
Control Abstraction and
Parameter Passing

Read: Scott, Chapter 9.1-9.3
(lecture notes cover mostly 9.3)

1

Announcements

n Check your Rainbow grades
n Exam 1-2, Quiz 1-7, HW 1-5

n HW 6 extended, can use late days

n HW 7 out

Programming Languages CSCI 4430, A Milanova 2

3

Lecture Outline

n Control Abstraction
n Parameter Passing Mechanisms

n Call by value
n Call by reference
n Call by value-result
n Call by name

n Call by sharing

Programming Languages CSCI 4430, A. Milanova

4

Abstraction
n Abstraction: hiding unnecessary low-level detail
n Data abstraction: types

n Type integer is an abstraction
n Type struct Person is an abstraction

n Control abstraction: subroutines
n A subroutine abstracts away an algorithm
n A subroutine provides an interface: name, argument types,

return type: e.g., int binarySearch(int a[], int v)

n Classes/objects in OO, Abstract Data Types (ADTs)
are a higher level of abstraction

Programming Languages CSCI 4430, A. Milanova

Programming Languages CSCI 4430, A. Milanova/BG Ryder 5

Subroutines
n Other terms: procedures and functions
n Modularize program structure

n Argument: information passed from the caller
to the callee (also called actual parameter or
actual argument)

n Parameter: local variable in the callee, whose
value is received from the caller (also called
formal parameter)

6

Parameter Passing Mechanisms
n How does the caller pass information to the

callee?
n Call by value

n C, Pascal, Ada, Algol68
n Call by reference

n Fortran, C++, Pascal var params
n Call by value-result (copy-in/copy-out)

n Ada
n Call by name (outmoded)

n Algol60
n Discussion applies to value model for variables

Parameter Passing Modes

n Most languages use a single parameter
passing rule
n E.g., Fortran, C

n Other languages allow different modes, in
other words, programmer can choose
different parameter passing rules in different
contexts
n E.g., C++ has two parameter passing

mechanisms: swap(int &i, int &j) vs. swap(int i, int j)
n Pascal too

Programming Languages CSCI 4430, A. Milanova/BG Ryder 7

8

Call by Value
n Value of argument is copied into parameter

location
m,n : integer;
procedure R(k,j : integer)
begin

k := k+1;
j := j+2;

end R;
…
m := 5;
n := 3;
R(m,n);
write m,n;

Output:
5 3

By Value:
k j
5 3
6 5

9

Call by Reference

m,n : integer;
procedure R(k,j : integer)
begin

k := k+1;
j := j+2;

end R;
…
m := 5;
n := 3;
R(m,n);
write m,n;

k,m j,n
5 3

6 5

Value update happens in
storage of caller, while
callee is executing

n Argument is an l-value; l-value is passed to the
parameter

Output:
6 5

10

Call by Value vs. Call by Reference

n Call by value
n Advantage: safe
n Disadvantage: inefficient

n Call by reference
n Advantage: more efficient
n Disadvantage: may be unsafe due to aliasing
n Aliasing (memory aliasing) occurs when two or

more different names refer to the same
memory location

n E.g., m in main, and k in R are aliases for the same
memory location during the call to R

Programming Languages CSCI 4430, A. Milanova/BG Ryder 11

Aliasing: Call by Reference

y: integer;
procedure P(x: integer)
begin

x := x + 1;
x := x + y;

end P;
…
y := 2;
P(y);
write y;

x
-->y

During the call,
x and y are two
different names
for the same
location!

Output:
6

x,y
2

3

6

Programming Languages CSCI 4430, A. Milanova/BG Ryder 12

No Aliasing: Call by Value

3

x
2

5

y
2

Output:
2

y: integer;
procedure P(x: integer)
begin

x := x + 1;
x := x + y;

end P;
…
y := 2;
P(y);
write y;

Programming Languages CSCI 4430, A. Milanova/BG Ryder 13

More Aliasing with Call by Reference
j,k,m : integer;
procedure Q(a,b : integer)
begin

b := 3;
a := m * a;

end Q;
...
s1: Q(m, k);
...
s2: Q(j, j);

Global-formal aliases:
<m,a> <k,b> associations
during call to Q at s1

Formal-formal aliases:
<a,b> during call at s2

Questions

n Aliasing is an important concept in
programming

n Memory aliasing is considered dangerous.
Why?

Programming Languages CSCI 4430, A. Milanova/BG Ryder 14

Memory Aliasing is Dangerous

n One part of the program can modify a
location through one alias, breaking
invariants/expectations of other parts that use
different aliases to the same location

n In general, we cannot know whether x->f
and y->f are aliases to the same location
n We “err” on the safe side
n Aliasing makes reasoning about code hard
n Aliasing prevents compiler optimization

15

Readonly Parameters

n What are some defenses against unwanted
modification through aliases?
n const parameters are an important paradigm in

C/C++

log(const huge_struct &r) { … }
…
log(my_huge_struct);

Programming Languages CSCI 4430, A. Milanova/BG Ryder 16

Readonly Parameters

n const can be tricky…

log(const huge_struct * r) {
r->f = 0; // NOT OK

}

vs.
log(huge_struct * const r) {

r->f = 0; // OK
}
Programming Languages CSCI 4430, A. Milanova 17

Readonly Parameters
class C {
int f;

public:
int get() const

{ return f; }
int set(int g)

{ f = g; }
};

Programming Languages CSCI 4430, A. Milanova 18

Programming Languages CSCI 4430, A. Milanova/BG Ryder 19

More on Call by Reference

n What happens when someone uses an
expression argument for a call-by-reference
parameter?
n R(2*x)?

20

Lecture Outline

n Control Abstraction
n Parameter Passing Mechanisms

n Call by value
n Call by reference
n Call by value-result
n Call by name

n Call by sharing

Programming Languages CSCI 4430, A. Milanova

21

Call by Value-Result

m,n : integer;
procedure R(k,j : integer)
begin

k := k+1;
j := j+2;

end R;
…
m := 5;
n := 3;
R(m,n);
write m,n;

By Value-Result
k j
5 3

6 5

Output:
6 5

n Argument is copied in into the parameter at entry,
parameter is copied out into the argument at exit

Programming Languages CSCI 4430, A. Milanova/BG Ryder 22

Call by Value-Result
c : array [1..10] of integer;
m,n : integer;
procedure R(k,j : integer)
begin

k := k+1;
j := j+2;

end R;

/* set c[i] = i */
m := 2;
R(m, c[m]);
write c[1], c[2], …, c[10];

What element of c
has its value changed?
c[2]? c[3]?

k j
2 2

3 4

Programming Languages CSCI 4430, A. Milanova/BG Ryder 23

Call by Value-Result
…

/* set c[i] = i */
m := 2;
R(m, c[m]);
write c[1], c[2], …, c[10];

What element of c has its value changed? c[2]? c[3]?

k j
2 2

3 4

One possible semantics is to copy arguments from left to right
and re-evaluate the l-value at exit. This will produce m=3 and
c[3]=4.
Another one is to copy arguments from left to right and use l-
value at entry. This will produce m=3 and c[2]=4.

Exercise

n Write a program that produces different result
when the parameter passing mechanism is
call by value, call by reference, or call by
value-result

Programming Languages CSCI 4430, A. Milanova/BG Ryder 24

Exercise

Programming Languages CSCI 4430, A. Milanova/BG Ryder 25

y: integer;
procedure P(x: integer)
begin

x := x + 1;
x := x + y;

end P;
…
y := 2;
P(y);
write y;

By Value Output:
2

By Reference
Output:
6

By Value-Result
Output:
5

Programming Languages CSCI 4430, A. Milanova/BG Ryder 26

Call by Name

m := m + 1

c[m] := c[m] + 2

m c[]
2 1 2 3 4 5 6 7 8 9 10

3 1 2 5 4 5 6 7 8 9 10

c : array [1..10] of integer;
m : integer;
procedure R(k,j : integer)
begin

k := k+1;
j := j+2;

end R;
/* set c[i] to i */
m := 2;
R(m, c[m]);
write m,c[m]

n An expression argument is not evaluated at call.
It is evaluated within the callee, if needed.

Programming Languages CSCI 4430, A. Milanova/BG Ryder 27

Call by Name
n Call by name (Algol 60)

n Case1: Argument is a variable
n Same as call by reference

n Case2: Argument is an expression
n E.g., expressions c[m], f(x,y), x+z, etc.
n Evaluation of the argument is deferred until needed
n Argument is evaluated in the caller’s environment –

the expression goes with a THUNK (a closure!)
which carries the necessary environment

n Generally inefficient
n Difficult to implement

28

Lecture Outline

n Control Abstraction
n Parameter Passing Mechanisms

n Call by value
n Call by reference
n Call by value-result
n Call by name

n Call by sharing

Programming Languages CSCI 4430, A. Milanova

Reference Model for Variables

n So far, discussion applied to the value model
for variables

n What is the parameter passing mechanism in
languages that use the reference model for
variables? Neither call by value, nor call by
reference make sense for languages with the
reference model
n Call by sharing: argument reference (address) is

copied into parameter. Argument and parameter
references refer to the same object

Programming Languages CSCI 4430, A. Milanova/BG Ryder 29

Reference Model for Variables

n How does call by sharing relate to call by
value?
n Similarities?
n Differences?

n How does call by sharing relate to call by
reference?
n Similarities?
n Differences?

Programming Languages CSCI 4430, A. Milanova 30

arg: address1

param: address1

Heap
Object

arg:

param: address1

Heap
Object

address1

Immutability

n Immutability is a “defense” against unwanted
mutation due to sharing

n In Scheme, methods are pure
n In Python, there are immutable datatypes
n In Java, not much… There is no const-like

construct to protect the referenced object
n final disallows re-assignment of a variable
final Point p = new Point();
p = q; // NOT OK
p.x = 0; r.y = 0; // ALL OK 31

Immutability

n Software engineering principles that help
protect against unwanted mutation due to
“sharing”
n Avoid representation exposure (rep exposure)
n Design immutable ADTs
n Write specifications that emphasize immutable

parameters
n E.g., modifies: none

32Programming Languages CSCI 4430, A. Milanova

Exercise

n Construct a program which prints different
result when parameter passing mechanism is
n Call by value
n Call by reference
n Call by value-result
n Call by name

33Programming Languages CSCI 4430, A. Milanova

The End

34Programming Languages CSCI 4430, A. Milanova

