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Abstract—
Clustering social networks is vital to understanding
online interactions and influence. This task becomes
more difficult when communities overlap, and when the
social networks become extremely large. We present
an efficient algorithm for constructing overlapping
clusters, (approximately linear). The algorithm first
embeds the graph and then performs a metric clus-
tering using a Gaussian Mixture Model (GMM). We
evaluate the algorithm on the DBLP paper-paper
network which consists of about 1 million nodes and
over 30 million edges; we can cluster this network in
under 20 minutes on a modest single CPU machine.

I. I NTRODUCTION

Social, collaboration and interaction networks (Facebook,
DBLP, Amazon, etc.) are a source of vast, multimodal infor-
mation. Such networks are used in order to communicate ideas
broadly and quickly. Identifying communities in a network is
a fundamental task, where nodes represent the entities and
edges represent the interactions between nodes (e.g. users
and similarity of purchases). This task is complicated by the
fact that entities may belong to more than one community.
Clustering algorithms have provided the prominent tools for
identifying communities and have been extended for allow-
ing overlap. However, these networks are growing larger in
size and detail every day. Thus algorithms must be scalable
since even quadratic runtimes can become impractical when
networks have over 1 million nodes and tens of millions of
edges.

Since there are a plethora of definitions forcommunityin a
social network, we construct an intuitive algorithm that uses
a particular metric. This metric is defined by available data
and assumptions made on the structure of a community. Our
metric is based on homophily [1], favoring communities that
are internally similar while dissimilar from other communities.
The algorithm uses the metric to assign nodes to overlapping
clusters. Validation is whether, in real social networks, the
algorithm can produce good intuitive results.

Overview of SSDE-ClusterThe input is a (typically sparse)
social network graphG = (V,E) on n nodes. Edges are

weighted relative to the relationship between the nodes. Typi-
cally, the definition of the edge weights is application-specific
and a determining factor for the quality of the results.

Our approach has two phases: The first phase efficiently
embeds this metric inRd, so that Euclidean distances reason-
ably approximate the graph metric. The second phase is to
cluster the embedded data. We use a Gaussian Mixture Model
(GMM) because it can be adapted to give overlapping clusters.

II. RELATED WORK

Finding communities in social networks has been rapidly
researched during the past decade [2], [3], [4]. Early work used
’small world’, power-law, and network transitivity properties.
More recently proposed is the connectedness of communities,
where communities are densely connected subgraphs that are
sparsely connected to each other [5], [6].

To address efficiency, algorithms have been extended to
work within subspaces [7], identify overlapping groups using
local optimality [8], and remove the constraints on the number
of communities [9]. One of the most prominent methods is
clique-percolation [10], [11].

In this paper we propose an algorithm with the following
features:

• Efficiency: Scales linearly with the number of entities,
edges, dimensions of embedding, and communities.

• Overlapping:The GMM provides a measure of similarity
of each entity to each community. Entities can be properly
assigned to multiple communities, during or after the
clustering.

• Unsupervised:Limited apriori knowledge is needed.
SSDE-Cluster discovers the community structure given
only the number of communities in the network. We also
discuss how to estimate this number.

The work in [12], [13] is similar to ours in that it starts
with spectral properties, similar to multi-dimensional scaling
(MDS). However, they construct the Laplacian, which has
Ω(n2) runtime. A comprehensive review of community de-
tection is given in [2].
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Fig. 1. Keyword Clouds for the 7 clusters. For each cluster, the titles of each included paper are processed into a word cloud where a word’s font size
increases proportionately to its frequency.
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Fig. 2. LDA conference clouds for 7 clusters. These are conference clouds that were generated based on the groups that LDAdiscovered.

III. T HE SSDE-CLUSTER ALGORITHM

The input is a weighted graph,G = (V,E). The algorithm
can be broken down as follows.

1. Run SSDE (spectral embedding) to approximately embed
the graph ind ≪ n dimensions.

2. Fit a GMM to the embedded data; determineK, the number
of clusters, by comparing the marginal value of adding a
cluster on the real data with random data.

3. Use the GMM posterior probabilities to construct overlap-
ping clusters; determine the degree of cluster overlap by
locally optimizing a cluster density.

A. Sampled Spectral Distance Embedding

Sampled Spectral Distance Embedding (SSDE) is an ap-
proximation to classical multidimensional scaling which was
introduced in the context of fast graph drawing [14]. The
distance matrixD is the symmetricn × n matrix containing
all the pair-wise distances. Suppose we position vertexvi at
xi ∈ R

d. We are seeking a positioning that approximates the
graph theoretical distances with the Euclidean distances,i.e.,

||xi − xj || ≈ Dij , i, j = 1, 2, . . . , n (1)

After squaring and some manipulation (see [14]), one obtains
the MDS equation:

YY
T ≈ −

1

2
γLγ = M (2)

where the embeddingY is ann×d matrix containing the coor-
dinates of the points,Lij = D2

ij (the squares of the distances)
and the centering projection matrixγ = In − 1

n1n1T
n .

In a previous work [14], two lemmas were combined to
show that any n-point finite metric is approximately em-
beddable ind = O(ln n/ǫ2) dimensions, which means that
the “numerical” rank ofL is roughly d + 2 = O(ln n/ǫ2).
Practically, this means that a small number (sayc = 100)
suitably chosen rows ofL captures all the information in
L. SSDE works in three steps (for details and the lemmas,
see [14]). The spectral decomposition can be computed in
O(nc2 + c3). In practice, we may only need (say) the top
5 dimensions, and so a power iteration could be used in lieu
of SVD (as was done in [14]).

B. Fitting a Gaussian Mixture Model (GMM)

Our next task is to cluster the nodes. We choose a stan-
dard GMM trained using the E-M algorithm. A GMM is a



Fig. 3. Determining the # clusters. As additional clusters are added, the rate
of change in the model’s log-prob decreases. The green regionshows changes
in a model fit to random data; the red region for actual data.

weighted sum ofM component densitiesp1(x), . . . , pM (x);
each component density is ad variate Gaussian function with
meanµk and covariance matrixΣk:

pk(x) =
1

(2π)d/2|Σk|1/2
e−

1

2
(x−µk)TΣ−1

k
(x−µk).

The GMM is p(x) =
∑M

k=1 πkpk(x), where the mixture
weights satisfy

∑M
k=1 πk = 1.

We use a simple E-M procedure for training. We initialize
the GMM by selectingµk randomly without replacement, and
settingπk = 1/M and Σk = Id. In the expectation step, the
probabilities for nodei to belong to clusterk are calculated
by pki = πkpk(xi). We then update the parameters using
these probabilities during the maximization step. These two
steps are repeated until some end criterion is reached. Details
of these steps are well-known [15]. One iteration of E-M
is O(nMd2), but [16] discusses methods for reducing this
to O(nMd) using low rank perturbations to the covariance
matrix. The resulting set of posterior probabilities{pki} are
used to computeoverlappingclusters.

Determining the Number of ClustersUsing too many clus-
ters results in over-fitting the data and breaking the true
communities into several smaller communities. Too few causes
communities to be lumped together. We use a simple heuristic
for estimating the proper number of clusters in the network.
This involves comparing the real data clusters to random data
clusters.

We generate a random data set whose points are randomly
and uniformly distributed over the same space as the embedded
data. A model is fitted to the random data and we measure
the increase in log-likelihood of the model as we add clusters.
Since there are no clusters in the random data, the increase in
log-likelihood by adding an additional cluster is purely from
over-fitting. When the benefit from adding a cluster to the real
data is not significantly more than that of adding a cluster to
random data, we argue that it is time to stop adding clusters.

Figure 3 shows the successive gains of adding a cluster to
the DBLP data versus to the random data; from this, we
discern that about 7-11 clusters is appropriate (we used 7 in
our experiments).

C. Assigning Nodes to Overlapping Clusters

Every node i is assigned to its most likely cluster,
argmaxk pki. This constructs a partition of the nodes into
clusters. We now extend this so that clusters may overlap.
For nodei, defineαki = pki/maxk pki; αki measures how
diffuse nodei’s membership is with respect to its most likely
cluster. Assume we have a cluster metric which measures the
quality of a cluster. In our experiments, we used

E(C) = λ
Win(C)

Win(C) + Wout(C)
+ (1 − λ)

Win(C)

|C|(|C| − 1)
;

Win (resp.Wout) is the sum of similarities within the cluster
(resp. from within to outside);E(C) combines similarity in-
ternally and to the outside with the average internal similarity.
We usedλ = 1

2 .
We useαki to define an ordering over node-cluster assign-

ment pairs, starting with the highestα. When evaluating a
node-cluster pair, we also calculate the expected change inthe
metric value for the cluster. This is determined by finding the
change in adding anaveragenode; a node which has degree
and edge weights equal to the respective global averages
and has |C|

n of its edges connected to nodes in the cluster.
We process all node-cluster pairs sequentially in descending
value of α to ensure that the more probable assignments are
made first. This is similar in spirit to the local optimizations
performed in [8], [17].

IV. T HE DBLP NETWORK

In general, the social network is constructed by defining the
“agents” (nodes) and the interactions or relationships between
them. We apply our algorithm to the Digital Bibliography and
Library Project (DBLP) data [18]; we choose papers as nodes,
and two papers are related if they have common authors. We
use the Jaccard index of the author sets to define similarity;
for two papersi, j, let Ai, Aj be their respective author sets.
Then

sij =
|Ai ∩ Aj |

|Ai ∪ Aj |
; dij =

1

sij

Most clustering algorithms for social networks work with the
similarities {sij}. Since our algorithms are metric based and
need a difference measure, we use the inverse-similarity.

A. Validating Clusters

The recurring problem with applying a clustering algorithm
to real data (where the “definition” of the cluster is the “result
of the algorithm”) is to validate these clusters as good. We use
human judgment based on the title and venue information of
the papers. We preprocess title texts by removing stop words
and stemming [19]. Visually, we depict the descriptive words
using word clouds, and compare with an LDA analysis of the
title data. Note that in general networks, such an LDA analysis
is not possible.
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SysPS 2.5 2.4,1.7,1.3 2.4,1.7,1.3 2.4,1.7,1.3 2.4,1.6,1.3 2.5,1.4,1.0 2.4,1.7,1.2

ITh 2.3 2.4,1.8,1.5 2.4,1.7,1.3 2.4,1.7,1.5 2.4,1.6,1.3 2.3,1.7,1.5
SysA 2.4 2.4,1.7,1.5 2.4,1.8,1.5 2.4,1.8,1.4 2.4,1.8,1.5
Lrn 2.4 2.4,1.6,1.4 2.4,1.5,1.2 2.4,1.7,1.4
CTh 2.4 2.4,1.7,1.2 2.4,1.8,1.5

WbDB 2.5 2.4,1.9,1.4
RBio 2.4

TABLE I
CLUSTER QUALITY . BETWEEN TWO CLUSTERS, WE HAVE THREE MEASURES: THE AVG. WEIGHT OF EDGES WITHIN THE CLUSTERS, THE AVG. WEIGHT

OF EDGES BETWEEN A CLUSTER AND THE INTERSECTION OF THE TWO CLUSTERS, AND THE AVG . WEIGHT OF EDGES BETWEEN THE CLUSTERS. IDEALLY

THESE VALUES DECREASE IN ORDER.

V. EXPERIMENTAL RESULTS

For our study, we constructed the DBLP network as de-
scribed above and clustered the largest connected component,
which consisted of about 900K papers (nodes) and over 30
million (weighted) edges. We chosec = 25 for the SSDE
phase and then chosed = 5 for the embedding. We clustered
using the GMM into 7 clusters (as discussed earlier). The
process of embedding and clustering took under an 20 min
on a single 2.0Ghz CPU machine with 2GB of memory.

Cluster and Overlap Quality. A typ-
ical pair of clusters is illustrated here.

A C B

With respect to the paper-paper
similarity, we can measure the av-
erage inside a set (A and B) as
compared with the average be-
tween a set and the intersection
(A,C and B,C) and the average
between sets (A,B). We expect:

1

2
(A,A + B,B) ≥

1

2
(A,C + B,C) ≥ (A,B) (3)

whereX,Y is the average weight over edges that have one
node in X and one inY . This can be observed for our
overlapping clusters (see Table I), which lends credence to
their validity.

Since the clustering was done with paper-paper similarities
based on authorship overlap, we may validate the clusters by
looking at the text-based and conference based topics they
represent (as discussed earlier). Figure 1 shows the 7 word
clouds representing the clusters. Additionally, we show the
resulting word clouds from using LDA in Figure 2. Again, we
note that while LDA needs text, SSDE-Cluster does not use it
in any way. Qualitatively, we see that the results are similar.

VI. CONCLUSION

We presented an algorithm to efficiently find overlapping
communities in very large social networks with very little
apriori knowledge. Our algorithm involves two fast and linear-
time phases (ignoring a log factor in the SSSP task for
weighted graphs). The graph is only used as a proxy for
computing distances; SSDE-Cluster can be applied with any
other proxy for distance. Efficient implementations of all our
algorithms can be found online [20].
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