
2.10. Heap Algorithm

Section authors: Brad King, Garrett Yaun, and Jeff
Banks

�
�
�
�

�� ��� �
�� �

�� ��� ��� ��� �

Sequence
Algorithm 2.1

Comparison Based 2.2 Permuting 2.5

Heap Algorithm

Make Heap 2.10.1 Sort Heap 2.10.2 Push Heap 2.10.3 Pop Heap 2.10.4

A Heap Algorithm takes advantage of a heap property
in a randomly-accessible sequence of elements. A heap
represents a particular organization of a random access
data structure (2). Given a range [first, last), we say

that the range represents a heap if two key properties
are satisfied:

• The value pointed to by first is the largest value
in the range.

• The value pointed to by first may be removed
by a pop operation or a new element added by a
push operation in logarithmic time. Both the pop
and push operations return valid heaps.

The largest element is distinguished according to a given
strict-weak-ordering. How this ordering is defined and
provided to the algorithms is an implementation detail
and is not covered here.

Refinement of: Comparison Based (§2.2) and Sequence
Permuting (§2.5)

2.10.1. Make Heap

�
�
�
�

�� ��� �
�� �

�� ��� ��� ��� �

Sequence
Algorithm 2.1

Comparison Based 2.2 Permuting 2.5

Heap Algorithm 2.10

Make Heap Sort Heap 2.10.2 Push Heap 2.10.3 Pop Heap 2.10.4

Refinement of: Heap Algorithm (§2.10), and there-
fore of Comparison Based (§2.2) and Sequence
Permuting (§2.5)

Prototype: (1) From STL

template <class RandomAccessIterator>
void make_heap(RandomAccessIterator first,

RandomAccessIterator last);

http://www.sgi.com/tech/stl/make_heap.html

Input: Unordered sequence in range [first, last).

Output: Elements in range [first, last) form a heap.

Effects: Permutes the input sequence such that the
result satisfies the heap property for a particular
strict-weak-ordering.

Asymptotic complexity: Let N = last− first.

• Average case (random data): O(N)

• Worst case: O(N)

Operation Counts in the Average Case:
N Comparisons Assignments Iterator Integer
10 11.2 24.2 106.8 159.6
20 27.3 51.7 237.0 345.5
40 59.0 106.4 497.4 722.7
60 92.7 161.4 763.4 1099.3
80 125.9 217.2 1033.4 1488.3
160 255.4 435.1 2080.8 2994.5
320 520.1 877.5 4218.8 6042.2
640 1044.6 1752.4 8444.2 12084.9

Value Comparisons (§A.1.1) : 1.65N − 0.69 lgN − 3.02
Value Assignments (§A.1.2) : 2.76N − 0.46 lgN − 2.41
Iterator Operations (§A.1.3) : 13.32N − 5.03 lgN − 11.80
Integer Operations (§A.1.4) : 19.03N − 5.41 lgN − 12.51

See Appendix (§A) for a description of how the
data were collected and processed to produce the
above equations.

Iterator Trace:

 0

 200

 400

 600

 800

 1000

 0 5000 10000 15000 20000 25000 30000 35000

It
er

at
or

 P
os

iti
on

Time

Make Heap Iterator Trace

’vector_make_heap.log’

An unordered sequence of 1000 elements is con-
verted into a heap. Make-heap is implemented by
heapifying and combining small sub-heaps into a
final single heap. At any time t, the number of
iterator trails intersecting with a vertical line in-
dicates the height of the heaps currently getting
built. At about time 9500, all heaps of height 1
have been built. At about time 17500, all heaps
of height 2 have been built. The process contin-
ues until the heap of height dlg 1000e have been
built.

2.10.2. Sort Heap

�
�
�
�

�� ��� �
�� �

�� ��� ��� ��� �

Sequence
Algorithm 2.1

Comparison Based 2.2 Permuting 2.5

Heap Algorithm 2.10

Make Heap 2.10.1 Sort Heap Push Heap 2.10.3 Pop Heap 2.10.4

Refinement of: Heap Algorithm (§2.10), and there-
fore of Comparison Based (§2.2) and Sequence
Permuting (§2.5)

Prototype: (1) From STL

template <class RandomAccessIterator>
void sort_heap(RandomAccessIterator first,

RandomAccessIterator last);

http://www.sgi.com/tech/stl/sort_heap.html

Input: Elements in range [first, last) form a heap.

Output: Elements in range [first, last) are in sorted
order.

Effects: Permutes the input heap such that the ele-
ments are sorted according to the same strict-
weak-ordering used to define the original heap.
The result may no longer be a heap.

Asymptotic complexity: Let N = last− first.

• Average case (random data): O(N lgN)

• Worst case: O(N lgN)

Operation Counts in the Average Case:
N Comparisons Assignments Iterator Integer
10 20.4 60.0 288.8 288.1
20 60.9 142.0 735.6 749.2
40 161.4 322.7 1775.2 1834.2
60 278.4 519.9 2942.4 3059.6
80 403.8 726.8 4187.4 4382.2
160 968.8 1613.2 9643.6 10171.0
320 2254.1 3537.9 21796.4 23183.9
640 5158.9 7724.1 48755.6 52131.1

Value Comparisons (§A.2.1) : 0.98N lgN − 1.05N − 16.35 lgN + 98.57
Value Assignments (§A.2.2) : 0.98N lgN + 2.95N − 15.32 lgN + 94.81
Iterator Operations (§A.2.3) : 7.87N lgN + 3.26N − 126.37 lgN + 782.24
Integer Operations (§A.2.4) : 8.81N lgN − 0.03N − 175.06 lgN + 1071.58

See Appendix (§A) for a description of how the
data were collected and processed to produce the
above equations.

Iterator Trace:

 0

 200

 400

 600

 800

 1000

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

It
er

at
or

 P
os

iti
on

Time

Sort Heap Iterator Trace

’vector_sort_heap.log’

A heap of 1000 elements is being sorted. Sort-
heap is implemented by repeatedly performing a
pop-heap until the heap is empty. The trace sim-
ply shows the iterator trace for each pop-heap in
turn. Since the heap is smaller by one element
after each pop-heap, the highest iterator position
steadily decreases with time.

2.10.3. Push Heap

�
�
�
�

�� ��� �
�� �

�� ��� ��� ��� �

Sequence
Algorithm 2.1

Comparison Based 2.2 Permuting 2.5

Heap Algorithm 2.10

Make Heap 2.10.1 Sort Heap 2.10.2 Push Heap Pop Heap 2.10.4

Refinement of: Heap Algorithm (§2.10), and there-
fore of Comparison Based (§2.2) and Sequence
Permuting (§2.5)

Prototype: (1) From STL

template <class RandomAccessIterator>
void push_heap(RandomAccessIterator first,

RandomAccessIterator last);

http://www.sgi.com/tech/stl/push_heap.html

Input: Elements in range [first, last− 1) form a heap.
Element at position last− 1 is to be inserted.

Output: Elements in range [first, last) form a heap.

Effects: Inserts a new value into the heap.

Asymptotic complexity: Let N = last− first.

• Average case (random data): O(lgN)

• Worst case: O(lgN)

Operation Counts in the Average Case:
N Comparisons Assignments Iterator Integer
10 4.8 9.3 47.6 50.6
20 5.6 9.6 52.6 56.0
40 6.7 10.7 61.2 64.4
60 7.2 11.4 65.8 71.4
80 6.4 10.4 61.0 65.4
160 7.7 11.7 71.4 78.2
320 8.9 12.9 80.2 87.0
640 10.9 14.9 94.6 102.2

Value Comparisons (§A.3.1) : 1.02 lgN + 0.84
Value Assignments (§A.3.2) : 1.02 lgN + 4.89
Iterator Operations (§A.3.3) : 8.10 lgN + 15.43
Integer Operations (§A.3.4) : 9.07 lgN + 14.18

See Appendix (§A) for a description of how the
data were collected and processed to produce the
above equations.

Iterator Trace:

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45 50

It
er

at
or

 P
os

iti
on

Time

Push Heap Iterator Trace

’vector_push_heap.log’

An element at position 999 is inserted into the ex-
isting heap of 999 elements in the range [0, 999).
The iterator trace shows the progress of walking
up the heap until the proper location is found. At
time 6, the value x to be inserted is read. At time
15, x’s parent node at position 499 is read and its
value is compared to x. A violation of the heap
property is detected, and fixing it accesses the
positions again at times 20 and 25. The parent
of node 499 then compared against x. This pro-
cess continues until the proper position is found
at node 249, and x is assigned to this node at
time 50.

2.10.4. Pop Heap

�
�
�
�

�� ��� �
�� �

�� ��� ��� ��� �

Sequence
Algorithm 2.1

Comparison Based 2.2 Permuting 2.5

Heap Algorithm 2.10

Make Heap 2.10.1 Sort Heap 2.10.2 Push Heap 2.10.3 Pop Heap

Refinement of: Heap Algorithm (§2.10), and there-
fore of Comparison Based (§2.2) and Sequence
Permuting (§2.5)

Prototype: (1) From STL

template <class RandomAccessIterator>
void pop_heap(RandomAccessIterator first,

RandomAccessIterator last);

http://www.sgi.com/tech/stl/pop_heap.html

Input: Elements in range [first, last) form a heap.

Output: Elements in range [first, last−1) form a heap.
Value that was previously at first has been re-
moved from the heap and placed at last− 1.

Effects: Removes the value from the heap that is con-
sidered largest by the strict-weak-ordering.

Asymptotic complexity: Let N = last− first.

• Average case (random data): O(lgN)

• Worst case: O(lgN)

Operation Counts in the Average Case:
N Comparisons Assignments Iterator Integer
10 3.7 7.7 39.4 42.4
20 4.7 8.7 47.4 51.4
40 5.5 9.5 53.8 58.0
60 6.3 10.3 59.8 64.2
80 6.4 10.4 61.0 64.8
160 7.5 11.5 70.0 76.4
320 8.5 12.5 77.6 85.0
640 9.6 13.6 86.0 92.6

Value Comparisons (§A.4.1) : 0.99 lgN + 0.29
Value Assignments (§A.4.2) : 0.99 lgN + 4.29
Iterator Operations (§A.4.3) : 7.95 lgN + 12.00
Integer Operations (§A.4.4) : 8.92 lgN + 10.73

See Appendix (§A) for a description of how the
data were collected and processed to produce the
above equations.

Iterator Trace:

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250

It
er

at
or

 P
os

iti
on

Time

Pop Heap Iterator Trace

’vector_pop_heap.log’

The root element is removed from a heap of 1000
elements and placed at the end of the sequence.
Through time 25, the algorithm is reading the old
value x from position 999 and copying the root
element from position 0 to position 999. It then
starts at the empty root element, and moves this
hole down the heap by repeatedly selecting the
greater of the two children and copying it to its
parent node. At time 200, the bottom of the heap
is reached. The last three accesses correspond to
the push-heap operation of element x starting at
the hole at the bottom of the heap.

A. Run-Time Analysis

The STL (1) implementations of all four algorithms
from the library of GCC 2.95.3 were used to measure
operation counts. Each algorithm was run on N ran-
domly generated elements, where N ranged from 10 to
10000, in steps of 10. There were 10 independent trials
for each value of N . For each type of operation, the
average of the counts across all 10 trials was recorded
as the count for that operation.

The following types of operations were recorded using
the operation counting library:

Category: Operations Used:
Value Comparisons: <

Value Assignments: = and Copy-Construction
Iterator Operations: Total iterator counter

Integer Operations: Total difference counter

Using the average operation totals for each N , a least-
squares fit was performed to obtain the constants in the
running-time equations. There were four algorithms,
and four operation categories in each, for a total of

http://www.sgi.com/tech/stl

sixteen least-squares fit operations. The remaining sec-
tions show the plots of each set of data with its corre-
sponding fit.

A.1. Make Heap Fits

A.1.1. Make Heap Value Comparisions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Make Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 1.65 n + −0.69 lg(n) + −3.02
Data
Fit

Student Version of MATLAB

A.1.2. Make Heap Value Assignments

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3
x 10

4 Make Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 2.76 n + −0.46 lg(n) + −2.41
Data
Fit

Student Version of MATLAB

A.1.3. Make Heap Iterator Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14
x 10

4 Make Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns

Fit: 13.32 n + −5.03 lg(n) + −11.80
Data
Fit

Student Version of MATLAB

A.1.4. Make Heap Integer Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5 Make Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 19.03 n + −5.41 lg(n) + −12.51
Data
Fit

Student Version of MATLAB

A.2. Sort Heap Fits

A.2.1. Sort Heap Value Comparisions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14
x 10

4 Sort Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 0.98 n lg n + −1.05 n + −16.35 lg(n) + 98.57 Data
Fit

Student Version of MATLAB

A.2.2. Sort Heap Value Assignments

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18
x 10

4 Sort Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 0.98 n lg n + 2.95 n + −15.32 lg(n) + 94.81 Data
Fit

Student Version of MATLAB

A.2.3. Sort Heap Iterator Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12
x 10

5 Sort Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns

Fit: 7.87 n lg n + 3.26 n + −126.37 lg(n) + 782.24 Data
Fit

Student Version of MATLAB

A.2.4. Sort Heap Integer Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12
x 10

5 Sort Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 8.81 n lg n + −0.03 n + −175.06 lg(n) + 1071.58 Data
Fit

Student Version of MATLAB

A.3. Push Heap Fits

A.3.1. Push Heap Value Comparisions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
4

6

8

10

12

14

16

18
Push Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 1.02 lg(n) + 0.84

Data
Fit

Student Version of MATLAB

A.3.2. Push Heap Value Assignments

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
8

10

12

14

16

18

20

22
Push Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 1.02 lg(n) + 4.89

Data
Fit

Student Version of MATLAB

A.3.3. Push Heap Iterator Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
40

50

60

70

80

90

100

110

120

130

140
Push Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns

Fit: 8.10 lg(n) + 15.43

Data
Fit

Student Version of MATLAB

A.3.4. Push Heap Integer Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
40

60

80

100

120

140

160
Push Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 9.07 lg(n) + 14.18

Data
Fit

Student Version of MATLAB

A.4. Pop Heap Fits

A.4.1. Pop Heap Value Comparisions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
2

4

6

8

10

12

14

16
Pop Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 0.99 lg(n) + 0.29

Data
Fit

Student Version of MATLAB

A.4.2. Pop Heap Value Assignments

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
6

8

10

12

14

16

18

20
Pop Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 0.99 lg(n) + 4.29

Data
Fit

Student Version of MATLAB

A.4.3. Pop Heap Iterator Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
30

40

50

60

70

80

90

100

110

120

130
Pop Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns Fit: 7.95 lg(n) + 12.00

Data
Fit

Student Version of MATLAB

A.4.4. Pop Heap Integer Operations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
40

50

60

70

80

90

100

110

120

130

140
Pop Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 8.92 lg(n) + 10.73

Data
Fit

Student Version of MATLAB

B. Analysis with Larger N

All the tests, data collection, and analyses that were
performed as described in Appendix (§A) used a range
of sequence sizes from 10 to 10000, in steps of 10. The
entire process was repeated for sequence sizes ranging
from 100 to 100000, in steps of 100. The results of this
analysis are shown in this section.

We decided to favor the results from the analysis of
the smaller data sets because we believe that the large
constants that appear in this section are the result of
over-fitting by using too many terms. This is espe-
ically noticeable for the sort-heap fits. Further analysis
with correlation coefficients could be used to reveal the
terms that are actually important for each fit, but such
analysis is beyond the scope of this course.

B.1. Make Heap Fits

B.1.1. Make Heap Value Comparisions

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

2

4

6

8

10

12

14

16

18
x 10

4 Make Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 1.65 n + −1.13 lg(n) + 0.71
Data
Fit

Student Version of MATLAB

B.1.2. Make Heap Value Assignments

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

5 Make Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 2.76 n + −1.66 lg(n) + 9.71
Data
Fit

Student Version of MATLAB

B.1.3. Make Heap Iterator Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

2

4

6

8

10

12

14
x 10

5 Make Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns

Fit: 13.32 n + −10.73 lg(n) + 44.54
Data
Fit

Student Version of MATLAB

B.1.4. Make Heap Integer Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 Make Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 19.04 n + −10.18 lg(n) + 30.46
Data
Fit

Student Version of MATLAB

B.2. Sort Heap Fits

B.2.1. Sort Heap Value Comparisions

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−2

0

2

4

6

8

10

12

14

16
x 10

5 Sort Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 1.03 n lg n + −1.81 n + 381.67 lg(n) + −3687.61

Data
Fit

Student Version of MATLAB

B.2.2. Sort Heap Value Assignments

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 Sort Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 1.03 n lg n + 2.19 n + 382.68 lg(n) + −3691.70 Data
Fit

Student Version of MATLAB

B.2.3. Sort Heap Iterator Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−2

0

2

4

6

8

10

12

14
x 10

6 Sort Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns

Fit: 8.25 n lg n + −2.81 n + 3061.81 lg(n) + −29548.53

Data
Fit

Student Version of MATLAB

B.2.4. Sort Heap Integer Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−2

0

2

4

6

8

10

12

14

16
x 10

6 Sort Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 9.39 n lg n + −9.38 n + 4804.51 lg(n) + −46324.46

Data
Fit

Student Version of MATLAB

B.3. Push Heap Fits

B.3.1. Push Heap Value Comparisions

0 1 2 3 4 5 6 7 8 9 10

x 10
4

6

8

10

12

14

16

18

20
Push Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 1.01 lg(n) + 0.98

Data
Fit

Student Version of MATLAB

B.3.2. Push Heap Value Assignments

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10

12

14

16

18

20

22

24
Push Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 1.01 lg(n) + 5.00

Data
Fit

Student Version of MATLAB

B.3.3. Push Heap Iterator Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

60

70

80

90

100

110

120

130

140

150

160
Push Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns Fit: 8.04 lg(n) + 15.99

Data
Fit

Student Version of MATLAB

B.3.4. Push Heap Integer Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

60

80

100

120

140

160

180
Push Heap

n

In
te

ge
r

O
pe

ra
tio

ns Fit: 9.07 lg(n) + 13.93

Data
Fit

Student Version of MATLAB

B.4. Pop Heap Fits

B.4.1. Pop Heap Value Comparisions

0 1 2 3 4 5 6 7 8 9 10

x 10
4

6

8

10

12

14

16

18
Pop Heap

n

V
al

ue
 C

om
pa

ris
on

s

Fit: 1.00 lg(n) + 0.20

Data
Fit

Student Version of MATLAB

B.4.2. Pop Heap Value Assignments

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10

12

14

16

18

20

22
Pop Heap

n

V
al

ue
 A

ss
ig

nm
en

ts

Fit: 1.00 lg(n) + 4.20

Data
Fit

Student Version of MATLAB

B.4.3. Pop Heap Iterator Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

60

70

80

90

100

110

120

130

140

150
Pop Heap

n

Ite
ra

to
r

O
pe

ra
tio

ns Fit: 8.01 lg(n) + 11.21

Data
Fit

Student Version of MATLAB

B.4.4. Pop Heap Integer Operations

0 1 2 3 4 5 6 7 8 9 10

x 10
4

60

80

100

120

140

160

180
Pop Heap

n

In
te

ge
r

O
pe

ra
tio

ns

Fit: 9.03 lg(n) + 9.38

Data
Fit

Student Version of MATLAB

References

[1] SGI Standard Template Library Reference
http://www.sgi.com/tech/stl

[2] David Musser, STL Tutorial and Reference Guide,
Addison-Wesley, Reading, MA, 1997.

http://www.sgi.com/tech/stl

	Heap Algorithm
	Make Heap
	Sort Heap
	Push Heap
	Pop Heap

	Run-Time Analysis
	Make Heap Fits
	Make Heap Value Comparisions
	Make Heap Value Assignments
	Make Heap Iterator Operations
	Make Heap Integer Operations

	Sort Heap Fits
	Sort Heap Value Comparisions
	Sort Heap Value Assignments
	Sort Heap Iterator Operations
	Sort Heap Integer Operations

	Push Heap Fits
	Push Heap Value Comparisions
	Push Heap Value Assignments
	Push Heap Iterator Operations
	Push Heap Integer Operations

	Pop Heap Fits
	Pop Heap Value Comparisions
	Pop Heap Value Assignments
	Pop Heap Iterator Operations
	Pop Heap Integer Operations

	Analysis with Larger N
	Make Heap Fits
	Make Heap Value Comparisions
	Make Heap Value Assignments
	Make Heap Iterator Operations
	Make Heap Integer Operations

	Sort Heap Fits
	Sort Heap Value Comparisions
	Sort Heap Value Assignments
	Sort Heap Iterator Operations
	Sort Heap Integer Operations

	Push Heap Fits
	Push Heap Value Comparisions
	Push Heap Value Assignments
	Push Heap Iterator Operations
	Push Heap Integer Operations

	Pop Heap Fits
	Pop Heap Value Comparisions
	Pop Heap Value Assignments
	Pop Heap Iterator Operations
	Pop Heap Integer Operations

