HOW TO READ A RESEARCH PAPER

Stacy Patterson 10/12/2016

WHY READ A RESEARCH PAPER?

- To learn more about a topic
- To learn about work that is related to your research
- Because your advisor told you to
- Because you have to present the paper in a class
- Because you have to review the paper for a conference or journal
- Because a reviewer told you to cite the paper in your work

TYPES OF PAPERS (VENUE)

- Conference Papers
 - Peer-reviewed
 - Several Program Committee Members rate the paper
 - Highest rated papers are accepted
 - Usually 3 to 6 months between submission and acceptance notification
 - Paper is presented in a conference talk
 - Published in conference proceedings
- Journal Papers
 - Usually longer than a conference paper
 - May be based on a conference paper
 - Peer reviewed: Several reviewers may shepherd the paper through multiple revisions
 - 6 months to 2 years or more between submission and publication

TYPES OF PAPERS (VENUE - 2)

Workshop Papers

- Generally shorter than a conference paper
- May contain preliminary or partial results
- Faster publication time than conferences
- Peer-reviewed, similar to a conference paper

■ Technical Reports

- Published by the authors
- Can appear on school web site, arXiv.org, ResearchGate, etc.
- Not necessarily peer-reviewed
 - May be a pre-print of a conference or journal paper
 - May be a paper that was never submitted to conference or journal
 - May even be a paper that was rejected by a conference or journal

TYPES OF PAPERS (VENUE - 3)

- Magazines
 - Published more often than conference proceedings
 - May be peer-reviewed
 - Aimed at a more general audience
 - Example: IEEE Computer Magazine

TYPES OF PAPERS (CONTENT)

- Technical paper
 - New ideas or results (can be analytical, experimental, real-world system)
- Survey/Tutorial paper
 - Review of existing work on a topic
 - Usually hundreds of references
 - Ideally organized and compared in a useful way
- Vision/Opinion paper
 - Proposes new problems and/or research directions
 - Advocates solutions for existing and/or new research problems
- This talk will focus on how to read technical papers

HOW TO FIND A PAPER

- Web search: e.g., Google scholar
 - Finding the right keywords is an art
 - Become a power searcher
- References section of another paper
- A useful paper list
 - Survey papers
 - A course syllabus
 - A blog or personal web page
 - arXiv email alert service
- Personal recommendations from colleagues

GETTING READY

- It may take several hours to read a single paper
 - Leave yourself time to take breaks if needed
 - Try reading with a friend check in after each paragraph or subsection to make sure you both understand
- Read critically, but with an open mind
 - Don't automatically accept everything as true/correct/the best solution
 - But do look for the strong points of the paper
- As you read the paper:
 - Take notes of important or confusing points
 - Write down any questions you have
 - If you need to look something up, do it
 - Wikipedia is your friend

BEGIN AT THE VERY BEGINNING

- What is the title?
- Who are the authors?
 - Which are professors? Which are students?
- Where are the authors from?
- Where was the paper published?
- When was the paper published?
- Read the abstract to get a basic idea of what the paper is about
- You should learn who the leaders are in your field, what they are working on, and where they publish.

THE TWO PASS APPROACH

- First, skim the paper
 - Skip anything that takes significant mental effort
 - Just get a basic idea of what is in the paper
- After skimming, you can decide if you want to read the paper
 - Is the paper relevant to your research?
 - Do you have enough background to understand the paper?
 - If not, read some other papers first
 - Does the quality of the paper seem reasonable?
 - If not, check citation count in Google Scholar
 - Or ask your advisor/mentor about the quality of the venue
- If the paper passes the first pass, then do a second pass where you read in detail.

READING THE PAPER: THE INTRODUCTION

- Goals of the introduction
 - Give motivation for the research topic
 - Define the specific research problem in the context of a broad topic
 - Explain the contributions of the research paper and why they are important
- As you read the rest of the paper, keep in mind what the authors promised in the introduction:
 - Did the authors convince you the problem is important?
 - Does the solution make sense? Is it explained well?
 - Does the solution adequately address the problem?
 - How do the authors demonstrate this?

PARTS OF A PAPER: PROBLEM DESCRIPTION

- A formal detailed description of:
 - The system model, including assumptions
 - The problem(s) under considerations
 - Properties of the desired solution
- Questions to consider:
 - Does the formal problem description match the informal description in the introduction?
 - Are the model and assumptions realistic?

READING THE PAPER: SOLUTION

- Description of the solution(s) to the problem(s)
 - Algorithms
 - Software
 - Hardware
- Questions to consider:
 - Does the solution solve the problem?
 - Are there any potential weaknesses with solution?
 - Does it tolerate errors or component failures?
 - Is it prohibitively expensive (computationally or financially)?
 - Does the solution scale?

READING THE PAPER: ANALYSIS

- Theoretical results about the problem and/or solution
 - Proof of correctness
 - Asymptotic analysis (Big-0)
 - Error bounds
- If you want to really understand the theoretical results, try to reprove them.
- Questions to consider:
 - How well does the theory match the claims in the introduction?

READING THE PAPER: EXPERIMENTS

- Empirical evaluation of the proposed solutions
 - May be done on real system or in simulations
 - May use real-world or synthetic data sets
 - Usually includes figures you should read them carefully
- Questions to consider:
 - Are the results generated using realistic scenarios (data and system)?
 - Do the authors compare their solutions to other solutions in a meaningful way?
 - Do the results match the promises made in the introduction?

READING THE PAPER: RELATED WORK

- Description of prior research related to the problem(s) and/or solution(s)
 - Should highlight differences

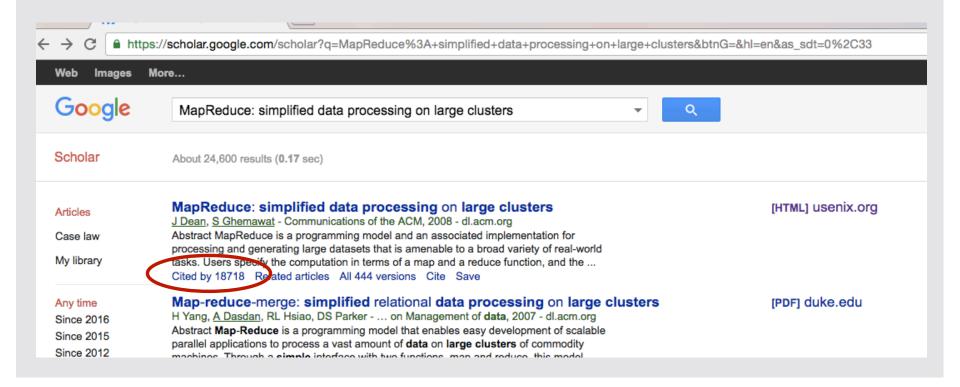
■ This can be a good source for more papers to read.

READING THE PAPER: CONCLUSION

- Summarizes the paper contributions
- Sometimes gives ideas for future work
 - Potential research topics?

POST MORTEM

- When you are done with the paper:
 - Go back and review the notes and questions you wrote down as you read.
 - Do you still have questions? Make a note of these
- Keep a log (journal, blog, diary) of the papers you read
 - Write a short summary of the paper (2 to 3 sentences)
 - Also write down any questions or suggestions you have that relate to your research
- You will read a lot of papers a log will help you keep track of them


OTHER THOUGHTS

- Authors are not perfect. Neither are most papers
- Papers may contain mistakes
 - If something looks incorrect, it may be
- Some papers may be hard to read
 - If you don't understand a section, it may not be your fault
 - You just have to give it your best shot

■ "Never read the original paper on X first. Instead read several later papers on what they say about X, get an idea of X and then read the original paper. Somehow the research community is much better in explaining ideas clearly than the original authors themselves." Delip Rao

DO YOU WANT TO KNOW MORE?

- If you want to read more about the paper topic:
 - References cited in related work.
 - Forward references papers that have cited the paper

RESOURCES AND REFERENCES

- http://www.cs.columbia.edu/~hgs/netbib/ efficientReading.pdf
- http://www.cs.jhu.edu/~jason/advice/how-to-read-apaper.html
- http://www.sciencemag.org/careers/2016/03/how-seriouslyread-scientific-paper
- Mendeley Reference Manager: https://www.mendeley.com/

THANK YOU

■ Any questions?