Intro to Haskell, continued

Announcements

= Moved Quiz 7 to Friday

= HWG Is posted, due Tuesday Nov. 29

= Please to install GHC as soon as possible
=« Post on Submitty forum if you hit a snag

= We will release Exam 2 grades later this
week

Programming Languages CSCI 4430, A. Milanova

Lecture Outline

= Haskell
= Covered basic syntax and interpreters

= Lazy evaluation

= Static typing and static type inference

= Algebraic data types and pattern matching
= Type classes

= Monads ... and more

Programming Languages CSCI 4430, A. Milanova

Normal Order to WHNF Haskell syntax:

let i
Interpreter et o
9

= Definition by caseson E ::=x| Ax. E, | E4 E,

interpret(x) = x
Apply function

interpret(Ax.E4) = AX.E; before “interpreting”
the argument

interpret(E4 E,) = let f = interpret(E,) —V

in case f of
NO ot WHNE —73slide Ax.E; = interpret(E;[E,/X])
o fk ldvP
VO auh NP > Howewon £ 3 > tE,
A0 b WHNF
ko ndo NF
o & NF

Programming Languages CSCI 4430, A. Milanova (modified from MIT 2015 Program Analysis OCW) 4

Interpreter Example

E/ E\g

E/ b B Mfecpre (7(f\x.>() / &'}x 2-7
, Difep Y (Cex) 2))
o (Ax.x) y)((Ax.x) 2) < ideapred (CV%"&%)@
@\ 7 Iy Rbepeet(X %7)
R .
y A Z o =
/N /N
e X e ¥
E & €§ E‘r
(DD
——n / \E?
(€. €)€5)E 4?/%\@
A
Programming Languages CSCI 4430,@@"%0 E‘ 5

Homework

= A step-by-step Normal order to Normal form

iInterpreter
OueSkep Jral- /W%/
((A,(x) Z) ((*K()’Z)_" b/ /\X)()’?_)

Teud

°E | D (g |

—é -— - ———m— e

Programming Languages CSCI 4430, A. Milanova 6

Lazy Evaluation

= Unlike Scheme (and most programming languages)
Haskell does use lazy evaluation, i.e., normal order

reduction ¢
= It won't evaluate an expression until it is needed
>fxy=x*y

> f (5+1) (5+2)
--- evaluates to (5+1) * (5+2)
--- evaluates argument when needed

Programming Languages CSCI 4450/6450, A Milanova 7

Lazy Evaluation

= In Scheme:
(define (fun xy) (* X y))
> (fun (+51) (+52)) ->
(fu 6 &) — Cul >4
(define (fun n)
(cons n (fun (+ n 1))))

> (car (fun Q)) —
> (ear (ens @ (fuet))) —s .,

jkfiuile re curion

: denotes “cons” :
constructs a list with
head n and tail fun(n+1)

@fiy = \X Yy~ X
heaé - \P-—B/? 7Lru_

Lazy Evaluation

= In Haskell:
fun n = n fun(n+1) * = Cous = pa

- - - - o — US = pair =
> head (fun 0) ‘—'310{ \fsb—>bfs

> E—?Effﬂ«,)((fuao —
<Qﬁ_¢:qo)'fvw —>2

(09 fua(oht)) foe
(\'Fsbqg ¢ % 0 és'“(o,ai) fro —®
(\sb—> b 05) Fu(om) fr —

F‘
(\b'-» b 0 .;luq.(OH) '/‘ru. — Latt step throws away cecon
e 0 Paccory —se [@] (ttiy frs ey ot o

Lazy Evaluation

> f x =[] --- f takes x and returns the empty list
> f (repeat 1) --- repeat produces infinite list [1,1...

>]

> head ([1..]) --- [1..] is the infinite list of integers

> 1

= Lazy evaluation allows infinite structures!

Programming Languages CSCI 4430, A. Milanova 10

Aside: Python Generators

def gen(start):
n = start
while True:
yield n
n=n+1

gen obj = gen(0)
print(next(gen_obj))
print(next(gen_obj))
print(next(gen_obj))

Lazy Evaluation

= Generate the (infinite) list of even numbers

)

,/z[{a (\x——v X ‘wod! 3==9) [1..7

= Generate an (infinite) list of “fresh variables”

Eio-] —_ E-‘i"‘k7 ftz‘_\f/, llg‘h,..gj

map (\x=s (show x)++'C") [4e]

’Jlx COsversioy D & ﬂl«;r Cou ce fe uefio
frow iuf f ftrig

Programming Languages CSCI 4430, A. Milanova 12

Lazy Evaluation

= EXxercise: write a function that generates the

(infinite) list of prime numbers
~—a_

Programming Languages CSCI 4430, A. Milanova

13

Static Typing and Type Inference

= Unlike Scheme, which is dynamically typed,
Haskell is statically typed!

= Unlike Java/C++ we don’t have to write type
anno}g}tlons Haskell infers types!

>,Fx Lcocf X - ‘Tme-—> b
>letfx = head X in f True

« Couldn't match expected type ‘[a]’ with actual type ‘Bool’
* In the first argument of f', namely ‘True’

In the expression: f True ...
14

Static Typing and Type Inference

= Recall apply_n f n x:
> apply_n fnx=if n==0 then x else apply_n f (n-1) (f x)

> Opply-n 22(56, /(hb):)(a,—m)-p b—g, = 4,
x referu fpe

> apply_n (+ 1) True 0
<interactive>:32:1: error:
e Could not deduce (Num Bool) arising from a use of ‘apply n’
from the context: Num t2
bound by the inferred type of it :: Num t2 => t2
at <interactive>:32:1-22
* In the expression: apply n(+1) True 0
In an equation for ‘it’;: it = apply n(+1) True 0 i5

Lecture Outline

= Haskell
= Covered syntax and interpreters

= Lazy evaluation

= Static typing and static type inference

= Algebraic data types and pattern matching
a—

= Type classes

= Monads ... and more

Programming Languages CSCI 4430, A. Milanova

16

Algebraic Data Types

= Algebraic data types are tagged unions (aka
sums) of products (aka records)

data Shape = Line Point Point
| Triangle Point Point Point

nion
| Quad Paint Point Point Point |

Haskell keyword | new constructors (a.k.a. tégs, disjuncts, summands)
Line is a binary constructor, Triangle is a ternary ...

the neW type

Programming Languages CSCI 4430, A Milanova (example from MIT 2015 Program Analysis OCW) 17

Algebraic Data Types

= Constructors create values of the data type

let
11::Shape
11 =Line el e2
t1::Shape = Triangle e3 e4 €5
g1::Shape = Quad e6 e7 €8 €9
In

Programming Languages CSCI 4430, A Milanova (example from MIT 2015 Program Analysis OCW) 18

Algebraic Data Types in Haskell
Homework

= Defining a lambda expression

type Name = String

data Expr = Var Name
Lambda Name Expr
W o= App Expr Expr

Y deriving (Eq, Show)
ei =—f7 - = Mlows Couepocit ou oued du/>/o,7 y Expre vedues

> e1 = Var “x” /| Lambda term x
> e2 = Lambda “x” e1 // Lambda term Ax.x

19

Exercise: Define an ADT for Expressions
as in your HW4

type Name = String

data Expr = Var Name

Val Bool

Myand Expr Expr

Myor Expr Expr

Mylet Name Expr Expr
deriving (Eq, Show)

evaluate :: Expr = [(Name,Bool)] - Bool

evaluate e env = ...

20

Pattern Matching

Type signature of anchorPnt: takes
a Shape and returns a Point.

= Examine values-of an algebraic data type

anchorPnt :: Shape -> Point
anchorPnt s = case s of

Line p1 p2 -> p1
Triangle p3 p4 p5 -> p3
Quad pb6 p7 p8 p9 -> pb6

= Two points

= [est: does the given value match this pattern?

= Binding: if it matches, deconstruct it and bind

pattern params to corresponding arguments
Programming Languages CSCI 4430, A Milanova (from MIT 2015 Program Analysis OCW) 21

Pattern Matching

= Pattern matching “deconstructs” a term

>let h:t="ana" int
!!na!!

> let (x,y) = (10,”ana”) in x
10

Programming Languages CSCI 4430, A. Milanova

22

Examples of Algebraic Data Types
Polymorphic types.
data Bool = True | False ais a type parameter!

data Day = Mon | Tue | Wed | Thu{Fri | Sat | Sun

data List a =Nil | Cons a (List a)
data Tree a = Leaf a | Node (Tree a) (Tree a)

data Maybe a = Nothing | Just a
N

Maybe type denotes that result of computation can
be a or Nothing. Maybe is a monad.

Programming Languages CSCI 4430, A Milanova (examples from MIT 2015 Program Analysis OCW) 23

Type Constructor vs. Data
Constructor

Bool and Day are nullary type constructors:
data Bool = True | False
data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
E.g., x::Bool, y::Day

Maybe is a unary type constructor
data Maybe a = Nothing | Just a
E.g., s::Maybe Sheep, e::Maybe Expr == Tpes, cuibructed

u:my 7(7'pc Cowsd ruesfor
ﬂ'/aabc
b= Vor “x' &= Lowbde “x* [l/ar et)

- = "‘P rescioys Cou ruef4d Lhup Deta CoustriechrsS
Programming Languages CSCI 4430, A. Milanova Var' aud dewbda 24

Lecture Outline

= Haskell
= Covered syntax and interpreters

= Lazy evaluation

= Static typing and static type inference

= Algebraic data types and pattern matching
s [ype classes

= Monads ... and more

Programming Languages CSCI 4430, A. Milanova

25

Generic Functions in Haskell

= \We can generalize a function when a function
makes no assumptions about the type:

const::a->b->a
const xy=x

apply :: (a->b)->a->b
apply g x =g X

Programming Languages CSCI 4430, A. Milanova (examples from MIT 2015 Program Analysis OCW) 26

Generic Functions

-- List datatype

data List a = Nil | Cons a (List a)

= Can we write a function sum over a list of a’s?
sum ::a->Lista->a

sum n Nil = n

sum n (Cons x xs) = sum (n+x) xs

= Type error: No instance for (Num a) arising from a
use of ‘+’

= a no longer unconstrained. Type and function
definition imply we apply + on a but

« +is not defined on all types!

27

Haskell Type Classes

= Not to be confused with Java classes/interfaces

= Define a type class containing the arithmetic
operators

Read: A type a is an instance of the type

class Num a where class Num if it provides “overloaded”
(==) ::a->a->Bool definitions of operations ==, +, ...

(+) =a->a->a
o Read: Int and Float are instances of Num
instance Num Int where

X==y=..

instance Num Float where

Programming Languages CSCI 4430, A. Milanova 28

Generic Functions with Type Class

sum :: (Numa)=>a->Lista->a
sum n Nil = n
sum n (Cons x xs) = sum (n+x) xs

= One view of type classes: predicates
= (Num a) is a predicate in type definitions

= Constrains the specific types we can instantiate a
generic function with

= A type class has associated laws

Programming Languages CSCI 4430, A. Milanova 29

Type Class Hierarchy

class Eq a where
(==), (/=) :: a->a->Bool

class (Eq a) => Ord where
(<), (<=), (®), (>=) ::a->a->Bool
min, max sa->a->a

= Each type class corresponds to one concept
= Class constraints give rise to a hierarchy

= Eqis a superclass of Ord
= Ord inherits specification of (==) and (/=)
= Notion of “true subtyping”

Programming Languages CSCI 4430, A. Milanova (modified from MIT 2015 Program Analysis OCW) 30

Lecture Outline

= Haskell
= Covered syntax and interpreters

= Lazy evaluation

= Static typing and static type inference

= Algebraic data types and pattern matching
= Type classes

= Monads ... and more

Programming Languages CSCI 4430, A. Milanova

31

Monads

= One source: All About Monads (haskell.org)

s Another source: textbook

= A way to cleanly compose computations
= E.g., f may return a value of type a or Nothing

Composing computations becomes tedious:
case (f s) of

Nothing = Nothing
Justm -> case (fm)...

= In Haskell, monads encapsulate IO and other
imperative features

32

An Example: Cloned Sheep

type Sheep = ...
father :: Sheep - Maybe Sheep
father = ...

mother :: Sheep - Maybe Sheep

mother = ...
(A sheep may have a mother and a father, just a mother, or just a father.)

maternalGrandfather :: Sheep 2> Maybe Sheep

maternalGrandfather s = case (mother s) of
Nothing =2 Nothing
Just m - father m

Programming Languages CSCI 4430, A Milanova (Example from All About Monads Tutorial) 33

An Example

mothersPaternalGrandfather :: Sheep - Maybe Sheep
mothersPaternalGrandfather s = case (mother s) of
Nothing > Nothing
Just m - case (father m) of
Nothing = Nothing
Just gf - father gf

s [edious, unreadable, difficult to maintain
= Monads help!

Programming Languages CSCI 4430, A Milanova (Example from All About Monads Tutorial) 34

The Monad Type Class

= Haskell's Monad class requires 2 operations,
>>= (bind) and return

class Monad m where

/[>>= (the bind operation) takes a monad
/[m a, and a function that takes a and turns

/[itintoamonad mb
(>>=):ma—2>(@a->mb)>mb

// return encapsulates a value into the monad
return:a—> ma

35

The Maybe Monad

data Maybe a = Nothing | Just a
instance Monad Maybe where

Nothing >>= f = Nothing

(Justx)>>=f=fx

return = Just
= Cloned Sheep example:
mothersPaternalGrandfather s =

(return s) >>= mother >>= father >>= father

(Note: if at any point, some function returns
Nothing, Nothing gets cleanly propagated.) =

The List Monad

= The List type is a monad!
lis >>=f = concat (map f lis)
return x = [X]

Note: concat::[[a]] = [a]
e.g., concat [[1,2],[3,4],[5,6]] yields [1,2,3,4,5,0]

= Use any f s.t. f::a->[b]. f may yield a list of
0,1,2,... elements of type b, e.qg.,
> f x =[x+1]
>[1,2,3] >>=f - yields ?

37

The List Monad

parents :: Sheep =2 [Sheep]
parents s = MaybeToList (mother s) ++
MaybeToList (father s)

grandParents :: Sheep =2 [Sheep]
grandParents s = (parents s) >>= parents

Programming Languages CSCI 4430, A. Milanova 38

The do Notation

= do notation is syntactic sugar for monadic bind

>f x = x+1

> g X=X

> [1,2,3] >>= (return . f) >>= (return . g)

Or

> [1,2,3] >>= \x->[x+1] >>= \y->[y*5]

Or, make encapsulated element explicit with do
>do {v<-[1,2,3]; w <-((\x->[x+1]) v; (\y->[y*3]) w }

Programming Languages CSCI 4430, A. Milanova 39

List Comprehensions

>[x| x<-[1,2,3,4]]

[1,2,3,4]

>[x]|x<-[1,2,3,4], x mod 2==0]

[2,4]

>[[x,y]| x<-[1,2,3], y <-[6,5,4]]
[[1,6],[1,9].[1,4],[2,6].[2,5].[2,4],[3,6],[3,5],[3,4]]

Programming Languages CSCI 4430, A. Milanova

40

List Comprehensions

= List comprehensions are syntactic sugar on
top of the do notation!

[x| x <-[1,2,3,4]] is syntactic sugar for

do { x <-[1,2,3,4]; return x }

[[x,y]]| x<-[1,2,3], y <-[6,5,4]] is syntactic
sugar for

do { x <-[1,2,3]; y<-[6,5,4]; return [Xx,y] }

= \Which in turn, we can translate into monadic
bind...

41

So What's the Point of the Monad...

= Conveniently chains (builds) computation

= Encapsulates "mutable” state. E.qg., 10:
openkFile :: FilePath -> IOMode -> IO Handle
hClose :: Handle -> IO () -- void

hiseOF :: Handle -> 10 Bool

hGetChar :: Handle -> |0 Char

These operations break “referentially transparency”.
For example, hGetChar typically returns different value
when called twice in a row!

Programming Languages CSCI 4430, A. Milanova

42

The Enad

Programming Languages CSCI 4430, A. Milanova

43

