
Static Analysis for Understanding Shared Objects in
Open Concurrent Java Programs

Ana Milanova
Department of Computer Science
Rensselaer Polytechnic Institute

Email: milanova@cs.rpi.edu

Yin Liu
Department of Computer Science
Rensselaer Polytechnic Institute

Email: liuy@cs.rpi.edu

Abstract—Concurrent programming with shared memory in
an object-oriented language such as Java is notoriously difficult.
Therefore, it is important to study new program understanding
techniques for concurrent object-oriented languages.

This paper studies shared objects in open concurrent Java
programs. First, it proposes a classification of shared objects
into three categories: central, owned and distributed. Second, it
presents a new static analysis that infers central, owned and
distributed objects, as well as experiments with the analysis.

I. INTRODUCTION

Concurrent programming in an object-oriented language
with shared memory such as Java, is complex and challenging.
This is due to the complex structure of shared objects, as
well as the complex dynamics of interactions between different
threads as they access these shared objects.

Somewhat surprisingly, little has been done on analysis
and tools for understanding concurrent Java programs, or
more specifically on analysis and tools for understanding the
complex structure and behavior of shared objects in concurrent
Java programs. Such analysis and tools can enhance program
understanding, a task notoriously difficult and challenging;
furthermore, they can lead to more effective language-based
techniques for concurrency control. Therefore, it is important
to develop and study new techniques in this direction.

This paper studies shared objects in open concurrent Java
programs (i.e., Java libraries, or other incomplete Java pro-
grams, designed for use by multithreaded clients).

The first contribution of the paper is a classification of the
shared objects as central, owned or distributed. Informally,
a central object is an object directly accessed by client
threads. An owned object is an object indirectly accessed by
client threads; however, an owned object is dominated by an
owner object, meaning (informally) that each access to that
object goes through the owner object. A distributed object
is indirectly accessed by client threads as well; however, a
distributed object is not dominated by an owner object; instead,
accesses to it are distributed through multiple objects.

The second contribution of the paper is a novel static
analysis that infers central, owned and distributed objects. The
analysis builds upon a general-purpose ownership inference
analysis [11].

An important novelty of our program understanding tech-
nique is that it is data-centric — it emphasizes objects

and the structure of these objects, rather than control flow.
Similarly to data-centric synchronization [22], which argues
that synchronization is more naturally attached to data (i.e., an
object viewed as a set of data fields), rather than to individual
methods, we argue that program understanding of object-
oriented programs is more natural if it is driven by the objects
and their structure, rather than by the method invocations.

Our technique classifies shared objects into two categories:
easy to reason about and difficult to reason about. We conjec-
ture that central and owned objects are easy to reason about
— that is, it is easy to understand the behavior of a central
or an owned object. On the other hand, distributed objects are
difficult to reason about — that is, it is difficult to understand
the behavior of a distributed object. Ownership, which is
a relatively strong form of encapsulation, is important and
desirable in data-centric program understanding. It confines
reasoning about an object’s behavior. Informally, if an object
is owned, then reasoning is confined to a small set of objects,
namely the boundary of the owner. In contrast, if an object is
distributed, reasoning is not confined; in fact, it often spans
the entire set of objects in the program.

We have implemented the analysis and present preliminary
experiments on 4 relatively large publicly available open
concurrent Java programs, as well as a case study on one of
the programs, jdbm. The experiments and the case study are
summarized by the following findings:

(1) The analysis infers central, owned and distributed objects
precisely and efficiently. Therefore, we conjecture that the
analysis can be incorporated in reverse-engineering and
program understanding tools.

(2) Central and owned objects indeed appear to be easy
to reason about, while distributed objects appear to be
difficult to reason about. Therefore, we conjecture that
the analysis can enhance program understanding tasks.

(3) Ownership appears to play an important role in real-world
concurrent programs. This finding supports the idea of
data-centric program understanding.

The paper has the following contributions:

• It proposes a classification of shared objects into central,
owned, and distributed.

• It proposes a novel static analysis that classifies shared
objects into central, owned and distributed.



class Client {

class ClientThread extends Thread {
static BaseRecordManager brm;
static TransactionManager tm;

public static void main() {

public static void main() {
brm = new BaseRecordManager();
tm = brm.getTxnManager();
(new ClientThread()).start();

BaseRecordManager brm = (new ClientThread()).start();
new BaseRecordManager(); }

TransactionManager tm = brm.getTxnManager(); public void run() {
brm.close() brm.close()
tm.synchronizeLog(); tm.synchronizeLog();
} }
} }

Fig. 1. A single-threaded client and the corresponding multithreaded client.

• It presents preliminary experiments with the analysis on
several publicly available open concurrent Java programs.

II. PROBLEM SETTING

We consider a set Cls of interacting classes that constitute
an open concurrent program (i.e., a Java library of classes
intended for use by multithreaded clients). The classes in Cls
are intended to be thread-safe and typically include multiple
synchronized methods. In addition, we consider a set Int of
methods and fields from the classes in Cls. The methods and
fields in Int define the interface to the client. In general, Int
could contain a subset of all public methods and fields in Cls
or it may contain the entire set of public methods and fields
in Cls. For our purposes, Int contains the entire set of public
methods and fields in Cls.

A client of Cls is any arbitrary Java class that calls methods
from Int and reads/writes fields from Int, and does not access
any methods/fields from Cls that are not in Int. AllClients(Int)
denotes the set of all possible clients for Int; clearly, this
set is infinite. We assume that Cls is closed with respect to
Int: that is, for any arbitrary client C ∈ AllClients(Int), any
class that could be referenced during the execution of C is
included in Cls. In other words, we assume that clients of Cls
exercise interactions only among classes from the given set Cls
(i.e., the currently available program, excluding dynamically
loaded classes). These constraints on clients are consistent with
previous work on analysis of open programs [18], [12].

We illustrate the problem setting with one of our bench-
marks, jdbm, an open concurrent program which imple-
ments a transactional persistence engine. Figure 2 shows ex-
cerpts from classes BaseRecordManager, RecordFile
and TransactionManager; these classes and their meth-
ods are public. Int consists of the public methods in
classes BaseRecordManager, TransactionManager
and RecordFile. An arbitrary client that meets the con-
straints outlined above is shown in Figure 1 (class Client).

Note that the clients in AllClients(Int) are single-threaded
— essentially, a client is a single method main. However,
this is sufficient to enable reasoning about the interactions
between actually multithreaded clients and Cls. Clearly, ev-
ery object accessed in the client’s main method is an ob-

ject that can be directly shared by multiple threads: every
method/field accessed in main can be directly called/accessed
by multiple threads. This is illustrated in Figure 1 which
juxtaposes a single-threaded client and its corresponding mul-
tithreaded client. The BaseRecordManager objects and
the TransactionManager object accessed in main in the
single-threaded client, are written into static fields in the mul-
tithreaded client. Methods close and synchronizeLog
called in main in the single-threaded client are directly called
by each of the two threads spawned in the multithreaded client.

We classify the run-time objects created during an execution
of a client C ∈ AllClients(Int) into central, owned and
distributed. The static analysis represents the run-time objects
with a finite set of analysis objects O; each run-time object
in an execution of some C corresponds to an object in O
(roughly, each run-time object is represented by its allocation
site). The goal of the static analysis is to classify the analysis
objects in set O into central, owned and distributed.

III. VIEWS OF PROGRAM EXECUTION

This section presents two views of a program execution,
the run-time object graph (Section III-A), and the run-time
method sequence graph (Section III-B). Section IV uses these
views to define the classification of shared objects into central,
owned and distributed.

The object graph represents a structural view of the execu-
tion — it shows the access relationships between objects and is
used to reason about structural properties such as ownership.
On the other hand, the method sequence graph represents a
dynamic view of the execution — it shows the transfer of
control between distinct objects.

The views of program execution are necessary in order to
define precisely the dynamic semantics of central, owned and
distributed. Our static analysis, presented later in the paper,
infers approximations of these graphs, and proceeds to infer
central, owned and distributed analysis objects.

Throughout this paper, run-time objects are denoted using
superscript r: e.g., or, or

i , or
1, etc. Analysis objects (i.e.,

abstract objects that represent the run-time objects) are denoted
using exactly the same notation but without the superscript
r: e.g., o, oi, o1, represent objects or, or

i , or
1, respectively.



As mentioned earlier, the analysis represents objects by their
allocation site: for example, all run-time objects allocated at
allocation site si are represented by analysis object oi ∈ O
(here O denotes the set of all analysis objects).

For brevity, we do not discuss static fields and static
methods. They are handled in the implementation.

A. Run-time Object Graph

A run-time object graph represents a view of a program
execution. The nodes in the run-time object graph are the run-
time objects, and the edges represent the access relationships
between these run-time objects.

Let C ∈ AllClients(Int) be a client of Cls, and let EC be
an execution of C. Let Ogr

EC
be the run-time object graph for

this execution. Ogr
EC

is constructed as follows:

• There is a field edge or f→ or
1 in Ogr

EC
if at some point

of the execution EC , field f of object or refers to object
or
1.

• Similarly, there is an array edge or []→ or
1 in Ogr

EC
if

or is an array object, and at some point of the execution
EC , or has element or

1.
• There is an unlabeled edge or → or

1 in Ogr
EC

if at some
point of the execution EC , an instance method invoked
on receiver object or has local variable l, l 6= this, that
refers to object or

1
1.

The main method is treated as a special instance method
executed on a special receiver object root — that is, if main
has a local variable l that refers to an object or

1, then there is
an edge root→ or

1 ∈ Ogr
EC

.
This definition of the run-time object graph is consistent

with earlier definitions [4], [13]. Note however, that Ogr
EC

accumulates edges as the program executes and never deletes
edges; at the end of the execution, Ogr

EC
contains all edges

that have been active during the program run.

B. Run-time Method Sequence Graph

A run-time method sequence graph represents another view
of a program execution. The nodes in the run-time object
graph are the run-time tuples or.m(), where or.m() denotes
that instance method m is invoked on receiver or. The edges
represent the calling relationships between these run-time
tuples.

For convenience, we denote field accesses not through this
(i.e, p = q.f , q 6= this and p.f = q, p 6= this), and
array accesses (i.e., p = q[i] and p[i] = q) as special method
calls. Notation or

2.rd denotes the execution of a read p = q.f ,
q 6= this where q refers to or

2. Similarly, or
2.wr denotes the

execution of a write p.f = q, p 6= this where p refers to or
2.

Again, let C ∈ AllClients(Int) be a client of Cls, and
let EC be an execution of this client. Let Ogr+

EC
be the

run-time method sequence graph for this execution. Ogr+
EC

is
constructed as follows:

1We require that there be an explicit reference variable for each object
that is accessed (i.e., a statement r.m().n() is re-written into an equivalent
sequence r1=r.m(); r1.n()).

• There is an edge or
1.m1() → or

2.m2() ∈ Ogr+
EC

if at
some point of the execution EC , method m1 invoked on
receiver or

1 executes a call p.m2(), p 6= this in m1,
where p refers to or

2, and the call leads to the invocation
of method m2 on receiver or

2.
• There is an edge or

1.m
′
1() → or

2.m2() ∈ Ogr+
EC

if at
some point of the execution EC , method m′1 invoked
on receiver or

1 has executed a call this.m1() in m′1,
and the call this.m1() has resulted in edge or

1.m1()→
or
2.m2() ∈ Ogr+

EC
.

As mentioned earlier, the method sequence graph shows
the calling relationships between run-time tuples or.m(). The
two bullets capture two cases. In the first case, method
m1 executing on receiver or

1 directly calls m2 on receiver
or
2 through call site p.m2(), which directly results in edge

or
1.m1() → or

2.m2() ∈ Ogr+
EC

. In the second case, method
m1 ”jumps through” calls through this until it reaches a
call not through this: for example, if there is a method m′1
invoked on receiver or

1 and m′1 executes a call this.m1(),
then in turn m1 executes a call p.m2(), p 6= this, where p
refers to or

2, then there is an edge or
1.m

′
1()→ or

2.m2() in the
method sequence graph. Skipping through calls through this
is needed in order to emphasize transfer of control between
distinct objects.

Throughout the paper we use the standard notation for
reachability. E.g., or

1.m1() →∗ or
2.m2() ∈ Ogr+

EC
denotes a

path of zero or more edges in Ogr+
EC

from or
1.m1() to or

2.m2();
similarly, or

1.m1() →+ or
2.m2() ∈ Ogr+

EC
denotes a path of

one or more edges.

IV. CLASSIFICATION OF SHARED OBJECTS

A. Defining the Classification

Let C ∈ AllClients(Int) be a client of Cls as described
in Section II, and let EC be an execution of this client. We
define the notion of shared objects, and proceed to classify
the shared objects into central, owned and distributed.

The set of shared objects in EC , denoted by SEC
is the

union of the set of directly shared objects denoted by DSEC
,

and the set of indirectly shared objects denoted by ISEC
.

The set of directly shared objects is defined as follows:

DSEC
= {or | ∃root.main()→ or.m() ∈ Ogr+

EC
}.

The definition states that there exists an edge in Ogr+
EC

from
root.main() to a tuple or.m() (i.e., main directly calls a
method on receiver or). The objects or are potentially directly
accessed by multiple threads — or’s methods/fields can be
called/accessed directly by multiple threads.

The set of indirectly shared objects is defined as follows:

ISEC
= {or | or /∈ DSEC

∧ ∃or
j s.t. root→ or

j

f

→+or ∈ Ogr
EC

∧ ∃p : root.main()→+ or.m() ∈ Ogr+
EC
}.

The definition states that an object or is indirectly shared,
if the following three conditions are met. The first condition,
or /∈ DSEC

, states that or must not be a directly shared object.



The second condition, ∃or
j s.t. root → or

j

f

→+or ∈ Ogr
EC

,
states that or must be a transitively reachable field of some
directly object or

j directly accessible to root. This condition
excludes temporary objects from consideration: if an object or

1

is not reachable from a directly shared object on a sequence of
field accesses, then or

1 is local to the execution of a particular
method, and or

1 cannot be shared. The third condition, ∃p :
root.main() →+ or.m() ∈ Ogr+

EC
, states that there must

exist a path p in Ogr+
EC

from root.main() to or.m() (i.e.,
the execution of the client’s main leads to access of object
or). Note that this access happens indirectly, that is, through
one or more intermediate objects.

Thus, the set of shared object is as follows:

SEC
= DSEC

∪ ISEC
.

We are ready to define the set of central objects, owned objects
and distributed objects in EC .

The set of central objects in EC , which we denote by CEC
,

is the set of directly shared objects:

CEC
= DSEC

.

The set of owned objects in EC , denoted by OEC
is defined

as follows:

OEC
= {or | or ∈ ISEC

∧
∃or

1 s.t. ∀p : root.main()→+ or.m() ∈ Ogr+
EC

p is root.main()→+ or
1.m1()→+ or.m()}.

The definition states that an object or ∈ SEC
is owned, if the

following two conditions are met. The first condition, or ∈
ISEC

, states that or must be an indirectly shared object. The
second condition states that there must exist an object or

1, such
that every path from root.main() to or, goes through or

1. In
other words, an owned object is potentially indirectly accessed
by multiple client threads; however, each access goes through
the same owner object.

Note that this definition of owned only requires that there
exists a dominating owner object or

1; it is not concerned
with who this owner is (in general, an owned object or

has an immediate dominator and several other dominators,
including root). Although the definition can be easily refined
to designate the immediate dominator as the owner of or, we
have chosen not to do so in order to keep the definition of
owned as simple as possible.

Finally, the set of distributed objects in EC , which we
denote by DEC

is defined as follows:

DEC
= {or | or ∈ ISEC

∧ or /∈ OEC
}.

The definition states that an object or ∈ SEC
is distributed if

it is indirectly shared and it is not owned. That is, a distributed
object is an object potentially indirectly accessed by multiple
client threads; however, unlike an owned object, these accesses
happen in a distributed manner, through multiple distinct
objects.

Note that this classification ignores synchronization and
object immutability. It intends to classify objects into easy

public class BaseRecordManager {
private RecordFile _file;
private PhysicalRowIdManager _physMgr;
BaseRecordManager(RecordFile file) {

1 _file = new RecordFile();
2 _physMgr = new PhysicalRowIdManager(_file);
}
public synchronized TransactionManager

getTxnManager() {
TransactionManager txnMgr = _file.txnMgr;
return txnMgr;

}
public synchronized void close() {
_file.close();
_physMgr.close();

}
}

public final class RecordFile {
final TransactionManager txnMgr;
RecordFile() {

3 txnMgr = new TransactionManager(this);
}
...

}

public class TransactionManager {
private RecordFile owner;
TransactionManger(RecordFile file) {
owner = file;

}
public void synchronizeLog() {
...
owner.synch();

}
} Fig. 2. BaseRecordManager from jdmb.

class Client {
public static void main() {
4 BaseRecordManager brm =

new BaseRecordManager();
TransactionManager tm = brm.getTxnManager();
brm.close()
tm.synchronizeLog();
}
}

Fig. 3. Client of BaseRecordManager.

to reason about and difficult to reason about not into safe
and unsafe from concurrency errors. Therefore, objects of
each kind can be safe or unsafe. For example, an owned
object can be safe if it is immutable, or if it is protected by
synchronization (e.g., on itself, or on an owner); conversely,
an owned object can be unsafe if it is mutated and it is not
protected by synchronization. Similarly, a distributed object
can be safe if it is immutable, or if it is protected by
synchronization; it can also be unsafe.

B. Example

We illustrate the classification with jdbm. Figure 2
shows excerpts from classes BaseRecordManager,
RecordFile and TransactionManager in jdbm.



root 

oBaseRecordManager 

oTransactionManager 
oRecordFile 

oPRowIdManager 

_physMgr 
_file 

_file 

txnMgr 

owner 

Fig. 4. Object graph.

Figure 3 shows a client of these classes which meets the
constraints outlined in Section II.

Figure 4 shows the object graph corresponding to Figures 2
and 3. In this example, which is intentionally simplified, the set
of run-time objects coincides with the set of analysis objects.
We use notation o without superscript r to denote the objects.
In general, there are more than one run-time objects mapped
to a single analysis object.

Recall that an edge from object o1 to object o2 means that
o1 has access to o2, or in other words o1 holds a reference
to o2 and consequently, methods invoked on receiver o1

may call methods on receiver o2. Object oBaseRecordManager

(created at creation site 4 in Figure 3) accesses objects
oRecordFile (created at site 1 in Figure 2), oPRowIdManager

(created at site 2 in Figure 2), and oTransactionManager (cre-
ated at site 3 in Figure 2); the references to the first two
are through fields _file and _physMgr; the reference
to the last is through local variable txnMgr in method
getTxnManager. Method main of the client calls meth-
ods on oBaseRecordManager and oTransactionManager ; the first
object is created in main; the second object is returned to
main by method getTxnManager.

In this example, object oBaseRecordManager is a directly
shared object, and therefore it is a central object:

root.main()→ oBaseRecordManager .getTxnManager().
Object oTransactionManager is central as well:

root.main()→ oTransactionManager .synchronizeLog().
Object oPRowIdManager is an owned object because

all accesses from root.main() to it go through
oBaseRecordManager . For example:

root.main()→ oBaseRecordManager .close()
→ oPRowIdManager .close().
Finally, oRecordFile is a distributed object. It is an indirectly

shared object; however, unlike the accesses to owned object
oPRowIdManager , the accesses to oRecordFile are distributed
through two distinct central objects:

root.main()→ oTransactionManager .synchronizeLog()
→ oRecordFile .synch() and

root.main()→ oBaseRecordManager .close()
→ oRecordFile .close().

C. Discussion

Central objects are the objects potentially directly accessed
by multiple threads (e.g., oBaseRecordManager is a central
object). Therefore, their classes are typically synchronized
with the intention to be thread-safe.

Typically, a central object creates and accesses a large
number of objects during its lifetime. Some of these ob-
jects remain hidden behind the creating central object and
all accesses to them go through their creating central ob-
ject (e.g., oPRowIdManager is hidden behind central object
oBaseRecordManager ). Other objects become accessible to other
central objects (e.g., oRecordFile is created by central object
oBaseRecordManager but eventually it becomes accessible to
central object oTransactionManager as well).

Owned objects are hidden behind an owner object, typically
one of the central objects. Distributed objects are the shared
objects not hidden behind an owner object — they can be
accessed in a distributed manner, through several central
objects.

The important benefit from this classification is that it
provides a simple and intuitive classification of the shared
objects (often these objects are part of complex structures).
It classifies the shared objects into two categories: easy to
reason about and difficult to reason about objects; a program
understanding task, manual or automatic, can examine easy
objects quickly, and focus on difficult objects thereafter.

Consider the task of reasoning about object races [23].2

Central objects are easy to reason about. A central object
oc is accessed directly in main. Any pair of methods called
on oc in main, say oc.m1() and oc.m2(), where one of m1

or m2 is unsynchronized, creates an object race on oc.
Owned objects are easy to reason about as well. An owned

object oo has an owner object oc. There are two important
benefits from ownership. First, often an owned object is
protected by synchronization on its owner. In our running
example oPRowIdManager is protected by synchronization on
its owner oBaseRecordManager ; every thread holds the lock on
owner oBaseRecordManager when accessing oPRowIdManager ,
and therefore, it is guaranteed that no object race would
occur on oPRowIdManager . Second, even if the owned object
is not protected by synchronization on an owner oc, reasoning
about object races is simplified by ownership: the task must
first identify an object race on oc, and if such a race exists,
proceed to search for an object race on oo excelusively within
the ownership boundary of oc. Such structured reasoning can
reduce search space and search time significantly.

On the other hand, distributed objects are difficult to reason
about. A distributed object od may be accessed through
multiple objects — generally, reasoning about object races on
od will need to traverse the entire set of objects which could
be quite large. In our example, oRecordFile is a distributed
object — it can be accessed along several paths: e.g., root→
oBaseRecordManager → oPRowIdManager → oRecordFile .

2Informally, an object race on an object o occurs when two threads access
o simultaneously. An object race may or may not trigger a data race.



V. PRELIMINARY ANALYSES

Recall that the goal of our static analysis is to classify
analysis objects in O into central, owned and distributed.
Recall also that the dynamic semantics of central, owned and
distributed is defined in terms of the run-time object graph and
the run-time method sequence graph.

This section briefly describes the analyses that infer con-
servative approximations of the these graphs. Section VI
presents the classification inference analysis which uses these
approximations to infer central, owned and distributed analysis
objects.

There are five preliminary analyses — fragment analysis
(Section V-A), points-to analysis (Section V-B), object graph
analysis (Section V-C), ownership analysis (Section V-D), and
method sequence analysis (Section V-E). This section only
outlines the analyses and states analyses properties important
for the classification inference analysis; the analyses are de-
scribed in detail elsewhere [18], [17], [11].

A. Fragment Analysis

Points-to, object graph, ownership, and method sequence
analyses are designed as whole-program analyses. However,
the problem considered in this paper requires analysis of
an open program: the input is a set of classes Cls and
the interface to Cls Int. We use a general technique called
fragment analysis [18] which constructs a conservative client
that approximates all clients C ∈ AllClients(Int).

For brevity, in further examples and figures, we use the
client in Figure 3 instead of the conservative client. Our
implementation uses conservative clients created according to
the rules of the fragment analysis [18].

B. Points-to Analysis

Points-to analysis determines the set of objects that a given
reference variable or a reference field may point to. In this
paper, we consider the Andersen-style flow- and context-
insensitive points-to analysis for Java [17], [9].3

The analysis distinguishes objects per allocation sites —
each allocation site si corresponds to analysis object oi ∈ O.
The analysis computes the points-to graph, Pt , of the program.
The semantics of the analysis is well-known [17].

When the points-to analysis is applied on the completed
program (i.e., Cls and the conservative client), the properties
of the fragment analysis guarantee that the constructed points-
to graph Pt approximates the points-to graph of each C ∈
AllClients(Int) [18], [16].

C. Object Graph Analysis

Object graph analysis approximates the run-time object
graphs over executions of clients C ∈ AllClients(Int).

Recall from Section III-A the definition of the run-time ob-
ject graph for an execution of a client of C ∈ AllClients(Int).

3Flow-insensitive analyses do not take into account the flow of control
between program points and are less precise and less expensive than flow-
sensitive analyses. Context-sensitive analyses distinguish between different
calling contexts of a method and are more precise and more expensive than
context-insensitive ones.

The object graph analysis constructs the static object graph,
Og . The nodes in Og are taken from the set of analysis
objects O, and the edges represent the access relationships. Og
approximates the run-time object graphs over all executions of
clients C ∈ AllClients(Int): if there is a run-time access edge
or
1 → or

2 for some execution of some C, then there is an edge
in Og from the representative of or

1 to the representative of or
2

(i.e., each Ogr
EC

is represented by Og).
The object graph analysis uses the points-to graph Pt

computed by the points-to analysis and computes the object
graph Og . For brevity, we do not present this analysis; it is
beyond the scope of this paper. The analysis is presented in
our previous work [10] and in our technical report [11].

The object graph constructed for the program consisting of
Figure 2 and its client in Figure 3, is shown in Figure 4.

D. Ownership Analysis

The ownership analysis consists of two parts: dominance
boundary analysis (Section V-D1), and minimal boundary
analysis (Section V-D2).

1) Dominance Boundary Analysis: The dominance bound-
ary analysis infers the dominance boundary of an object
oi ∈ O. Informally, the dominance boundary of an object
oi ∈ O is the subgraph of the object graph Og that is
dominated by oi (i.e., all accesses to objects in the boundary
go through oi).

The dominance boundary analysis uses the object graph Og ,
takes as input oi, and computes Boundary(oi), the dominance
boundary of oi. The ownership analysis is not shown here; it
is beyond the scope of this paper. The analysis is presented
and proven correct in [11].

The following lemma holds for Boundary(oi):
Lemma 5.1: Let oi ∈ O be any analysis object and let

Boundary(oi) be the dominance boundary of oi computed
by our ownership analysis. Let C be any client of Cls,
C ∈ AllClients(Int), let EC be any execution of C, and let
Ogr

EC
be the run-time object graph for EC . Let or

i ∈ Ogr
EC

be any run-time object represented by oi ∈ Og .
For every path p: or

i → ... → or
j ∈ Ogr

EC
, such that

the representative of p is in Boundary(oi), we have that or
i

dominates or
j in Ogr

EC
.

Informally, the lemma states that the computed static bound-
ary of oi (under) approximates the run-time dominance bound-
ary of every object or

i represented by oi.
Consider our running example in Figures 2 and 3. The

dominance boundary of object oBaseRecordManager , denoted by
Boundary(oBaseRecordManager ), includes oBaseRecordManager

and oPRowIdManager , and the edge between them. Clearly,
for every execution of the client in Figure 3, the
oBaseRecordManager object created in main dominates the
oPRowIdManager object.

The dominance boundary of root includes the entire Og .
Clearly, for every execution of the client, root dominates the
objects created during the execution. The dominance bound-
aries of the other objects are singleton nodes. For example,
Boundary(oTransactionManager )={oTransactionManager}



root.main() 

oBaseRecordManager.close() 

oTransactionManager.synchronizeLog() 

oRecordFile.close() oPRowIdManager.close() 

oBaseRecordManager.getTxnManager() 

oRecordFile.synch() 

Fig. 5. Method sequence graph.

2) Minimal Boundary Analysis: In addition to the dom-
inance boundary analysis, we employ minimal boundary
analysis which computes minimal boundary information.
Intuitively, given an edge oi → oj ∈ Og the mini-
mal boundary analysis finds the minimal dominance bound-
aries that enclose the edge — roughly, if a boundary
Boundary(ok) is a minimal boundary that includes oi →
oj , then every other boundary that includes this edge, say
Boundary(o′k), is larger than Boundary(ok) (i.e., we have
Boundary(o′k) ⊃ Boundary(ok)). For example, consider
edge oBaseRecordManager → oPRowIdManager in the object
graph in Figure 4. There are two boundaries that include this
edge, Boundary(oBaseRecordManager ) and Boundary(root).
Boundary(oBaseRecordManager ) is the minimal boundary
(Boundary(root) is larger).

The minimal boundary analysis uses Og and boundary
information, takes as input edge oi → oj and computes
set minBoundaries(oi → oj) where minBoundaries(oi →
oj) contains the roots of the actual minimal boundaries.
In our example, minBoundaries(oBaseRecordManager →
oPRowIDManager ) = {oBaseRecordManager}.

The following lemma holds:
Lemma 5.2: Let or

i → or
j , represented by oi → oj , be an

edge in some Ogr
EC

. Let minBoundaries(oi → oj) be the
set computed by our analysis. There exists or

k ∈ Ogr
EC

repre-
sented by ok ∈ Og , such that (1) ok ∈ minBoundaries(oi →
oj) and (2) the representative of every path or

k →∗ or
i → or

j

is in Boundary(ok).
Informally, the lemma states that set minBoundaries(oi →
oj) covers each run-time edge or

i → or
j — that is, we consider

at least one boundary that covers this edge. The proof of this
lemma is presented in [11].

The two analyses are needed by the classification inference
analysis. The correctness results help establish the correctness
result for the classification inference analysis.

E. Method Sequence Analysis

Method sequence analysis approximates the run-time
method sequence graphs over executions of clients C ∈
AllClients(Int).

Recall from Section III-B the definition of the run-time
method sequence graph for an execution of a client C ∈

AllClients(Int). The method sequence analysis constructs the
static method sequence graph, Og+. The nodes in Og+ are
tuples oi.mi() (the tuples are formed with analysis objects),
and the edges represent the transfer of control between dis-
tinct objects. Og+ is a safe approximation of the run-time
method sequence graphs over all executions of all clients
C ∈ AllClients(Int): if there is an execution that exhibits
edge or

i .mi()→ or
j .mj() ∈ Ogr+

EC
, then there is a representa-

tive edge oi.mi()→ oj .mj() ∈ Og+.
The method sequence analysis uses Og and outputs the

method sequence graph Og+. Again, for brevity, we do not
present this analysis; it is presented in [11].

The method sequence graph Og+ for the running example in
Figures 2 and 3 is shown in Figure 5.Constructors are omitted
for brevity.

VI. CLASSIFICATION INFERENCE ANALYSIS

We are now ready to define our classification inference
analysis. The analysis uses the method sequence graph Og+,
dominance boundary information, Boundary , and minimal
boundary information, minBoundaries . It outputs sets C,
O and D which approximate central, owned and distributed
objects over all executions of all clients C ∈ AllClients(Int).

A. Analysis Description

The analysis is shown in Figure 6. It is a breadth-first
search on Og+ starting at tuple root.main(). The analysis
examines all objects o such that a tuple with receiver o, say
o.m(), is reachable in Og+ from root.main() (in other
words, the analysis examines the representatives of all shared
objects). Lines 5-11 represent the visit functionality of the
breadth-first-search. Lines 12-13 mark the new tuple as visited
and add it at the end of worklist WL.

Lines 5-6 identify the directly shared objects (i.e., the cen-
tral objects). Since this is a bread-first-search, it is guaranteed
that set C will be filled before the search considers objects that
fall into O and D. Lines 7-11 identify the indirectly shared
objects (i.e., the owned and distributed objects). The analysis
checks the conditions for indirectly shared objects specified
in Section IV-A: oj must not be a directly shared object (i.e.,
oj /∈ C) and oj must be a transitively reachable field of a
directly shared object ok. Subsequently, the analysis groups
the indirectly shared objects into owned and distributed: if
root is not in the minimal boundary of the incoming edge
oi → oj , then oj represents owned objects; otherwise, that
is, if root is in the minimal boundary of the incoming edge
oi → oj , then oj represents distributed objects. Note that one
object oj may represent both owned and distributed objects —
it may be owned on an incoming edge o′i → oj , and distributed
on a different incoming edge o′′i → oj .

B. Example

Consider our running example and the method sequence
graph in Figure 5. The analysis examines edge
root.main()→ oTransactionManager .synchronizeLog().



procedure inferClassification
globals Og+, Boundary , minBoundaries
output sets C ⊆ O,O ⊆ O and D ⊆ O
[1] WL = {root.main()}
[2] while WL is not empty
[3] take oi.mi() from WL
[4] foreach oi.mi()→ oj .mj() ∈ Og+

[5] if oi == root
[6] add oj to C

[7] else if oj /∈ C ∧ ∃ok s.t. root→ ok

f

→+ oj ∈ Og
[8] if root /∈ minBoundaries(oi → oj)
[9] add oj to O
[10] else
[11] add oj to D
[12] if oj .mj() not visited
[13] mark oj .mj() as visited, add it at end of WL

Fig. 6. Classification inference analysis.

The edge originates at root.main() and at line 6
oTransactionManager is added to C. Subsequently (at lines
12-13), tuple oTransactionManager .synchronizeLog() is
marked as visited and is added at the end of the worklist.
Next, the analysis examines edges
root.main()→ oBaseRecordManager .close() and

root.main()→ oBaseRecordManager .getTxnManager().

Object oBaseRecordManager is added to
C; tuples oBaseRecordManager .close() and
oBaseRecordManager .getTxnManager() are marked as
visited and added at the end of the worklist.

Eventually, oTransactionManager .synchronizeLog() is
taken from the worklist. The analysis examines edge
oTransactionManager .synchronizeLog()→oRecordFile .synch().

At line 7 the analysis examines object oRecordFile : it is not
in C and it is a field of two central objects, oBaseRecordManager

and oTransactionManager . The analysis proceeds to determine
that minBoundaries(oTransactionManager → oRecordFile)
equals {root}. Thus, the ”closest owner” of oRecordFile is
root (i.e., there is no owner ok that could protect oRecordFile ).
The analysis determines that oRecordFile is distributed and adds
it to D.

Eventually, oBaseRecordManager .close() is taken from the
worklist. As a result, the analysis examines edge
oBaseRecordManagerclose()→ oPRowIdManager .close().

Again, at line 7 the analysis examines oPRowIdManager and
determines that it is not in C and it is a field of one central
object, namely oBaseRecordManager . The analysis proceeds
to determine that minBoundaries(oBaseRecordManager →
oPRowIdManager ) equals {oBaseRecordManager}. Clearly, the
edge is in the dominance boundary of oBaseRecordManager

and the owner object oBaseRecordManager can protect
oPRowIdManager . The algorithm determines that
oPRowIdManager is owned and adds it to O.

The analysis proceeds until the worklist WL is empty. The
final result is:

C = {oBaseRecordManager , oTransactionManager},
O = {oPRowIdManager},D = {oRecordFile}.

C. Analysis Correctness

The analysis overapproximates central and distributed ob-
jects, and underapproximates owned objects. Informally, if the
analysis determines that an object o is distributed, then this
means that some of the run-time objects or represented by o
may be distributed; however, it may be the case that all or

are owned. Again informally, if the analysis determines that
an object o is owned, this essentially means that all run-time
objects or represented by o are owned.

More formally, the following theorem holds:
Theorem 6.1: Let oi → oj be any edge in Og s.t. oi → oj

is examined at line 8 in Figure 6 and oj is added to O at line
9. For every client C ∈ AllClients(Int), execution EC of C
and edge or

i → or
j ∈ Ogr

EC
(i.e., or

i → or
j is represented by

oi → oj), we have that if or
j ∈ ISEC

, then or
j ∈ OEC

.
We provide a sketch of the proof. By Lemma 5.2 we have

that there exists or
k ∈ Ogr

EC
such that (1) its representative ok

is in minBoundaries(oi → oj) and (2) the representative of
every path from or

k to or
i → or

j is in Boundary(ok). Clearly,
or

k is not root (or the test at line 8 would have failed). By
(2) and Lemma 5.1 we have that or

k dominates or
i and or

j in
Ogr

EC
.

Suppose that there exists a path root.main() →+

or
j .mj() ∈ Ogr+

EC
such that the path does not go through some

or
k.mk() (i.e., it does not go through a method executed on or

k).
Then there exists a path root→+ or

j ∈ Ogr
EC

such that the
path does not go through or

k. This contradicts the established
fact that or

k dominates or
j .

Thus, every path root.main() →+ or
j .mj() ∈ Ogr+

EC

goes through some or
k. Since or

j ∈ ISEC
, then or

j ∈ OEC
.

VII. EMPIRICAL RESULTS

We have implemented a prototype of the classification
inference analysis. The prototype is implemented in Java
using Soot 2.2.3 [20] and Spark [9]. It uses the Andersen-
style points-to analysis provided by Spark and Sun JDK 1.4.1
libraries. All experiments were done on a 900MHz Sun Fire
380R machine with 4GB of RAM. The implementation, which
includes Soot and Spark was run with a max heap size of
1400MB.

We used several publicly available open concurrent Java
programs: jdbm 1.0, jdbf, jtds 1.2 and pool 1.2. Infor-
mation about these programs is given in Table I. Column 2
describes the benchmark, and Column 3 gives the number of
methods determined as reachable by the points-to analysis in
Spark. These programs are the open concurrent programs used
in previous work on static race detection [12].

A. Results

Table I shows the results of our inference. Columns 4, 5
and 6 list the sizes of sets C, O and D for each of our
benchmarks. If an analysis object was found to be both owned
and distributed, it was counted as a member of both O and



Program Description #Methods C O D Protected O Analysis time
jdbm persistence engine 4904 21(32%) 16(23%) 32(46%) 12(75%) 177 seconds
jdbf mapping system 6383 15(23%) 30(47%) 19(30%) 18(60%) 449 seconds
pool Apache Commons pool 3982 35(70%) 3(6%) 12(24%) 0(0%) 95 seconds
jtds JDBC driver 5980 51(15%) 81(24%) 210(61%) 43(53%) 1097 seconds
Average 35% 25% 40% 47%

TABLE I
BENCHMARKS AND ANALYSIS RESULTS.

D (it is trivial to include a warning about such objects in
the results; at this point our analysis does not include such a
warning; we plan to incorporate it in the future). On average
35%, of the analysis objects are found to be central, 25% are
found to be owned and 40%, are found to be distributed.4

Our results show that the majority of analysis objects, about
60%, are central or owned, and therefore easy to reason about.
However, a significant percentage, 40%, are distributed, and
therefore difficult to reason about.

Our results show that a significant percentage, on average
25% of all objects, are owned. In addition, we looked at what
fraction of the owned objects were protected by synchroniza-
tion on an owner. The results show that, on average almost
50% of all owned objects are protected by synchronization
on an owner (Column Protected O in Table I).5Therefore,
ownership does play an important role in concurrent Java
programs. This finding supports the idea of data-centric
program understanding: since ownership happens frequently,
programmers will benefit from the structured reasoning that
ownership entails.

The running time of the analysis is shown in the last column
of Table I; it includes the times for Soot and Spark, as well
as the times for the analyses from Sections V and VI.

B. Case Study: jdbm

We performed a case study on one of our benchmarks,
jdbm. The case study addresses two questions. First, what
is the precision of the analysis — that is, are the reported
central and distributed objects indeed central and distributed?
Second, are central and owned objects indeed easy to reason
about and distributed objects indeed difficult to reason about?

In order to address the first question, we examined the set
of objects reported as central, and the set of objects reported
as distributed. For each object o ∈ C we attempted to construct
a client C ∈ AllClients(Int) such that a run-time object or

represented by o is in CEC
for some execution of C EC . For

each of the 21 objects in C, we were able to find such a client
C. Similarly, for each object o ∈ D, we attempted to construct

4Note that in terms of absolute numbers, our analysis is very conservative
— that is, it creates a large number of central objects, and in turn these
central objects create a large number of owned and distributed objects (recall
that each public class in Cls is instantiated in the conservative client created
by the fragment analysis). In typical clients, there would be a smaller number
of central objects, and in turn there would be a smaller number of owned and
distributed objects.

5This experiment underestimates protection; it considers protection due
to synchronized methods (e.g., synchronized void close() {...})
but ignores protection due to synchronized blocks. The role of ownership is
in fact even greater than reported.

a client C ∈ AllClients(Int) such that a run-time object or

represented by o is in DEC
for some execution of C EC . For

each of the 32 objects in D, we were able to find such a client
C. Therefore, the analysis captures the classification precisely.

In order to address the second question, we considered
the task of reasoning about object races that may lead to
unsafe behavior.6 We examined the set of objects reported
as central, the set of objects reported as distributed, and the
set of objects reported as unprotected owned. For each object
o ∈ C we attempted to construct a multithreaded client C ′

such that a run-time object or represented by o is accessed by
multiple threads, and this access can lead to unsafe behavior.
For 19 out of the 21 objects, we were able to construct
such a client C ′. Similarly, for each o ∈ D we attempted to
construct a multithreaded client C ′ such that a run-time object
or represented by o, is accessed by multiple threads and the
access can lead to unsafe behavior. For 20 out of the 32 objects
in D we were able to construct a client which exposes unsafe
behavior. Finally, for each unprotected owned object o we
attempted to construct a client that exposes unsafe behavior.
For each of the 4 objects, we were able to construct such a
client. The examination revealed many potential data races. To
the best of our understanding of jdbm, several of these races,
including the data races on BaseRecordManager reported
in [12], can happen in realistic clients.

The case study confirms our hypothesis that central and
owned objects are easy to reason about, while distributed
objects are difficult to reason about. It took approximately
20 minutes to examine and construct clients for the 25 central
and owned objects. In contrast, it took approximately 4 hours
to examine and construct clients for the 32 distributed objects;
it was rarely obvious how the client can access a distributed
object, and a detailed examination of almost the entire code
base of jdbm was needed.

We view these results as promising. The classification
inference analysis is practical and precise and therefore it
can be integrated in program understanding tools. Also, it can
lead to better techniques for program understanding due to the
search space reduction due to ownership.

VIII. RELATED WORK

Concurrency is a very active area of research. The vast
majority of this work falls into one of two categories: (1)

6By unsafe behavior we mean that there is an execution of C′, EC′ , such
that with appropriate thread scheduling, EC′ leads to an object race on or ,
and the object race triggers a data race on or (i.e., data race on location or.f ),
or a data race on a field of or (i.e., on location or.f.g).



prevention and (2) detection of concurrency errors.
Work on prevention focuses on type systems (e.g., [2], [1],

[7], [14]). These type systems disallow concurrency errors
such as data races and deadlocks at the language level. They
typically require extension of the language, compiler and
run-time, as well as significant amount of annotations. Our
approach works on existing languages and does not require
annotations by the programmer. It is focused on uncovering the
structure of shared objects and on understanding concurrency
and sharing in real-world Java programs.

There is a large body of work on detection of con-
currency errors. Work on detection includes dynamic ap-
proaches (e.g., [24], [19], [8]), and static approaches (e.g.,
[15], [3], [6], [12]). Our analysis does not focus on error
detection, but on the problem of uncovering the structure of
shared objects in concurrent programs. To the best of our
knowledge, this is the first work that characterizes sharing in
concurrent programs.

Ownership types prevent certain aliasing; there are many
proposals in the literature [4], [2], [5], including ones that
exploit ownership for prevention of concurrency errors [2], [1].
Our ownership analysis focuses on inference and the study of
real world programs, not on type systems.

Recent work by Vaziri et al. [21], [22] focuses on data-
centric synchronization; it argues that in object-oriented lan-
guages synchronization is naturally attached to atomic sets of
objects and fields. Similarly to our work, this work argues
that ownership plays an important role. Unlike our work, it
studies language-based approaches to data-centric synchro-
nization — i.e., programmers must provide atomicity and
ownership annotations. Our work infers ownership. Also, it
focuses on understanding concurrent Java programs while [21],
[22] focuses on types for data-centric synchronization.

IX. CONCLUSION

We presented a novel program understanding technique that
studies shared objects in open concurrent Java programs. Our
technique classifies shared objects into central, owned and
distributed. We have presented a novel static analysis that
infers central, owned and distributed objects precisely and
efficiently.

There are many opportunities for future work. First, we plan
to incorporate the prototype analysis into an Eclipse-based tool
that could help support program understanding of concurrent
programs. Second, we plan to extend the analysis to the whole-
program case, which will enable experimentation on larger
code bases. The experimentation will bring valuable insights
into the structure of shared objects in concurrent programs,
which may lead to novel techniques for concurrency control
in object-oriented languages as well as novel techniques for
error detection.

REFERENCES

[1] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
programming: preventing data races and deadlocks. In ACM Conference
on Object-oriented Programming, Systems, Languages and Applications,
pages 211–230, 2002.

[2] C. Boyapati and M. Rinard. A parameterized type system for race-free
Java programs. In ACM Conference on Object-oriented Programming,
Systems, Languages and Applications, pages 56–69, 2001.

[3] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence: checking
consistency of concurrent data types on relaxed memory models. In ACM
Conference on Programming Language Design and Implementation,
pages 12–21, 2007.

[4] D. Clarke, J. Potter, and J. Noble. Ownership types for flexible
alias protection. In ACM Conference on Object-oriented Programming,
Systems, Languages and Applications, pages 48–64, 1998.

[5] W. Dietl and P. Müller. Universes: Lightweight ownership for JML.
Journal of Object Technology, 4(8):5–32, 2005.

[6] D. Engler and K. Ashcraft. Racerx: Effective, static detection of race
conditions and deadlocks. In ACM Symposium on Operating Systems
Principles, pages 237–253, 2003.

[7] C. Flanagan and S. Freund. Type-based race detection for java. In ACM
Conference on Programming Language Design and Implementation,
pages 219–232, 2000.

[8] C. Flanagan, S. Freund, and J. Yi. Velodrome: a sound and complete
dynamic atomicity checker for multithreaded programs. In ACM Con-
ference on Programming Language Design and Implementation, pages
293–303, 2008.

[9] O. Lhotak and L. Hendren. Scaling Java points-to analysis using Spark.
In Conference on Compiler Construction, pages 153–169, 2003.

[10] Y. Liu and A. Milanova. Ownership and immutability inference
for UML-based object access control. In ACM/IEEE International
Conference on Software Engineering, pages 323–332, 2007.

[11] A. Milanova and Y. Liu. Practical static ownership inference. Technical
Report RPI/DCS-09-04, Rensselaer Polytechnic Institute, Dec. 2009.

[12] M. Naik, A. Aiken, and J. Whaley. Effective static race detection
for Java. In ACM Conference on Programming Language Design and
Implementation, 2006.

[13] J. Potter, J. Noble, and D. Clarke. The ins and outs of objects. In
Australian Software Engineering Conference, pages 80–89, 1998.

[14] P. Pratikakis, J. Foster, and M. Hicks. LOCKSMITH: context-sensitive
correlation analysis for race detection. In ACM Conference on Program-
ming Language Design and Implementation, pages 320–331, 2006.

[15] S. Qadeer and D. Wu. Kiss: keep it simple and sequential. In ACM
Conference on Programming Language Design and Implementation,
pages 14–24, 2004.

[16] A. Rountev. Precise identification of side-effect free methods. In IEEE
International Conference on Software Maintenance, pages 82–91, 2004.

[17] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for
Java using annotated constraints. In ACM Conference on Object-
oriented Programming, Systems, Languages and Applications, pages 43–
55, 2001.

[18] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class analysis
for testing of polymorphism in Java software. IEEE Transactions on
Software Engineering, 30(6):372–386, June 2004.

[19] K. Sen. Race directed random testing of concurrent programs. In ACM
Conference on Programming Language Design and Implementation,
2008.

[20] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and
V. Sundaresan. Optimizing Java bytecode using the Soot framework:
Is it feasible? In Conference on Compiler Construction, LNCS 1781,
pages 18–34, 2000.

[21] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints
with data in an object-oriented language. In ACM Symposium on
Principles of Programming Languages, pages 334–345, 2006.

[22] M. Vaziri, F. Tip, J. Dolby, C. Hammer, and J. Vitek. A type system
for data-centric synchronization. In European Conference on Object-
oriented Programming, 2010.

[23] C. von Praun and T. Gross. Object race detection. In ACM Conference
on Object-oriented Programming, Systems, Languages and Applications,
pages 70–82, 2001.

[24] C. von Praun and T. Gross. Static conflict analysis for multithreaded
object-oriented programs. In ACM Conference on Programming Lan-
guage Design and Implementation, pages 115–128, 2003.


