Learning From Data Lecture 6 Bounding The Growth Function

Bounding the Growth Function
Models are either Good or Bad
The VC Bound - replacing $|\mathcal{H}|$ with $m_{\mathcal{H}}(N)$
M. Magdon-Ismail

CSCI 4100/6100

reare: The Growth Function $m_{\mathcal{H}}(N)$

A new measure for the diversity of a hypothesis set.

$$
\mathcal{H}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\left\{\left(h\left(\mathbf{x}_{1}\right), \ldots, h\left(\mathbf{x}_{N}\right)\right)\right\}
$$

The dichotomies (N-tuples) \mathcal{H} implements on $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$.

\mathcal{H}

\mathcal{H} viewed through \mathcal{D}

The growth function $m_{\mathcal{H}}(N)$ considers the worst possible $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$.

$$
m_{\mathcal{H}}(N)=\max _{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}}\left|\mathcal{H}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)\right| .
$$

This lecture: Can we bound $m_{\mathcal{H}}(N)$ by a polynomial in N ?
Can we replace $|\mathcal{H}|$ by $m_{\mathcal{H}}(N)$ in the generalization bound?

Example Growth Functions

	1	2	3	4	5	\ldots
2-D perceptron	2	4	8	14	\ldots	
1-D pos. ray	2	3	4	5	\ldots	
2-D pos. rectangles	2	4	8	16	$<2^{5} \ldots$	

- $m_{\mathcal{H}}(N)$ drops below 2^{N} - there is hope.
- A break point is any k for which $m_{\mathcal{H}}(k)<2^{k}$.

Pop Quiz I

I give you a set of k^{*} points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k^{*}}$ on which \mathcal{H} implements $<2^{k^{*}}$ dichotomys.
(a) k^{*} is a break point.
(b) k^{*} is not a break point.
(c) all break points are $>k^{*}$.
(d) all break points are $\leq k^{*}$.
(e) we don't know anything about break points.

Pop Quiz I

I give you a set of k^{*} points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k^{*}}$ on which \mathcal{H} implements $<2^{k^{*}}$ dichotomys.
(a) k^{*} is a break point.
(b) k^{*} is not a break point.
(c) all break points are $>k^{*}$.
(d) all break points are $\leq k^{*}$.
\checkmark (e) we don't know anything about break points.

Pop Quiz II

For every set of k^{*} points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k^{*}}, \mathcal{H}$ implements $<2^{k^{*}}$ dichotomys.
(a) k^{*} is a break point.
(b) k^{*} is not a break point.
(c) all $k \geq k^{*}$ are break points.
(d) all $k<k^{*}$ are break points.
(e) we don't know anything about break points.

Pop Quiz II

For every set of k^{*} points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k^{*}}, \mathcal{H}$ implements $<2^{k^{*}}$ dichotomys.
\checkmark (a) k^{*} is a break point.
(b) k^{*} is not a break point.
\checkmark (c) all $k \geq k^{*}$ are break points.
(d) all $k<k^{*}$ are break points.
(e) we don't know anything about break points.

Pop Quiz III

To show that k is not a break point for \mathcal{H} :
(a) Show a set of k points $\mathbf{x}_{1}, \ldots \mathbf{x}_{k}$ which \mathcal{H} can shatter.
(b) Show \mathcal{H} can shatter any set of k points.
(c) Show a set of k points $\mathbf{x}_{1}, \ldots \mathbf{x}_{k}$ which \mathcal{H} cannot shatter.
(d) Show \mathcal{H} cannot shatter any set of k points.
(e) Show $m_{\mathcal{H}}(k)=2^{k}$.

Pop Quiz III

To show that k is not a break point for \mathcal{H} :
\checkmark (a) Show a set of k points $\mathbf{x}_{1}, \ldots \mathrm{x}_{k}$ which \mathcal{H} can shatter. overkill (b) Show \mathcal{H} can shatter any set of k points.
(c) Show a set of k points $\mathbf{x}_{1}, \ldots \mathbf{x}_{k}$ which \mathcal{H} cannot shatter.
(d) Show \mathcal{H} cannot shatter any set of k points.
$\checkmark(\mathrm{e})$ Show $m_{\mathcal{H}}(k)=2^{k}$.

Pop Quiz IV

To show that k is a break point for \mathcal{H} :
(a) Show a set of k points $\mathbf{x}_{1}, \ldots \mathbf{x}_{k}$ which \mathcal{H} can shatter.
(b) Show \mathcal{H} can shatter any set of k points.
(c) Show a set of k points $\mathbf{x}_{1}, \ldots \mathbf{x}_{k}$ which \mathcal{H} cannot shatter.
(d) Show \mathcal{H} cannot shatter any set of k points.
(e) Show $m_{\mathcal{H}}(k)>2^{k}$.

Pop Quiz IV

To show that k is a break point for \mathcal{H} :
(a) Show a set of k points $\mathbf{x}_{1}, \ldots \mathbf{x}_{k}$ which \mathcal{H} can shatter.
(b) Show \mathcal{H} can shatter any set of k points.
(c) Show a set of k points $\mathbf{x}_{1}, \ldots \mathbf{x}_{k}$ which \mathcal{H} cannot shatter.
\checkmark (d) Show \mathcal{H} cannot shatter any set of k points.
(e) Show $m_{\mathcal{H}}(k)>2^{k}$.

Back to Our Combinatorial Puzzle

How many dichotomies can you list on 4 points so that no 2 is shattered.

Can we add a 6th dichotomy?

Can't Add A 6th Dichotomy

The Combinatorial Quantity $B(N, k)$

How many dichotomies can you list on $\underset{\uparrow}{4}$ points so that no $\underset{\uparrow}{2}$ are shattered.
$B(N, k)$: Max. number of dichotomys on N points so that no k are shattered.

Let's Try To Bound $B(4,3)$

How many dichotomies can you list on 4 points so that no subset of 3 is shattered.

\mathbf{X}_{1}	\mathbf{X}_{2}	\mathbf{X}_{3}	\mathbf{X}_{4}
\circ	\circ	\circ	\circ
\circ	\circ	\circ	\bullet
\circ	\circ	\bullet	\circ
\circ	\bullet	\circ	\circ
\bullet	\circ	\circ	\circ
\circ	\circ	\bullet	\bullet
\circ	\bullet	\circ	\bullet
\bullet	\circ	\circ	\bullet
\circ	\bullet	\bullet	\circ
\bullet	\circ	\bullet	\circ
\bullet	\bullet	\circ	\circ

Two Kinds of Dichotomys

Prefix appears once or prefix appears twice.

\mathbf{x}_{1}	\mathbf{X}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}
\circ	\circ	\circ	\circ
\circ	\circ	\circ	\bullet
\circ	\circ	\bullet	\circ
\circ	\bullet	\circ	\circ
\bullet	\circ	\circ	\circ
\circ	\circ	\bullet	\bullet
\circ	\bullet	\circ	\bullet
\bullet	\circ	\circ	\bullet
\circ	\bullet	\bullet	\circ
\bullet	\circ	\bullet	\circ
\bullet	\bullet	\circ	\circ

Reorder the Dichotomys

	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}
α	\circ	\bullet	\bullet	\circ
	\bullet	\circ	\bullet	\circ
β	\bullet	\circ	\circ	\circ
	\circ	\circ		
	\circ	\bullet	\circ	\circ
	\bullet	\circ	\circ	\circ
	\circ	\circ	\circ	\circ
	\circ	\circ	\circ	\circ
	\circ	\circ	\circ	
	\circ	\circ	\circ	

α : prefix appears once
β : prefix appears twice

$$
B(4,3)=\alpha+2 \beta
$$

First, Bound $\alpha+\beta$

	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}
α	\circ	\bullet	\bullet	\circ
β	\bullet	\circ	\bullet	\circ
β	\bullet	\bullet	\circ	\circ
β	\circ	\circ	\circ	\circ
	\circ	\circ	\bullet	\circ
	\bullet	\circ	\circ	\circ
	\circ	\circ	\circ	\circ
	\circ	\circ	\circ	\circ
	\bullet	\circ	\circ	
	\circ	\circ	\circ	

[^0]
Second, Bound β

	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}
α	\circ	\circ	\circ	\circ
	\circ	\circ	\circ	\circ
β	\circ	\circ	\circ	\circ
	\circ	\circ	\circ	\circ
β	\circ	\circ	\circ	
	\circ	\circ	\circ	\circ
	\circ	\circ	\bullet	\circ
	\circ	\bullet	\circ	\circ
	\bullet	\circ	\circ	\circ

$\beta \leq B(3,2)$

If 2 points are shattered, then using the mirror dichotomies you shatter 3 points (why?)

Combining to Bound $\alpha+2 \beta$

	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}
α	\circ	\bullet	\bullet	\circ
β	\bullet	\circ	\bullet	\circ
	\bullet	\bullet	\circ	\circ
β	\circ	\circ	\circ	\circ
	\circ	\circ	\bullet	\circ
	\circ	\bullet	\circ	\circ
	\bullet	\circ	\circ	\circ
	\circ	\circ	\circ	\circ
	\circ	\bullet	\circ	
	\bullet	\circ	\circ	
	\circ	\circ		

$$
\begin{aligned}
B(4,3) & =\alpha+\beta+\beta \\
& \leq B(3,3)+B(3,2)
\end{aligned}
$$

The argument generalizes to (N, k)

$$
B(N, k) \leq B(N-1, k)+B(N-1, k-1)
$$

Boundary Cases: $B(N, 1)$ and $B(N, N)$

Recursion Gives $B(N, k)$ Bound

$$
B(N, k) \leq B(N-1, k)+B(N-1, k-1)
$$

	k					
	1	2	3	4	5	6
1	1					
2						
N^{3}	1	4	7			
4	1			15		
5	1				31	
6	1					63
:	:	:	:	:	:	:

Recursion Gives $B(N, k)$ Bound

$$
B(N, k) \leq B(N-1, k)+B(N-1, k-1)
$$

	1	2	3	${ }^{k}$	5	6
1	1					
2	1	3				
$N 3$	1	4	7			
4	1	5	11	15		
5	1	6	16	26	31	
6	1	7	22	42	57	63
:	:	:	:	:	:	:

Analytic Bound for $B(N, k)$

Theorem.

$$
B(N, k) \leq \sum_{i=0}^{k-1}\binom{N}{i} .
$$

Proof: (Induction on N.)

1. Verify for $N=1: B(1,1) \leq\binom{ 1}{0}=1$
2. Suppose $B(N, k) \leq \sum_{i=0}^{k-1}\binom{N}{i}$.

Lemma. $\binom{N}{k}+\binom{N}{k-1}=\binom{N+1}{k}$.
$B(N+1, k) \leq B(N, k)+B(N, k-1)$
$\leq \sum_{i=0}^{k-1}\binom{N}{i}+\sum_{i=0}^{k-2}\binom{N}{i}$
$=\sum_{i=0}^{k-1}\binom{N}{i}+\sum_{i=1}^{k-1}\binom{N}{i-1}$
$=1+\sum_{i=1}^{k-1}\left(\binom{N}{i}+\binom{N}{i-1}\right)$
$=1+\sum_{i=1}^{k-1}\binom{N+1}{i} \quad$ (lemma)
$=\sum_{i=0}^{k-1}\binom{N+1}{i}$

$m_{\mathcal{H}}(N)$ is bounded by $B(N, k)$!

Theorem. Suppose that \mathcal{H} has a break point at k. Then,

$$
m_{\mathcal{H}}(N) \leq B(N, k) .
$$

Consider any k points.

They cannot be shattered (otherwise k woud not be a break point).
$B(N, k)$ is largest such list.
$m_{\mathcal{H}}(N) \leq B(N, k)$

Theorem. If k is any break point for \mathcal{H}, so $m_{\mathcal{H}}(k)<2^{k}$, then

$$
m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1}\binom{N}{i} .
$$

Facts (Problems 2.5 and 2.6):

$$
\sum_{i=0}^{k-1}\binom{N}{i} \leq\left\{\begin{array}{l}
N^{k-1}+1 \\
\left(\frac{e N}{k-1}\right)^{k-1} \quad(\text { polynomial in } N),
\end{array}\right.
$$

This is huge: if we can replace $|\mathcal{H}|$ with $m_{\mathcal{H}}(N)$ in the bound, then learning is feasible.

A Hypothesis Set is either Good and Bad

	N						$m_{\mathcal{H}}(N)$
2-D perceptron	2	4	8	14	\cdots	\ldots	$\leq N^{3}+1$
1-D pos. ray	2	3	4	5	\ldots	\ldots	$\leq N^{1}+1$
2-D pos. rectangles	2	4	8	16	$<2^{5}$	\ldots	$\leq N^{4}+1$

We have One Step in the Puzzle

\checkmark Can we get a polynomial bound on $m_{\mathcal{H}}(N)$ even for infinite \mathcal{H} ?

Can we replace $|\mathcal{H}|$ with $m_{\mathcal{H}}(N)$ in the generalization bound?

(i) How to Deal With $E_{\text {out }}$ (Sketch)

The ghost data set: a 'fictitious' data set \mathcal{D}^{\prime} :

$E_{\text {in }}^{\prime}$ is like a test error on N new points.
$E_{\text {in }}$ deviates from $E_{\text {out }}$ implies $E_{\text {in }}$ deviates from $E_{\text {in }}^{\prime}$.
$E_{\text {in }}$ and $E_{\text {in }}^{\prime}$ have the same distribution.
$\mathbb{P}\left[\left(E_{\text {in }}^{\prime}(g), E_{\text {in }}(g)\right)\right.$ "deviate" $] \geq \frac{1}{2} \mathbb{P}\left[\left(E_{\text {out }}(g), E_{\text {in }}(g)\right)\right.$ "deviate" $]$

We can analyze deviations between two in-sample errors.

(ii) Real Plus Ghost Data Set $=2 N$ points

$$
\begin{array}{ccccc|ccccc}
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} & \ldots & \mathbf{x}_{N} & \mathbf{x}_{N+1} & \mathbf{x}_{N+2} & \mathbf{x}_{N+3} & \ldots & \mathbf{x}_{2 N} \\
\hline \circ & \circ & \bullet & \ldots & \circ & \bullet & \bullet & \circ & \ldots & \circ
\end{array}
$$

Number of dichotomys is at most $m_{\mathcal{H}}(2 N)$.

Up to technical details, analyze a "hypothesis set" of size at most $m_{\mathcal{H}}(2 N)$.

The Vapnik-Chervonenkis Bound (VC Bound)

$$
\begin{array}{ll}
\mathbb{P}\left[\left|\boldsymbol{E}_{\text {in }}(g)-\boldsymbol{E}_{\text {out }}(g)\right|>\epsilon\right] \leq 4 m_{\mathcal{H}}(2 N) e^{-\epsilon^{2} N / 8}, & \text { for any } \epsilon>0 . \\
\mathbb{P}\left[\left|\boldsymbol{E}_{\text {in }}(g)-\boldsymbol{E}_{\text {out }}(g)\right| \leq \epsilon\right] \geq 1-4 m_{\mathcal{H}}(2 N) e^{-\epsilon^{2} N / 8}, & \text { for any } \epsilon>0 . \\
\boldsymbol{E}_{\text {out }}(g) \leq \boldsymbol{E}_{\text {in }}(g)+\sqrt{\frac{8}{N} \log \frac{4 m_{\mathcal{H}}(2 N)}{\delta}}, & \text { w.p. at least } 1-\delta .
\end{array}
$$

[^0]: $\alpha+\beta \leq B(3,3)$

 $$
 \uparrow
 $$

 A list on 3 points, with no 3 shattered (why?)

