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Abstract—We present a two step procedure to identify long discovery method. Any of the myriad researched clustering
lasting communities, or evolutions, in social networks. Hst, algorithms [3] can be used to detect communities at each
we use axiomatic foundations to ‘rigorously’ establish shuer, time interval individually, but some approaches consideren

strongly-connected evolutions. In the second step, we useuris- H ft et al [4 . turbati h of th
tics to combine these shorter evolutions to form longer evations. opcroft et al. [4] use minor perturbations on each of the

We app|y the procedure on data generated from two networks - static graphs in order to find communities that are stable
the DBLP co-authorship database and LiveJournal blog datawe throughout. In [5], Aynaud et al. propose a similar apprgach

visually validate our algorithms by examining the topic evdution  finding static community structure that fits reasonably well
of the associated documents. Our results demonstrate thatuo with a number of consecutive time steps. Chakrabarti eB3. [

algorithms, based solely on structural properties of the d&a (who L . . .
interacts with whom), are able to track thematic trends in the YS€ the communities detected in previous intervals to eafor

literature. We then use a machine learning framework to ideify ~Some level of continuity in newly detected communities.
the structural features of the early stages of a community's  Many approaches to examining the evolution of social
evolution are most useful for predicting the lifetime of the communities have focused on constructing an underlyingteve
community. We find that (in order) size, intensity and stabilty  famework which defines specific behaviors a community
are the most important features. - - .
can exhibit, then searching for occurances of these betsavio
within the network. Palla et al. [7] utilize six behaviorshuas
birth, growth, and merging for evolution detection. Asuiakt
Social networks constantly change because of the mgayinclude events for individual members of the networkctsu
different interactions individuals of the network panpate in. as joining or leaving a community. Both of these approaches
Bloggers constantly comment on different posts; people pagequire all events to take place between two consecutive tim
take in different activities each day; and proteins intewsith intervals. Greene et al. [9] and Takaffoli et al. [10] utiz
different proteins in different situations. Due to advan@e events, but allow an evolution to ‘skip’ time intervals. @het
technology and the growth of available information, theemd al. [11] use a Hidden Markov Model to define group evolution.
lying behaviors of such networks have become an increasingl Each approach utilizes a rigorous event based on algothmi
studied subject. In order to examine these characteristies framework in order to identify communities and evolutions.
network, it is important to be able to determine communityhis can cause evolutions that do not exactly prescribe to
structure and evolutionary dynamics of the network. We $oca specific framework to go undetected. [12] develop an ax-
on social collaboration networks, but our methods are géneiomatic algorithmic framework for tracking community evo-
A common way to examine temporal network behavior igition that is “non-parametric” in that it is not based on
to partition time into discrete intervals and study theatiial communities that have a specific form. Our algorithms are
characteristics of the static networks within each intervéhased on this axiomatic framework.
Sometimes, communities within the social network are well- o
defined, such as conferences within a research network/prOur Contributions
user-defined communities of a social networking site. TheseWe study community evolution in social networks, in partic-
situations provide a great opportunity to examine the padte ular social networks that can be obtained through intesasti
of membership in communities. Backstrom et al. [1] prediatia social media (for example social collaboration mediehsu
an individual's future membership of a community based as blogs or coauthorship data). The first step in studying
features such as the number of neighbors the individual h@emmunity evolution is detecting the community evolution.
who are already members of the community, much like We develop a two step approach toward detecting community
diffusion model. Tantipathananandh et al. [2] have forrtada evolution. First, based on a sound axiomatic foundation of
community membership detection as a graph coloring probemmunity evolution described in [12], we build (short)tity
lem, using greedy heuristics in order to match individuals tonnected evolutions in which there is a strong similarity
communities in any given time interval. between the communities at successive time steps in the
Generally, however, information on community structurevolution. We then develop a class of similarity measures
is unavailable and can not be determined without usingt@a compareevolutions and use a particular instance of this
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similarity measure tanerge similar evolutions, thus extendinghaving a timestamp within time interva) andV; consisting
the shorter ‘tighter’ evolutions into longer evolutions. of the endpoints of the edges h. After the setF, has been
The first step is stringent and is able to discover evolutioesnstructed, we drop the timestamps and replace duplicate
which represent minor changes in the community as tleelges with a single edge with a weight equal to the sum of
community’s ‘goals’ more or less remain intact. One can viethe weights of the duplicate edges.
this step as constructing short, but well-defined, 'evoluti LetC; = Cy4,...,C,, . be the communities detected with
stubs’. The second step is less stringent, and is able towdisc G;. These communities are taken to be the results of some
larger shifts in a community as it (for example) changesustering algorithm orG;. Each communityC; ; has a size
the topic of its discourse. Our algorithms are very efficientC; .| and a density. We define the density of a community
nearly linear time in the size of the interaction data, and we in a graph to be the ratio between the number of inter-
demonstrate our algorithms on the DBLP author collabonati@actions exclusively between members of community and the
database, and LiveJournal blog data. In both cases, we firamber of interactions involving at least one member of the
obtain communities over a set of disjoint time intervalsg ancommunity :
using these communities we extract the evolution. We ptesen Win(C)
visual validation of our results by using the associated tex D(C) = ! — ,
data to study the correlation between the community evauti (Win(C) + Wour (C, (C)))
and an observed evolution in the topic of the text. As amhere we explicitly show thai?,,. consists of the edges
illustration of this visual validation we present an evadat betweenC and its complement.
of a community in DBLP with a lifespan of 21 years whose Starting at a communityX, € C;, a chainX is a set of
topic gradually morphed over those 21 years from functionedmmunities Xy, Xy, ..., X,, where communityX; € C;y;.
programming and logic to fuzzy neural systems and learmingthe parent of the chain iX,, and X, is the leaf. To define a
asynchronous cellular arrays. Naturally it would be inséireg  valid chain, or evolution, we use a ‘goodness’ functidit; ),
to study the topical trends of all the community evolutionthat takes a chain as input and computes a value representing
discovered, but that is beyond the scope of the present woitke viability of the chain as a real evolution. H(X') has a
We then develop a cross-validation machine learning framiigh value, the communities i’ are very similar to each other
work in which we build a linear regression system to prediét some way. If the value of'(X') is small, the communities
the lifespan of a community based on structural feature§ X’ are unrelated to each other. We take a chias a valid
extracted from the early evolution of the community. Thesgvolution if F(X) is above a certain threshold, The choice
features include the intensity of the community as measoyedof a value for\ depends on the implementation used )
some structural edge density measure; the size and growttanél user discretion. An axiomatic foundation for the form of
the community; the stability of the community as measured fywas given in [12]. There, it was proven that an acceptable
its turnover; etc. Within this cross-validation linear regsion function is one that satisfieB(X') = min(F(Xl-,XiHR). We
framework, we are able to extract those features which arkoose the Jaccard coefficient féi(X,Y)(= KB;) and
useful in predicting the lifespan of a community. In partisu A = 0.2 to detect “tight”, short evolutions as the first step
we find that the three most useful features for predicting community detection.
community lifespan (from a set of approximately 80 struagtur Our goal is to discover all of the disjoint pairs of evolution
features) are its size and growth-rate, and intensity. X = (Xo,...,Xx),Y = (Yo,...,Y1)), that should be
The short story is that we present a general methodologgnsidered a valid evolution even thoughi(X’, ))) was not
for extracting community evolution that we have visuallyarge enough. Similar td&'(-), we take a function\/ (-, -) that
validated. This is the first step toward understanding of hogalculates a similarity value between two evolutions. kali
communities evolve in social media. We illustrate by identthe F'(-) value, which is often based on the similarity between
fying those features correlated with long lived commusitie consecutive, pairwise communities [8]-[10], thé&(-, -) value
is based on the membership characteristics of multiple comm
nities from each evolution. This value is a quantitative suea
Notation: We consider networks that can be represented afthe plausibility ofX” and)’ actually being a single evolution
a graphG = (V, E) whereV is the set of vertices with eachthat was mis-regarded as two separate tight evolutions. The
vertex representing an actor in the network ands the set chain ¢¢, ))) is considered a valid evolution &/ (X,)) is
of edges representing interactions among actors. Everg eddpove a thresholg. The value foru, like A\, depends upon
in E is weighted with a value representing the strength of tlike implementation of\/ (-, -) and user discretion.
interaction, and has a timestamp denoting when the inieract Problem Statement: Given a set of tight evolutionX, deter-
took place. There are typically many duplicate edges in thisine all of the valid evolutions (under relaxed requirensgnt
graph with different weights and timestamps. that are unions of the given tight evolutions. For a given
We discretize time into intervals = 1,2,...,7, each evolutionX,, a union of evolutionsXy, ..., x,) is maximal
with a duration ofr, with 7 chosen as a reasonable duratioif there is no other valid union containing, that spans a
considering the nature of the interactions in the specifidime larger number of time steps. Using a brute force approach
We defineG; = (V;, E;) with E, consisting of all the edgesto discovering these maximal chains would be impractical as
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Number of Evolutions
x 10°  Evolution Length Distributions Using Different Thresholds Length Ongmal + 20 to Ag M value
4 . . : : : 2 39335 | 32795 | 27900 18731
g_’g;”:fg:{';‘:g{;s 3 15429 14468 | 13565 10779
350 1-sigma Extensions g 7 9509 9483 | 9375 8901
Mean (0-sigma) Extensions 5 4212 4529 4830 5293
3r ] 6 3288 3670 3961 4837
g 7 1372 1747 2096 2861
Rl 1 8 1440 | 1613 | 1872 2568
2 9 509 728 957 1512
5 2 | 10 618 797 1001 1432
2 . | 11 223 383 510 868
E 12 292 376 470 826
1L ; ] 13 81 176 262 514
) 14 125 187 292 420
o5l i 15 36 83 112 252
16 74 100 137 254
o p . s : . . 17 8 30 72 174
Evolution Length 18 40 57 64 98
19 9 25 33 63
20 23 37 40 45

Fig. 1. Distributions of evolution lengths for original dutions and evolutions found using different merging thi@ds. A large number of merges occurs

between smaller evolutions, causing the distributionsvemeout as the threshold is lowered. The figure displays thst ar@stic changes in evolution length
distributions across thresholds and the table shows @mmnetng values.

there could be a large number of evolutions to consider and @, _» U X1 U X} U Yy U Y7 U Y3). Define the function
exponential number of possible unions to computeihg, -) ,
i i . . 1, if Ai (S Ci;
value for. We use pre-processing of evolutions and dynamic I(A;, C;) = _
programming techniques in order to avoid long run times. 0, if A; ¢ C;.

DETERMINING COMMUNITIES AND EVOLUTIONS We asso_c_late two values with eveny. F|rst,_t_he number of
communities out of the last three communitiesXfthat A;
The first step to discovering evolutions within a network i 3 member of, and second, the number of communities out

to identify short, “tight” evolutions. We consider commties of the first three communities df that 4; is a member of:

and evolutions discovered by using the process described in A 5

[12]. The graphs of each time ste@;, are clustered inde- A v — I(A X Ay — I(A. Y,

pendently to find static communities. The static commusite j:;_g (A X5) oy jgo (A, 1)

are then analyzed to detect evolutionary behavior. Spatifjc i

the communities are discovered using LOS clustering [18] an USiNg these values, we construct two vectots =

evolutions with anF(-) value above 0.2 were taken to be validi0.X: - - -» An,x] @and Ay = [Ao,y,..., 4, y] representing

Both networks resulted in about 50.000 evolutions the community memberships of the end of evolutidrand the
It is probable that this approach does not detect all of tfR€9inning of evolutiort’, and calculate the cosine similarity

real evolutions (nor only the real evolutions) within a saci PetWeen the vectors as tiid-value between two evolutions.

network. Too high of a threshold for the value BY-) may Ay - Ay

split an evolution into multiple parts where the similarity M(Ax, Ay) = T Ax [ * [ Ay |

between two timesteps just wasn't large enough. Lowering _.

the threshold too far results in chains of communities with F19ure 2 shows how to calculate tié-value between two

no real underlying similarity to be considered an evolution evolutions. The more similar the members of the communities

addition, some communities may not be identified in certaft the €nd ofX are to the members to the communities at the

timesteps, either because some information was not gathe?§9inning ofY’, the larger the value of M will be.

or the clustering algorithm did not detect it. This, agaipud ~ MOre general approaches to constructing the vectbgs

split an evolution in smaller, disjoint evolutions. The sed andAy may weight the pa_rt|C|pat|on of node§ In-a communlty_

step of our approach attempts to recover these split evolsti based on the number of time steps separating the community

and the evolution split. In other words, the values assediat
Similarity Between Tight Evolutions with eachA; could be of the form:

The second step to our approach slightly relaxes the def- i )
inition of an evolution, and merges the short evolution® int
longer ones. Left = (X, ..., X;) and)y = (Yp,...,Y;) be Aix = D weiI(As X;) Aiy = ZwiI(A“YJ'>
two chains whereX;, € C; andY, € Cyy1. We consider the j=k=2 i=0
last three communities 6¥ — (Xj_o2, X;—1, X)), and the first ~ wherew; = 27J. These vectors would result in an M-value
three communities oy — (Y, Y1, Y2). Let A = (Ao, ..., 4,) that takes the full membership of the evolutions into actoun
be the set of members of the union of the six communitidsit places more importance on membership near the e’d of




X X X Determining p: The data is split into groups of collabora-
k—2 k—1 k . e X
tions that occured within each time step. Table | shows the
@4@ @ @§@ length of a single time step and how many time steps are
@@ @@ ava_iIabI(_e in each dgta set. CoIIabora}tions in a time stem for
a bipartite graph with users and objects, but we can infer a

graph on the users alone. Two users are connected if they
collaborated on an object. The weight of this edge represent

Yo Y] Y,
@ OF % -
<> the number of such collaborations. In the DBLP network, two
@@ @ authors would be connected by an edge in time stiéghey

Node Participation coauthored a paper published in time stephe weight of this
Node | Xr s | Xea | Xe 1 Yo | Vi [ V5 e_dge is the number of papers coauthored with a publish date in
A 1 1 0 1171710 Flme stept. In the BLOG. data, two users who post a comment
B 1 1 1 11111 in the same thr_ead durmg the same W(_aek are conqected.
C 1 ) 1 o T o1 The contribution of a single collaborat!on to the weight of a
5 1 1 1 0T 11 edge could bg scaled to reflect the qL_Jahty _of the collabmr_lan
= 5 5 1 0T o 1 For example, if two users,andj, participate in a collaboration
of n total users, the contribution of the collaboration toward
F 0 0 0 1]1]1 the weight of edge{i, j}, w; ;, may be defined ag';. For
Participation Vectors simplicity, we use weight as just the number of collaboragio
Ax=1[12 3 2 3 10 The choice of value for. dictates the extent of relaxation to
Ay =12 3 1 2 1 3 the axiomatic definition of evolution. Low values allow for

a larger deviance from the axioms and extends evolutiorts wit

M(X)Y) = (2?2212f;fgﬁff(};gi?jﬁ;ﬁJIFJ(F%’;?’) =1 unrelated members. High values extend evolutions witretjos

. _ . ~ related members, but may disqualify some valid extensions.
e e sionone s e choOSe a high value forn order to examine the viabilly
shown at the top, followed by the specific calculation. of combining the most similar evolutions. M is the set of

all M-values of potential evolution extensions, we gdb be

and the beginning of. In our choiceaw; is 1 if j < 3 and0 the average of plus two standard deviationM(+2x o (M)).
otherwise. Ifw; is 1 whenj = 0 and0 everywhere else, the Figure 1 shows the evolution length distribution of the erig
M values are equal to the original-values. inal evolutions compared with the distributions of evabuis

To construct maximal evolutions, the beginning set qfter combiningﬁ evolutions using different values for M,
evolutionsX is broken into setsE; and B,,;. The setE; M +o(M)andM +2xo(M). All of the distributions follow
consists of all evolutions that end at time siegnd, similarly, an inverse power law, but gs is reduced, the tails of the
B,41 is the set of all evolutions that begin at time steglistributions grow larger, as expected. This change besome
i + 1. Since evolutions require a community to be presemuch more pronounced whengets closer tdVl, suggesting
in every consecutive time step, evolutionsBn can only be that any value of. somewhat larger thal should yeild well-
extended by evolutions ;. From this point, we emulate defined results.
the similarity calculation in [12], only calculating ai value For the rest of the paper, we uge= M + 20 to obtain
for pairs of evolutions that do not have completely disjoire set of extended evolutiori§. containing merges from the
membership, and using dynamic programming to construct theéginal set of tight evolutionsX.
maximal union sets of evolutions.

Validation

EXPERIMENTS Due largely to the ambiguity concerning the definition of
communities within a social network, a chronic problem when
We demonstrate results on graphs constructed from twarking with community detection and evolution is validati
real social networks: the DBLP co-authorship database aofiresults. We use human judgement based on examining the
LiveJournal (BLOG). Both data sets represent a bipartig@lyr subject matter of interactions within communities. In DBLP
with users and objects. Users collaborate on creating thjecthis requires looking at the titles and abstracts of papeittan
For example, DBLP consists of authors collaborating toevriby authors of a community. In the BLOG data, the content of
research papers. In the BLOG data, users collaborate inha posts are used in place of abstracts.
conversation in the form of a comment thread. Furthermore,To construct a visual representation of the interactioms fo
each collaboration has a time stamp associated with it. Focommunity, we collect all the abstracts or posts assatiate
papers in DBLP, this time stamp is the paper’s publish dategith the links of the community and create a word cloud. The
In the BLOG data, an object is a certain comment thread, alaiger a word appears in the word cloud, the more relevant
the users connected to it are those who authored a commiens as the main topic of interest within the community.
in the thread together with the original blog poster. Valid communities will have main interests that are easily



Name | Description 4 |E 7 (N) C p [
DBLP | Authors of academic Computer Science papers are linkedyf toauthored| 4x10° | 1x10° 1yr(19) | 3.5x10° | 0.28 | 2.7
a paper
BLOG | A user is linked to users that comment on its blog post or nredpm a | 2x10° | 1x10% | 1 wk(66) | 2x10° 0.01 | 2.22
comment it made

TABLE |
DESCRIPTION OF THE DATA SETS USED IN OUR STUDW IS THE NUMBER OF CONSEQUTIVE TIME STEPS WITH DATAC IS THE SIZE OF THE LARGEST
CONNECTED COMPONENT IN THE USERUSER GRAPH OF THE FULL DATA SETp IS THE CLUSTERING COEFFICIENT OF THE GRAPHAND « IS THE
SCALE-FREE PARAMETER

gleaned from the word clouds while valid evolutions will kav Lif=cpan of Keywords in Evelltion
consistency or logical development of ideas throughout its
communities.

Figure 5 shows the word clouds constructed for two evolu- Validation
tions that were merged to form a longer evolution in the DBLP
data set. The break between evolutions was located between Learning
the tenth and eleventh communities. When constructing the (N, ——
original evolutions, we used the Jaccard index to measure Languages
similarity and a threshold of 0.2. The similarity betweee th _
tenth and eleventh communities in this evolution was 0.167. Eam T — -

Some of the major keywords discovered within the merged
evolution are shown in Figure 4. It shows that in the begignin 0 4 s & 1 12 w1
of the first evolution, the authors main focus was on using Timestop
inductive inference to solve problems. In the first evolafio ] ) )
the focus quickly becomes learning, a more general (o 4,52 f man kepuors fourd i vord clouds for & mermmuior,
that includes inductive inference. Alongside learning €8m communities of the evolutions and the continuity betweenttio evolutions
the interest in using or studying languages. The end of tHet caused the merge.
fws; evolution anq the b(_egln_nlng of the second ;hare trﬂf‘sing these parameters, we derive 79 features to chamzeteri
main common top|c of vahdauon, a Io.glcal progreSS|lon.fror{he early stages of an evolution.
developing techniques for learing. Finally, the contipuf . Our goalisto use these features to estimate evolutionhengt
"R use a simple linear regression framework with leave-one-
out cross validation (LOO-CV) to find the most useful feature

Systems

returns strongly, with the other keywords appearing fredjye

as well. _ _ for predicting evolution length (Table IV).

Prediction: We consider the first To construct a parameter's score, we consider the fifteen
four communities,Xo . .. X3, of an X;  most useful features. We give th€ most useful feature a
evolution and try to predict the score of15 — i. A parameter’s score is the sum of the scores
length of the evolution (see Fig- of all the features that were derived from that characferist
ure 3). The same analysis could b X The table shows that prediction of the lengths of the
used using any number of the be- ® evolutions discovered using a stricter framework usesitess
ginning communities of an evolu- of communities and combinations of contiguous communities
tion. Using four communities pro- evenly. Once evolutions are combined into longer evolstion
vides a long enough chain to give Xs with more relaxed definitions, the density of communities
confidence that the evolution is not becomes much more representative of evolution length while

random, and also allows for the exig 3. Early stages of an the size of community combinations becomes less.
amination of most of the detectedevolution
evolutions. CONCLUSION

Let s;, = |X;| andd; = D(X;) be the size and density We have developed a two-step process for the identification
of a community, repectively. We let; = |X; N X,;.1| be of evolutions within a network. Our results indicate thag¢ th
the size of the pairwise intersections, define the coregize evolutions detected at each step of the process differ feom r
| X:NX;+1NX;42| as the intersection sizes of thg and define dom chains of communities. Furthermore, the results suppor
the hypercore sizey = | X;NX; 11N X, 12N X;;3| as the size the need to include the second, merging step of the process in
of the intersection of the cores. These parameters reldteeto order to augment the quality of the detected evolutions.
shaded regions in the figure. In addition, &t = D(|X; N The length of evolutions identified by the two step approach
X;+1|) be the density of the nodes in the intersection of twased in this paper can be predicted using select features
communities in respect to the union of the graphs from easee Table 1l and Table IIl) of the early characteristics of
time step. Similarly, letd,, = D(|X; N X,;4+1 N X;42|) be the the evolutions. This suggests that the detected evolutions
core density and,., = D(|m§j3 X|) be the hypercore density. have underlying structures that differentiate an evolufrom

=1



ID | Feature Name

8 | Average Community Density

7 | Slope of Min-Normalized Community Size

14 | Average Intesection Size

19 | Slope Intersection Size

40 | Average First-Intersection-Normalized Core Size
78 | Average Density of Core-Normalized HyperCore
34 | Average Core Size

5 | Slope Community Size

36 | Average Min-Normalized Core Size

35 | Average First-Normalized Core Size

4 | Average Min-Normalized Community Size

3 | Average First-Normalized Community Size

2 | Average Community Size

18 | Average Min-Community-Normalized Intersection Size

TABLE I
MOST DETERMINANT FEATURES OF EVOLUTION PREDICTION IN ORIGIAL
EVOLUTIONS IN ORDER COMMUNITY DENSITY, WITH A POSITIVE
CORRELATION TO EVOLUTION LENGTH, IS THE SINGLE MOST PREDICTIVE
FEATURE OF EVOLUTION LENGTH HOWEVER, FEATURES OF COMMUNITY,
INTERSECTION AND CORE SIZES SATURATE THE LIST

ID | Feature Name

8 | Average Community Density

15 | Average First-Normalized Intersection Size

7 | Slope Min-Normalized Community Size

3 | Average First-Normalized Community Size

12 | Slope of First-Normalized Community Density
4 | Average Min-Normalized Community Size

63 | Average HyperCore Size

38 | Average Min-Community Normalized Core Size
18 | Average Min-Community-Normalized Intersection SiZe
25 | Average Density of Intersection
41 | Slope Core Size

19 | Slope of Intersection Size

54 | Slope of Core Density

11 | Slope of Community Density

TABLE Il
MOST DETERMINANT FEATURES OF EVOLUTION PREDICTION IN MERGED
EVOLUTIONS (WITH MERGE THRESHOLD OF20). COMMUNITY DENSITY
REMAINS THE MOST PREDICTIVE FEATURE WITH THE FOLLOWING
FEATURES TRENDING TOWARDS DENSITY MEASURESTHE CORE ALSO
EXPERIENCES A LOSS IN RELEVANCEWITH COMMUNITIES AND
INTERSECTIONS EXPERIENCING A GAIN

Evolutions Before Evolutions After

Parameter Score | Wgt | Parameter Score | Wgt

Core @;) 25 - Size ;) 29

Size ;) 24 Growth +
Growth + Average -
Average - Density @;) 26 +

Intersectionf;)| 21 + Intersectionf;)| 19 +

Density ;) 13 + Coref;) 9 +

TABLE IV

MOST PREDICTIVE CHARACTERISTICS OF EVOLUTION LENGTH IN THE
ORIGINAL AND MERGED EVOLUTIONS. THE WGT ENTRY DENOTES
WHETHER THE FEATURES BASED ON THE CHARACTERSTIC GENERALLY

HAD A POSITIVE (+) OR NEGATIVE (-) CORRELATION WITH EVOLUTION
LENGTH. THE CHARACTERISTIC S SCORES ARE SIMILAR IN THE
ORIGINAL EVOLUTIONS WHILE AFTER MERGING COMMUNITY SIZE AND
DENSITY DISTINGUISH THEMSELVES AS THE MAIN CHARACTERISTIG.

random communities. If the detected evolutions were merely
chains of random communities, these structures would not be
there and length prediction would be practically impossibl

The visualization of evolutions, such as that in Figure 5,
depict a logical flow of topics within both the shorter and
merged evolutions. The fact that this flow is found within the
shorter evolutions supports the belief that these evaistare
valid. It can be argued that the merged evolutions are bigtter
some sense, as they are based on the same communities and
exhibit the same type of logical flow in topics, but last longe

In addition, the features that are most predictive of evofut
length in merged evolutions seem more natural than those
in the shorter evolutions. As Table IV shows, un-merged
evolutions have, somewhat unintuitively, a negative datien
with the core of the first four communities that is highly
predictive of the evolution lifespan. In merged evolutiptigs
changes to a positive correlation which is not as predictive
addition, it is intuitive to think that the density of comnities
significantly influences evolution length. Community dépnsi
is much more predictive of evolution length in merged com-
munities, suggesting that the merged evolutions are ‘Bette
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