Learning From Data Lecture 6 Bounding The Growth Function

Bounding the Growth Function Models are either Good or Bad The VC Bound - replacing $|\mathcal{H}|$ with $m_{\mathcal{H}}(N)$

 $\begin{array}{ccc} \textbf{M. Magdon-Ismail} \\ \text{CSCI } 4100/6100 \end{array}$

RECAP: The Growth Function $m_{\mathcal{H}}(N)$

A new measure for the diversity of a hypothesis set.

$$\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \{(h(\mathbf{x}_1),\ldots,h(\mathbf{x}_N))\}$$

The dichotomies (N-tuples) \mathcal{H} implements on $\mathbf{x}_1, \dots, \mathbf{x}_N$.

The growth function $m_{\mathcal{H}}(N)$ considers the worst possible $\mathbf{x}_1, \dots, \mathbf{x}_N$.

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_N} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)|.$$

This lecture: Can we bound $m_{\mathcal{H}}(N)$ by a polynomial in N?

Can we replace $|\mathcal{H}|$ by $m_{\mathcal{H}}(N)$ in the generalization bound?

Example Growth Functions

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	1	2	3	4	5	
2-D perceptron	2	4	8	14	• • •	
1-D pos. ray	2	3	4	5	• • •	
2-D pos. rectangles	2	4	8	16	$<2^5$ ····	

- $m_{\mathcal{H}}(N)$ drops below 2^N there is hope.
- A break point is any k for which $m_{\mathcal{H}}(k) < 2^k$.

Pop Quiz I

I give you a set of k^* points $\mathbf{x}_1, \dots, \mathbf{x}_{k^*}$ on which \mathcal{H} implements $< 2^{k^*}$ dichotomys.

- (a) k^* is a break point.
- (b) k^* is not a break point.
- (c) all break points are $> k^*$.
- (d) all break points are $\leq k^*$.
- (e) we don't know anything about break points.

Pop Quiz I

I give you a set of k^* points $\mathbf{x}_1, \dots, \mathbf{x}_{k^*}$ on which \mathcal{H} implements $< 2^{k^*}$ dichotomys.

- (a) k^* is a break point.
- (b) k^* is not a break point.
- (c) all break points are $> k^*$.
- (d) all break points are $\leq k^*$.
- ✓ (e) we don't know anything about break points.

Pop Quiz II

For every set of k^* points $\mathbf{x}_1, \dots, \mathbf{x}_{k^*}$, \mathcal{H} implements $< 2^{k^*}$ dichotomys.

- (a) k^* is a break point.
- (b) k^* is not a break point.
- (c) all $k \ge k^*$ are break points.
- (d) all $k < k^*$ are break points.
- (e) we don't know anything about break points.

Pop Quiz II

For every set of k^* points $\mathbf{x}_1, \dots, \mathbf{x}_{k^*}$, \mathcal{H} implements $< 2^{k^*}$ dichotomys.

- \checkmark (a) k^* is a break point.
 - (b) k^* is not a break point.
- \checkmark (c) all $k \ge k^*$ are break points.
 - (d) all $k < k^*$ are break points.
 - (e) we don't know anything about break points.

Pop Quiz III

To show that k is not a break point for \mathcal{H} :

- (a) Show a set of k points $\mathbf{x}_1, \dots \mathbf{x}_k$ which \mathcal{H} can shatter.
- (b) Show \mathcal{H} can shatter any set of k points.
- (c) Show a set of k points $\mathbf{x}_1, \dots \mathbf{x}_k$ which \mathcal{H} cannot shatter.
- (d) Show \mathcal{H} cannot shatter any set of k points.
- (e) Show $m_{\mathcal{H}}(k) = 2^k$.

Pop Quiz III

To show that k is not a break point for \mathcal{H} :

- \checkmark (a) Show a set of k points $\mathbf{x}_1, \dots \mathbf{x}_k$ which \mathcal{H} can shatter.
- overkill (b) Show \mathcal{H} can shatter any set of k points.
 - (c) Show a set of k points $\mathbf{x}_1, \dots \mathbf{x}_k$ which \mathcal{H} cannot shatter.
 - (d) Show \mathcal{H} cannot shatter any set of k points.
 - \checkmark (e) Show $m_{\mathcal{H}}(k) = 2^k$.

Pop Quiz IV

To show that k is a break point for \mathcal{H} :

- (a) Show a set of k points $\mathbf{x}_1, \dots \mathbf{x}_k$ which \mathcal{H} can shatter.
- (b) Show \mathcal{H} can shatter any set of k points.
- (c) Show a set of k points $\mathbf{x}_1, \dots \mathbf{x}_k$ which \mathcal{H} cannot shatter.
- (d) Show \mathcal{H} cannot shatter any set of k points.
- (e) Show $m_{\mathcal{H}}(k) > 2^k$.

Pop Quiz IV

To show that k is a break point for \mathcal{H} :

- (a) Show a set of k points $\mathbf{x}_1, \dots \mathbf{x}_k$ which \mathcal{H} can shatter.
- (b) Show \mathcal{H} can shatter any set of k points.
- (c) Show a set of k points $\mathbf{x}_1, \dots \mathbf{x}_k$ which \mathcal{H} cannot shatter.
- \checkmark (d) Show \mathcal{H} cannot shatter any set of k points.
 - (e) Show $m_{\mathcal{H}}(k) > 2^k$.

Back to Our Combinatorial Puzzle

How many dichotomies can you list on 4 points so that no 2 is shattered.

\mathbf{x}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4
0	0	0	0
0	0	0	
0	0	•	0
0		0	0
	0	0	0

Can we add a 6th dichotomy?

Can't Add A 6th Dichotomy

\mathbf{x}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4
0	0	0	0
0	0	0	
0	0		0
0		0	0
•	0	0	0
0			0

The Combinatorial Quantity B(N,k)

How many dichotomies can you list on 4 points so that no 2 are shattered.

B(N, k): Max. number of dichotomys on N points so that no k are shattered.

$$\mathbf{X}_1$$
 \mathbf{X}_2
 \mathbf{X}_3
 \circ
 \circ
 \circ
 \circ
 \circ
 \bullet
 \circ
 \bullet
 \circ
 \bullet
 \circ
 \circ

$$B(3,2) = 4$$

$$B(4, 2) = 5$$

Let's Try To Bound B(4,3)

How many dichotomies can you list on 4 points so that no subset of 3 is shattered.

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
0	0	0	0
0	0	0	•
0	0	•	0
0	•	0	0
•	0	0	0
0	0	•	•
0	•	0	•
•	0	0	•
0	•	•	0
•	0	•	0
•	•	0	0

Two Kinds of Dichotomys

Prefix appears once or prefix appears twice.

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
0	0	0	0
0	0	0	•
0	0	•	0
0	•	0	0
•	0	0	0
0	0	•	•
0	•	0	•
•	0	0	•
0	•	•	0
•	0	•	0
•	•	0	0

Reorder the Dichotomys

\mathbf{x}_1	\mathbf{x}_2	\mathbf{X}_3	\mathbf{x}_4
0	•	•	0
•	0	•	0
•	•	0	0
0	0	0	0
0	0	•	0
0	•	0	0
•	0	0	0
0	0	0	
0	0		
0		0	
	0	0	

 α : prefix appears once

 β : prefix appears twice

$$B(4,3) = \alpha + 2\beta$$

First, Bound $\alpha + \beta$

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•	0	•	0
	•	•	0	0
	0	0	0	0
β	0	0	•	0
ρ	0	•	0	0
	•	0	0	0
	0	0	0	•
β	0	0		
ρ	0		0	
	•	0	0	

$$\alpha + \beta \le B(3,3)$$

$$\uparrow$$

A list on 3 points, with no 3 shattered (why?)

Second, Bound β

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0			0
α		0		0
			0	0
	0	0	0	0
β	0	0		0
ρ	0		0	0
		0	0	0
	0	0	0	•
R	0	0	•	•
ρ	0	•	0	•
	•	0	0	

$$\beta \leq B(3,2)$$

$$\uparrow$$

If 2 points are shattered, then using the mirror dichotomies you shatter 3 points (why?)

Combining to Bound $\alpha + 2\beta$

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	•	•	0
α	•	0	•	0
	•	•	0	0
	0	0	0	0
β	0	0	•	0
ρ	0	•	0	0
	•	0	0	0
	0	0	0	
β	0	0	•	
ρ	0	•	0	
	•	0	0	

$$B(4,3) = \alpha + \beta + \beta$$

$$\leq B(3,3) + B(3,2)$$

The argument generalizes to (N, k)

$$B(N, k) \le B(N - 1, k) + B(N - 1, k - 1)$$

Boundary Cases: B(N, 1) and B(N, N)

					k			
		1	2	3	4	5	6	• • •
	1	1						
	2	1	3					
N	3	1		7				
	4	1			15			
	5	1				31		
	6	1					63	
	:	:						٠

$$B(N,1) = 1 \tag{why?}$$

$$B(N,N) = 2^N - 1 \qquad \text{(why?)}$$

Recursion Gives B(N, k) Bound

$$B(N, k) \le B(N - 1, k) + B(N - 1, k - 1)$$

					k			
		1	2	3	4	5	6	• • •
	1	1						
	2	1	3					
N	3	1	$\overset{\circ}{4}$	7				
11	4	1			15			
	5	1				31		
	6	1					63	
	•	:	•	•	:	•	:	٠

Recursion Gives B(N, k) Bound

$$B(N, k) \le B(N - 1, k) + B(N - 1, k - 1)$$

					k			
		1	2	3	4	5	6	• • •
	1	1						
	2	1	3					
N	3	1	4	7				
	4	1	5	11	15			
	5	1	6	16	26	31		
	6	1	7	22	42	57	63	
	•	:	:	•	:	:	:	٠

Analytic Bound for B(N, k)

Theorem.

$$B(N, \mathbf{k}) \leq \sum_{i=0}^{\mathbf{k}-1} {N \choose i}.$$

Proof: (Induction on N.)

1. Verify for N = 1: $B(1,1) \le {1 \choose 0} = 1$ 2. Suppose $B(N,k) \le \sum_{i=0}^{k-1} {N \choose i}$.

Lemma. ${N \choose k} + {N \choose k-1} = {N+1 \choose k}$. $B(N+1,k) \le B(N,k) + B(N,k-1)$ $\le \sum_{i=0}^{k-1} {N \choose i} + \sum_{i=0}^{k-2} {N \choose i}$ $= \sum_{i=0}^{k-1} {N \choose i} + \sum_{i=1}^{k-1} {N \choose i-1}$ $= 1 + \sum_{i=1}^{k-1} {N+1 \choose i}$ (lemma) $= \sum_{i=0}^{k-1} {N+1 \choose i}$

$m_{\mathcal{H}}(N)$ is bounded by B(N,k)!

Theorem. Suppose that \mathcal{H} has a break point at k. Then,

$$m_{\mathcal{H}}(N) \leq B(N, \mathbf{k}).$$

\mathbf{x}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4	 \mathbf{x}_N
0	0	0	0	 •
0	0	0	•	 0
0	0	•	0	 0
0	•	0	0	 0
•	0	0	0	 •
0	0	•	•	 •
0	•	0	•	 0
:	:	:	:	 :

Consider any k points.

They cannot be shattered (otherwise k would not be a break point).

 $B(N, \mathbf{k})$ is largest such list.

 $m_{\mathcal{H}}(N) \le B(N, \frac{k}{k})$

Once bitten, twice shy... Once Broken, Forever Polynomial

Theorem. If k is any break point for \mathcal{H} , so $m_{\mathcal{H}}(k) < 2^k$, then

$$m_{\mathcal{H}}(N) \le \sum_{i=0}^{k-1} {N \choose i}.$$

Facts (Problems 2.5 and 2.6):

$$\sum_{i=0}^{k-1} {N \choose i} \le \begin{cases} N^{k-1} + 1 \\ \left(\frac{eN}{k-1}\right)^{k-1} \end{cases}$$
 (polynomial in N)

This is **huge**: if we can replace $|\mathcal{H}|$ with $m_{\mathcal{H}}(N)$ in the bound, then learning is feasible.

A Hypothesis Set is either Good and Bad

	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$						$m_{\mathcal{H}}(N)$
	1	2	3	4	5	• • •	, ,
2-D perceptron		4					$\leq N^3 + 1$
1-D pos. ray	2	3	4	5	• • •	• • •	$\leq N^1 + 1$
2-D pos. rectangles	2	4	8	16	$< 2^5$	•••	$\leq N^4 + 1$

We have One Step in the Puzzle

 \checkmark Can we get a polynomial bound on $m_{\mathcal{H}}(N)$ even for infinite \mathcal{H} ?

Can we replace $|\mathcal{H}|$ with $m_{\mathcal{H}}(N)$ in the generalization bound?

(i) How to Deal With E_{out} (Sketch)

The ghost data set: a 'fictitious' data set \mathcal{D}' :

 $E'_{\rm in}$ is like a test error on N new points.

 $E_{\rm in}$ deviates from $E_{\rm out}$ implies $E_{\rm in}$ deviates from $E'_{\rm in}$.

 $E_{\rm in}$ and $E'_{\rm in}$ have the same distribution.

 $\mathbb{P}[(E'_{\text{in}}(g), E_{\text{in}}(g)) \text{ "deviate"}] \ge \frac{1}{2} \mathbb{P}[(E_{\text{out}}(g), E_{\text{in}}(g)) \text{ "deviate"}]$

We can analyze deviations between two in-sample errors.

(ii) Real Plus Ghost Data Set = 2N points

Number of dichotomys is at most $m_{\mathcal{H}}(2N)$.

Up to technical details, analyze a "hypothesis set" of size at most $m_{\mathcal{H}}(2N)$.

The Vapnik-Chervonenkis Bound (VC Bound)

$$\mathbb{P}\left[|E_{ ext{in}}(oldsymbol{g}) - E_{ ext{out}}(oldsymbol{g})| > \epsilon
ight] \leq 4m_{\mathcal{H}}(2N)e^{-\epsilon^2N/8},$$

for any $\epsilon > 0$.

$$\mathbb{P}\left[|E_{ ext{in}}(oldsymbol{g}) - E_{ ext{out}}(oldsymbol{g})| \leq \epsilon
ight] \geq 1 - 4m_{\mathcal{H}}(2N)e^{-\epsilon^2N/8},$$

for any $\epsilon > 0$.

$$m{E}_{ ext{out}}(m{g}) \leq m{E}_{ ext{in}}(m{g}) + \sqrt{rac{8}{N}\lograc{4m_{\mathcal{H}}(2m{N})}{\delta}},$$

w.p. at least $1 - \delta$.