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Abstract— weighted relative to the relationship between the nodepi- Ty
Clustering social networks is vital to understanding cally, the definition of the edge weights is application€ifie
online interactions and influence. This task becomes and a determining factor for the quality of the results.

more difficult when communities overlap, and when the
social networks become extremely large. We present
an efficient algorithm for constructing overlapping

Our approach has two phases: The first phase efficiently
embeds this metric ifR¢, so that Euclidean distances reason-

clusters, (approximately linear). The algorithm first ably approximate the graph metric. The second phase is to
embeds the graph and then performs a metric clus- cluster the embedded data. We use a Gaussian Mixture Model
tering using a Gaussian Mixture Model (GMM). We (GMM) because it can be adapted to give overlapping clusters

evaluate the algorithm on the DBLP paper-paper
network which consists of about 1 million nodes and
over 30 million edges; we can cluster this network in
under 20 minutes on a modest single CPU machine. Finding communities in social networks has been rapidly
l. INTRODUCTION researched during the past decade [2], [3], [4]. Early weddl
. . . . 'small world’, power-law, and network transitivity proges.
Social, collaboration and interaction networks (Faceboo’@Iore recently proposed is the connectedness of commupnities

DBL.P' Amazon, efc.) are a source of vast, multlmo_dal 'n.fo(ﬁlhere communities are densely connected subgraphs that are
mation. Such networks are used in order to communicate 'd%%%\rsely connected to each other [5], [6]

broadly and quickly. Identifying communities in a Netwos | To address efficiency, algorithms have been extended to

a dfundamental ttastﬁ, vyhtere rt\.odesbretpresent tr&e entities evrbqk within subspaces [7], identify overlapping groupsngsi
edges represent the interactions between nodes (e.g. YRS optimality [8], and remove the constraints on the namb

and similarity of purchases). This task is complicated by trbf communities [9]. One of the most prominent methods is
fact that entities may belong to more than one communite{

. . . . lique-percolation [10], [11].

Clustering algorithms have provided the prominent tools fo que-p [10], [11] . . .

. o o In this paper we propose an algorithm with the following
identifying communities and have been extended for allovf’éatures-

ing overlap. However, these networks are growing larger in _ ) -
size and detail every day. Thus algorithms must be scalable Efficiency: Scales linearly with the number of entities,
since even quadratic runtimes can become impractical when €dges, dimensions of embedding, and communities.
networks have over 1 million nodes and tens of millions of * Overlapping:The GMM provides a measure of similarity

Il. RELATED WORK

edges. of each entity to each community. Entities can be properly
Since there are a plethora of definitions tmmmunityin a assigned to multiple communities, during or after the
social network, we construct an intuitive algorithm thaesis clustering.

a particular metric. This metric is defined by available data * Unsupervised:Limited apriori knowledge is needed.
and assumptions made on the structure of a community. Our SSDE-Cluster discovers the community structure given
metric is based on homophily [1], favoring communities that ~ ©nly the number of communities in the network. We also
are internally similar while dissimilar from other commties. discuss how to estimate this number.
The algorithm uses the metric to assign nodes to overlappingThe work in [12], [13] is similar to ours in that it starts
clusters. Validation is whether, in real social networkse t with spectral properties, similar to multi-dimensionahlscy
algorithm can produce good intuitive results. (MDS). However, they construct the Laplacian, which has
Overview of SSDE-ClusterThe input is a (typically sparse) Q(n?) runtime. A comprehensive review of community de-
social network graphG = (V,E) on n nodes. Edges aretection is given in [2].
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Fig. 1. Keyword Clouds for the 7 clusters. For each cluste, titles of each included paper are processed into a wordiolhere a word’s font size
increases proportionately to its frequency.
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Fig. 2. LDA conference clouds for 7 clusters. These are cenfee clouds that were generated based on the groups thatid@avered.

[1l. THE SSDE-QUSTERALGORITHM After squaring and some manipulation (see [14]), one obtain

The input is a weighted grapli; = (V, E). The algorithm the MDS equation:

can be broken down as follows.

1. Run SSDE (spectral embedding) to approximately embed
the graph ind < n dimensions. where the embeddiny is ann x d matrix containing the coor-
2. Fita GMM to the embedded data; determiiigthe number dinates of the pointsl.;; = D7; (the squares of the distances)
of clusters, by comparing the marginal value of adding @nd the centering projection matrix=I,, — %17115.
cluster on the real data with random data. In a previous work [14], two lemmas were combined to
3. Use the GMM posterior probabilities to construct overlaghow that any n-point finite metric is approximately em-
ping clusters; determine the degree of cluster overlap bgddable ind = O(Inn/e?) dimensions, which means that

1
YYT ~ —§7L7 =M )

locally optimizing a cluster density. the “numerical” rank ofLL is roughly d + 2 = O(lnn/é?).
_ _ Practically, this means that a small number (gay= 100)
A. Sampled Spectral Distance Embedding suitably chosen rows oL captures all the information in

Sampled Spectral Distance Embedding (SSDE) is an dp- SSDE works in three steps (for details and the lemmas,
proximation to classical multidimensional scaling whicasy see [14]). The spectral decomposition can be computed in
introduced in the context of fast graph drawing [14]. Th@(nc” + ¢*). In practice, we may only need (say) the top
distance matrixD is the symmetric: x n matrix containing 5 dimensions, and so a power iteration could be used in lieu
all the pair-wise distances. Suppose we position verteat 0f SVD (as was done in [14]).

‘ d ) NN !

x; € R We are se_ekmg a pqsmonlng th_at appr(_mm_ates tr,;;_ Fitting a Gaussian Mixture Model (GMM)
graph theoretical distances with the Euclidean distarices, .
Our next task is to cluster the nodes. We choose a stan-

||xi —x;|| = Dsj,i,j =1,2,...,n (1) dard GMM trained using the E-M algorithm. A GMM is a



Figure 3 shows the successive gains of adding a cluster to
the DBLP data versus to the random data; from this, we
discern that about 7-11 clusters is appropriate (we used 7 in
our experiments).

C. Assigning Nodes to Overlapping Clusters

Every node: is assigned to its most likely cluster,
argmax, p;. This constructs a partition of the nodes into
clusters. We now extend this so that clusters may overlap.
For nodei, defineay; = pgi/ maxy pri; ap; measures how
diffuse nodei’s membership is with respect to its most likely
cluster. Assume we have a cluster metric which measures the
quality of a cluster. In our experiments, we used
2 3 4 5 6 7 8 9 10 W/In(c) V[/In(c) '

Number of Clusters E(C) W (C) + Woutl) cc 1)
Fig. 3. Determining th’e # clusters. As additional clusteesaded, the rate Win (resp.Woyy is the sum of similarities within the cluster
I & model i o random data: the red region for astual data - (€SP from within to outside)£(C) combines similarity in-
ternally and to the outside with the average internal sirityla

Log-Prob change by Adding Cluster

+(1-X

We used\ = 1.
weighted sum of)/ component densities; (x), .. . , pas (x); We usea; to define an ordering over node-cluster assign-
each component density isdavariate Gaussian function with Ment pairs, starting with the highest When evaluating a
meanpu; and covariance matriXy: node-cluster pair, we also calculate the expected chantpein
metric value for the cluster. This is determined by finding th
1 — 3 o) T2 (e ) change in adding aaveragenode; a node which has degree

pk(X) = —— 75— - 5¢€ .
(2m) /2|5 |1/2 and edge weights equal to the respective global averages

and has'%‘ of its edges connected to nodes in the cluster.
We process all node-cluster pairs sequentially in desogndi
é/alue of  to ensure that the more probable assignments are
made first. This is similar in spirit to the local optimizai®
performed in [8], [17].

The GMM is p(x) = Yo', mepk(x), where the mixture
weights satisfyd r, m = 1.

We use a simple E-M procedure for training. We initializ
the GMM by selectings;, randomly without replacement, and
settingm, = 1/M andX; = I,;. In the expectation step, the
probabilities for node to belong to clustek are calculated IV. THE DBLP NETWORK

by pri = mrpr(x;). We then update the parameters using |y general, the social network is constructed by defining the
these probabilities during the maximization step. These Wagents” (nodes) and the interactions or relationshipsieen
steps are repeated until some end criterion _is rea}chedili)etghem. We apply our algorithm to the Digital Bibliography and
of these steps are well-known [15]. One iteration of E-Mljprary Project (DBLP) data [18]; we choose papers as nodes,
is O(nMd?), but [16] discusses methods for reducing thigng two papers are related if they have common authors. We
to O(nMd) using low rank perturbations to the covariancgse the Jaccard index of the author sets to define similarity;
matrix. The resulting set of posterior probabiliti¢s.;} are for two papersi, j, let A;, A; be their respective author sets.

used to computeverlappingclusters. Then
Determining the Number of Clustetssing too many clus- AN Ayl 4 — 1
i itti i S5 = TaA A i = —
ters results in over-fitting the data and breaking the true |A; U A;j Sij

communities into several smaller communities. Too few €auSyiost clustering algorithms for social networks work witreth
communities to be lumped together. We use a simple heurisligjjarities {si;}. Since our algorithms are metric based and
for estimating the proper number of clusters in the networkeeq a difference measure, we use the inverse-similarity.
This involves comparing the real data clusters to randora dat
clusters. A. Validating Clusters

We generate a random data set whose points are randomlf¥he recurring problem with applying a clustering algorithm
and uniformly distributed over the same space as the emdedtereal data (where the “definition” of the cluster is the tis
data. A model is fitted to the random data and we measwtgthe algorithm”) is to validate these clusters as good. 8& u
the increase in log-likelihood of the model as we add clgstehuman judgment based on the title and venue information of
Since there are no clusters in the random data, the increas¢hie papers. We preprocess title texts by removing stop words
log-likelihood by adding an additional cluster is purelpdt and stemming [19]. Visually, we depict the descriptive veord
over-fitting. When the benefit from adding a cluster to the reaking word clouds, and compare with an LDA analysis of the
data is not significantly more than that of adding a cluster tille data. Note that in general networks, such an LDA analys
random data, we argue that it is time to stop adding clusteis.not possible.
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SysPS 25 241.7,13] 24,1.7,1.3] 24,1.7,1.3] 24,1.6,1.3] 25,1.4,1.0] 24,1.7,1.2
ITh 2.3 24,18,15] 24,1.7,1.3| 24,1.7,1.5| 2.4,1.6,1.3| 2.3,1.7,15
SysA 2.4 24,1.7,15| 2.4,18,15| 2.4,18,1.4| 2.4,1.8,1.5
Lrn 2.4 24,16,1.4| 24,151.2| 24,1.7,1.4
CTh 2.4 24,17,1.2] 24,1815
WbDB 25 24,1914
RBio 24
TABLE |

CLUSTERQUALITY. BETWEEN TWO CLUSTERSWE HAVE THREE MEASURES THE AVG. WEIGHT OF EDGES WITHIN THE CLUSTERSTHE AVG. WEIGHT
OF EDGES BETWEEN A CLUSTER AND THE INTERSECTION OF THE TWO CISTERS AND THE AVG. WEIGHT OF EDGES BETWEEN THE CLUSTERSDEALLY
THESE VALUES DECREASE IN ORDER

V. EXPERIMENTAL RESULTS Acknowledgementhis material is based upon work par-

For our study, we constructed the DBLP network as d&&lly sponsored by: U.S. DHS through ONR grant number
scribed above and clustered the largest connected comipont§0014-07-1-0150 to Rutgers University and continues unde
which consisted of about 900K papers (nodes) and over te Army Research Laboratory under Cooperative Agreement
million (weighted) edges. We chose = 25 for the SSDE Number W911NF-09-2-0053.
ph_ase and then c_hoﬂe: 5 for the embe_dding. We cIL_Jstered REFERENCES
using the GMM into 7 clusters (as discussed earlier). The ) ) .
process of embedding and clustering took under an 20 mif M- McPherson, L. Smith-Lovin, and J. Cook, "Birds of a fet:

" ] . Homophily in social networks,Rev. Sog.vol. 27, pp. 415-444, 2001.
on a single 2.0Ghz CPU machine with 2GB of memory. [2] S. Fortunato, “Community detection in graphBhys. Rep. 486, 75-174

Cluster and Overlap Quiality. A typ- - l(v2|0é(')) vol. 4(816|’\/IppE. 7J5—§74, 2010-C o structure | -
. . . . . Glrvan an . E. J. Newman, “Communi y structure In so@a
ical ~ pair of clusters is illustrated  here. ™ i i hetworks PNAS vol. 99, no. 12, pp. 7821-7826, June 2002.
With respect to the paper-paper [4] M. Newman, “The structure and function of complex netwgrk3IAM

review vol. 45, no. 2, pp. 167-256, 2003.
[5] M. Newman and M. Girvan, “Finding and evaluating communityus-
B ture in networks,Phys. Rev. Evol. 69, no. 2, pp. 1-15, February 2004.

similarity, we can measure the av-
erage inside a set4(and B) as

compared with the average be- [6] S. Gregory, “An algorithm to find overlapping community wstture in
tween a set and the intersection - Ee“gOTKS”fPTOC-dP'EADDZ ka- 9515}4%1\/?007' H o e

. Sequeira and M. Zaki, : a new approach to ingtirey
(4,C and B, () and the average subspace mining,Bus. Intel. & Data Min, vol. 1, no. 2, p. 137, 2005.
between sets4, B). We expect: [8] J. Baumes, M. Goldberg, and M. Magdon-Ismail, “Efficieneidifica-

tion of overlapping communitiesJSlI, vol. 1, no. 2, pp. 27-36, 2005.
[9] M. Al Hasan, S. Salem, B. Pupacdi, and M. Zaki, “Clusteriwgh
Lower Bound on Similarity,” inProc. 13th PAKDD 2009, p. 122.
G. Palla, I. Deenyi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature andetpéi
Nature vol. 435, no. 7043, pp. 814-8, June 2005.
M. Zaki, M. Peters, |. Assent, and T. Seidl, “Clicks: Arffextive
algorithm for mining subspace clusters in categorical ddfaBPata &
Knowledge Engineeringrol. 60, no. 1, pp. 51-70, January 2007.

Since the clustering was done with paper-paper similariti&2] A. Ng, M. Jordan, and Y. Weiss, “On spectral clusterigralysis and
an algorithm,”NIPS vol. 2, pp. 849-856, 2002.

basgd on authorship overlap, we may validate the cIu_sters %ﬁ D. Yan, L. Huang, and M. I. Jordan, "Fast approximate sc
looking at the text-based and conference based topics they clustering,” inProc. 15th SIGKDD 2009.

represent (as discussed earlier). Figure 1 shows the 7 w8l A. Civril, M. Magdon-Ismail, and E. Bocek-Rivele, “SSDEast graph
clouds representing the clusters. Additionally, we shoe th idnrng'g%ﬁusgi‘)g sampled spectral distance embeddingGraph Draw-
resulting word clouds from using LDA in Figure 2. Again, wegis] c. M. Biéhop, Neural Networks for Pattern Recognition Oxford
note that while LDA needs text, SSDE-Cluster does not use it

University Press, 1996.
in any way. Qualitatively, we see that the results are s'rmila[16] M. Magdon-Ismail and J. Purnell, “Approximating the caeace matrix
[17]

LAAEBB) > LACHBO)2(AB) @

10
where X, Y is the average weight over edges that have or[le]
node in X and one inY. This can be observed for our

overlapping clusters (see Table I), which lends credence (1!
their validity.

with low rank perturbations,” irProc. IDEAL”, 2010.

J. Baumes, M. Goldberg, M. Krishnamoorthy, M. Magdon-lgmend
N. Preston, “Finding communities by clustering a graph interapping
subgraphs,” iNADIS, 2005, pp. 97-104.

M. Ley, “DBLP: Computer science bibliography,” 1993.

C. van Rijsbergen and S. Robertson, “New models in priistb
information retreival,"London British Library 1980.

J. Purnell, “LRGMM code,'www.cs.rpi.edu/ purnej/code.php010.

VI. CONCLUSION

We presented an algorithm to efficiently find overlapping
communities in very large social networks with very littl 18}
apriori knowledge. Our algorithm involves two fast and &ne
time phases (ignoring a log factor in the SSSP task f#0]
weighted graphs). The graph is only used as a proxy for
computing distances; SSDE-Cluster can be applied with any
other proxy for distance. Efficient implementations of all o
algorithms can be found online [20].



