi+1| be
the size of the pairwise intersections, define the core sizeqi =
|Xi∩Xi+1∩Xi+2| as the intersection sizes of theri, and define
the hypercore sizec0 = |Xi∩Xi+1∩Xi+2∩Xi+3| as the size
of the intersection of the cores. These parameters relate tothe
shaded regions in the figure. In addition, letdri = D(|Xi ∩
Xi+1|) be the density of the nodes in the intersection of two
communities in respect to the union of the graphs from each
time step. Similarly, letdqi = D(|Xi ∩Xi+1 ∩Xi+2|) be the
core density anddci = D(|∩i+3

k=iXk|) be the hypercore density.

Fig. 4. Span of main keywords found in word clouds for a mergedevolution.
The overlap of spans shows the succession of topics discussed within the
communities of the evolutions and the continuity between the two evolutions
that caused the merge.

Using these parameters, we derive 79 features to characterize
the early stages of an evolution.

Our goal is to use these features to estimate evolution length.
We use a simple linear regression framework with leave-one-
out cross validation (LOO-CV) to find the most useful features
for predicting evolution length (Table IV).

To construct a parameter’s score, we consider the fifteen
most useful features. We give theith most useful feature a
score of15− i. A parameter’s score is the sum of the scores
of all the features that were derived from that characteristic.

The table shows that prediction of the lengths of the
evolutions discovered using a stricter framework uses the sizes
of communities and combinations of contiguous communities
evenly. Once evolutions are combined into longer evolutions
with more relaxed definitions, the density of communities
becomes much more representative of evolution length while
the size of community combinations becomes less.

CONCLUSION

We have developed a two-step process for the identification
of evolutions within a network. Our results indicate that the
evolutions detected at each step of the process differ from ran-
dom chains of communities. Furthermore, the results support
the need to include the second, merging step of the process in
order to augment the quality of the detected evolutions.

The length of evolutions identified by the two step approach
used in this paper can be predicted using select features
(see Table II and Table III) of the early characteristics of
the evolutions. This suggests that the detected evolutions
have underlying structures that differentiate an evolution from

ID Feature Name
8 Average Community Density
7 Slope of Min-Normalized Community Size
14 Average Intesection Size
19 Slope Intersection Size
40 Average First-Intersection-Normalized Core Size
78 Average Density of Core-Normalized HyperCore
34 Average Core Size
5 Slope Community Size
36 Average Min-Normalized Core Size
35 Average First-Normalized Core Size
4 Average Min-Normalized Community Size
3 Average First-Normalized Community Size
2 Average Community Size
18 Average Min-Community-Normalized Intersection Size

TABLE II
MOST DETERMINANT FEATURES OF EVOLUTION PREDICTION IN ORIGINAL

EVOLUTIONS IN ORDER. COMMUNITY DENSITY, WITH A POSITIVE

CORRELATION TO EVOLUTION LENGTH, IS THE SINGLE MOST PREDICTIVE

FEATURE OF EVOLUTION LENGTH. HOWEVER, FEATURES OF COMMUNITY,
INTERSECTION, AND CORE SIZES SATURATE THE LIST.

ID Feature Name
8 Average Community Density
15 Average First-Normalized Intersection Size
7 Slope Min-Normalized Community Size
3 Average First-Normalized Community Size
12 Slope of First-Normalized Community Density
4 Average Min-Normalized Community Size
63 Average HyperCore Size
38 Average Min-Community Normalized Core Size
18 Average Min-Community-Normalized Intersection Size
25 Average Density of Intersection
41 Slope Core Size
19 Slope of Intersection Size
54 Slope of Core Density
11 Slope of Community Density

TABLE III
MOST DETERMINANT FEATURES OF EVOLUTION PREDICTION IN MERGED

EVOLUTIONS (WITH MERGE THRESHOLD OF2σ). COMMUNITY DENSITY
REMAINS THE MOST PREDICTIVE FEATURE WITH THE FOLLOWING

FEATURES TRENDING TOWARDS DENSITY MEASURES. THE CORE ALSO

EXPERIENCES A LOSS IN RELEVANCE, WITH COMMUNITIES AND
INTERSECTIONS EXPERIENCING A GAIN.

Evolutions Before Evolutions After
Parameter Score Wgt Parameter Score Wgt
Core (qi) 25 - Size (si) 29
Size (si) 24 Growth +

Growth + Average -
Average - Density (di) 26 +

Intersection(ri) 21 + Intersection(ri) 19 +
Density (di) 13 + Core(qi) 9 +

TABLE IV
MOST PREDICTIVE CHARACTERISTICS OF EVOLUTION LENGTH IN THE

ORIGINAL AND MERGED EVOLUTIONS. THE WGT ENTRY DENOTES

WHETHER THE FEATURES BASED ON THE CHARACTERSTIC GENERALLY

HAD A POSITIVE (+) OR NEGATIVE (-) CORRELATION WITH EVOLUTION
LENGTH. THE CHARACTERISTIC’ S SCORES ARE SIMILAR IN THE

ORIGINAL EVOLUTIONS WHILE AFTER MERGING COMMUNITY SIZE AND

DENSITY DISTINGUISH THEMSELVES AS THE MAIN CHARACTERISTICS.

random communities. If the detected evolutions were merely
chains of random communities, these structures would not be
there and length prediction would be practically impossible.

The visualization of evolutions, such as that in Figure 5,
depict a logical flow of topics within both the shorter and
merged evolutions. The fact that this flow is found within the
shorter evolutions supports the belief that these evolutions are
valid. It can be argued that the merged evolutions are betterin
some sense, as they are based on the same communities and
exhibit the same type of logical flow in topics, but last longer.

In addition, the features that are most predictive of evolution
length in merged evolutions seem more natural than those
in the shorter evolutions. As Table IV shows, un-merged
evolutions have, somewhat unintuitively, a negative correlation
with the core of the first four communities that is highly
predictive of the evolution lifespan. In merged evolutions, this
changes to a positive correlation which is not as predictive. In
addition, it is intuitive to think that the density of communities
significantly influences evolution length. Community density
is much more predictive of evolution length in merged com-
munities, suggesting that the merged evolutions are ‘better’.

ACKNOWLEDGEMENTS

This material is based upon work partially sponsored by: U.S.
DHS through ONR grant number N00014-07-1-0150 to Rutgers
University and continues under the Army Research Laboratory under
Cooperative Agreement Number W911NF-09-2-0053.

REFERENCES

[1] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and X.Lan, “Group
formation in large social networks: membership, growth, and evolution,”
in KDD, 2006, pp. 44–54.

[2] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe, “A framework
for community identification in dynamic social networks,” in KDD, New
York, NY, USA, 2007, pp. 717–726.

[3] S. Fortunato, “Community detection in graphs,”Physics Reports, vol.
486, no. 3-5, pp. 75 – 174, 2010.

[4] J. Hopcroft, O. Khan, B. Kulis, and B. Selman, “Tracking evolving
communities in large linked networks,”PNAS, vol. 101, pp. 5249–5253,
2004.

[5] T. Aynaud and J.-L. Guillaume, “Multi-step community detection and
hierarchical time segmentation in evolving networks,” inKDD, 2011.

[6] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionaryclustering,”
in KDD. ACM, 2006, pp. 554–560.

[7] G. Palla, A.-L. Barabási, and T. Vicsek, “Quantifying social group
evolution,” Nature, vol. 446, pp. 664–667, 2007.

[8] S. Asur, S. Parthasarathy, and D. Ucar, “An event-based framework
for characterizing the evolutionary behavior of interaction graphs,”
SNAKDD, vol. 3, no. 4, p. 913, 2007.

[9] D. Greene, D. Doyle, and P. Cunningham, “Tracking the evolution of
communities in dynamic social networks,” UCD, Tech. Rep., 2011.

[10] M. Takaffoli, F. Sangi, J. Fagnan, and O. R. Zaı̈ane, “Modec - modeling
and detecting evolutions of communities,” inICWSM, L. A. Adamic,
R. A. Baeza-Yates, and S. Counts, Eds. The AAAI Press, 2011.

[11] H.-C. Chen, M. Goldberg, M. Magdon-Ismail, and W. A. Wallace,
“Reverse engineering an agent-based hidden markov model for complex
social systems,” inIDEAL, 2007, pp. 940–949.

[12] M. Goldberg, M. Magdon-Ismail, S. Nambirajan, and J. Thompson,
“Tracking and predicting evolution of social communities,” in Social-
Com, 2011.

[13] M. Goldberg, S. Kelley, M. Magdon-ismail, K. Mertsalov, and A. Wal-
lace, “Finding overlapping communities in social networks,” 2010.

Fig. 5. Word clouds of paper abstracts in communities of two merged evolutions in the DBLP network. Word sizes are determined by frequency in abstracts.
Each column represents an original evolution.

