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Graph, networks, and characteristics of real-world data
Slides from Marta Arias & R. Ferrer-i-Cancho, Intro to
Complex and Social Networks



Examples of real networks
Intro to Network Analysis Measuring and modeling networks

So, let's start! Today, we'll see:

1. Examples of real networks
2. What do real networks look like?

» real networks exhibit small diameter

> .. and so does the Erdés-Rényi or random model

> real networks have high clustering coefficient
> .. and so does the Watts-Strogatz model

» real networks' degree distribution follows a power-law
> .. and so does the Barabasi-Albert or preferential attachment
model

Marta Arias & R. Ferrer-i-Cancho
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Examples of real networks
Intro to Network Analysis Measuring and modeling networks

Examples of real networks

»

Social networks

v

Information networks

v

Technological networks

v

Biological networks
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Intro to Network Analysis

Social networks

Examples of real networks

Measuring and modeling networks

Links denote social “interactions”

» friendship, collaborations, e-mail, etc.

Marta Arias & R. Ferrer-i-Cancho

Intro to Complexj)and, $acjal Networks = »



Examples of real networks
Intro to Network Analysis Measuring and modeling networks

Information networks

Nodes store information, links associate information

> citation networks, the web, p2p networks, etc.

Marta Arias & R. Ferrer-i Complexjand, $acjal Netwgrks



Examples of real networks
Intro to Network Analysis Measuring and modeling networks

Technological networks

Man-built for the distribution of a commodity
> telephone networks, power grids, transportation networks, etc.

Marta Arias & R. Ferrer-i-Cancho Intro to Complexj)and, $acjal Netwgrks



Examples of real networks
Intro to Network Analysis Measuring and modeling networks

Biological networks

Represent biological systems

> protein-protein interaction networks, gene regulation networks,
metabolic pathways, etc.

Protein 3

. ] //_\EmRNAI

I o —

TS mRNA 3 —
/ protein complex
e

Gene 3 /
—El
. / Gene 2

<=
Protein 2 TN

Protein 1

MRNA 2

Marta Arias & R. Ferrer-i-Cancho Intro to Complexj)and, $acjal Netwgrks



Examples of real networks
Intro to Network Analysis Measuring and modeling networks

Representing networks

> Network = Graph
> Networks are just collections of “points” joined by “lines”

\ — ode points  lines

/ vertices  edges, arcs math

/ _— edge nodes links computer science
sites bonds physics

\ actors ties, relations  sociology

Marta Arias & R. Ferrer-i-Cancho Intro to Complexj)and, $acjal Netwgrks



Examples of real networks
Intro to Network Analysis Measuring and modeling networks

Types of networks
From [Newman, 2003]

(a) unweighted,
undirected

(b) discrete vertex and
edge types,
undirected

(c) varying vertex and
edge weights,
undirected

(d) directed

Marta Arias & R. Ferrer-i-Cancho Intro to Complexj,and, $acjal Networks( = » = DA



Intro to Network Analysis
Small-world phenomenon

Examples of real networks

Measuring and modeling networks

» A friend of a friend is also frequently a friend

» Only 6 hops separate any two people in the world

Marta Arias & R. Ferrer-i-Cancho
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Intro to Network Analysis

Examples of real networks

Measuring and modeling networks
Measuring the small-world phenomenon, |

» Let djj be the shortest-path distance between nodes / and

> To check whether “any two nodes are within 6 hops”, we use
» The diameter (longest shortest-path distance) as

d = maxd;
i
» The average shortest-path length as

2
| =

n(n+1)zd’"

i>j
» The harmonic mean shortest-path length as

2
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Examples of real networks
Intro to Network Analysis Measuring and modeling networks

From [Newman, 2003]

network type n m 3 i o | c® ol r | Ref(s).
film actors undirected 449913 25516482 113.43 3.48 2.3 0.20 0.78 0.208 20, 418
company directors undirected 7673 55392 14.44 4.60 0.59 0.88 0.276 | 105, 323
math coauthorship undirected 253339 496 489 3.92 T.57 0.15 0.34 0.120 | 107, 182
physics coauthorship undirected 52909 245 300 9.27 6.19 0.45 0.56 0.383 311, 313

E biology coauthorship | undirected 1520251 11803064 15.53 4.92 0.088 | 0.60 0.127 | 311,313

2 telephone eall graph undirected 47000000 80000000 3.16 2.1 89
email messages directed 53912 86300 1.44 4.95 1.5/2.0 0.186 136
email address books directed 16881 57029 3.38 5.22 0.17 0.13 0.092 | 321
student relationships | undirected 573 477 1.66 16.01 0.005 | 0.001 | —0.020 | 45
sexual contacts undirected 2810 3.2 265, 266

= | WWW nd.edu directed 269 504 1497135 555 | 1127 | 21/24 | 011 0.29 —0.067 | 14,34

% WWW Altavista directed 203549046 | 2130000000 1046 | 1618 | 2.1/2.7 74

E citation network directed 783339 6716198 B.5T 3.0/ 351

';-: Roget’s Thesaurus directed 1022 5103 4.99 4.87 0.13 0.15 0.157 | 244

" | word co-occurrence undireeted 460902 17000000 70.13 2.7 0.44 119, 157
Internet undirected 10697 31992 5.98 3.31 2.5 0.035 | 0.39 —0.189 86, 148

7 | power grid undirected 4941 6594 2.67 | 18.99 0.10 0.080 | —0.003 | 416

;u train routes undirected 58T 19603 66.79 2.16 0.69 —0.033 | 366

S | software packages directed 1439 1723 120 | 242 | 16/14 | 0070 | 0.082 | —0.016 | 318

?f software classes directed 1377 2213 161 L51 0.033 | 0.012 | -0.119

= | electronic circuits undirected 24097 53248 434 | 1105 3.0 | 0.010 | 0.030 | —0.154 | 155
peer-to-peer network undirected 880 1296 147 4.28 2.1 0.012 | 0.011 —0.366 6, 354
metabolic network undirected 85 3686 9.64 2.56 2.2 | 0.090 | 087 —0.240 | 214

E protein interactions undirected 2115 2240 212 6.80 24 | 0072 | 0.071 | —0.1536 | 212

__ajﬂ marine food web directed 135 598 4.43 2.05 0.16 0.23 —0.263 204

é freshwater food web directed 92 997 10.84 190 0.20 0.087 | —0.326 | 272
neural network directed 307 2359 7.68 3.97 0.18 0.28 —0.226 | 416, 421
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Examples of real networks
Intro to Network Analysis Measuring and modeling networks

Degree distribution

Histogram of nr of nodes having a particular degree

random networks real networks (power-law, scale-free)

most nodes are
average linked

most nodes are
lowly linked

number of nodes
number of nodes

lowly linked <— node degree —= highly linked lowly linked <- node degree -> highly linked

fx = fraction of nodes of degree k

Marta Arias & R. Ferrer-i Intro to Complexj)and, $acjal Netwgrks¢



Examples of real networks
Intro to Network Analysis Measuring and modeling networks

Scale-free networks

The degree distribution of most real-world networks follows a
power-law distribution

fk = ck™@
\ > “heavy-tail” distribution, implies
Spikes .
existence of hubs

m > hubs are nodes with very high degree

Marta Arias & R. Ferrer-i-Cancho Intro to Complexj)and, $acjal Netwgrks¢



How to Analyze Networks
Slides from Johannes Putzke, Social Network Analysis: Basic
Concepts, Methods & Theory



Different Levels of Analysis

Folie:
35

Actor-Level

Dyad-Level

Triad-Level
Subset-level (cliques /
subgraphs)

Group (i.e. global) level

= o>



Example: Centrality Measures

= Who is the most prominent?
= Who knows the most actors?
(Degree Centrality)

®» \WWho has the shortest distance
to the other actors?

= Who controls knowledge
flows?

Folie:
18



Closeness Centrality

= Who knows the most
actors?

= Who has the shortest
distance to the other
actors? (Closesness
Centrality)

= Who controls knowledge
flows?

Folie:
40



Betweenness Centrality

= Who knows the most actors?

= Who has the shortest distance to
the other actors?

= Who controls knowledge flows?
(Betweenness Centrality)

Folie:
a4



Reachability, Distances and Diameter

= Reachability
= [fthere is a path between
nodes n;and n;
= Geodesic
= Shortest path between two nodes
» (Geodesic) Distance d(i,])
= Length of Geodesic (also called ,, degrees of separation”)

13
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Diameter of a Graph and Average Geodesic Distance

= Diameter

= Largest geodesic distance
between any pair of nodes

= Average Geodesic Distance

= How fast can information
get transmitted?

Folie:
50



Density

= Proportion of ties in a graph

ol

High density (44%) Low density (14%)



Connectivity of Graphs



Connected Graphs, Components, Cutpoints and
Bridges

= Connectedness

= Agraphis connected if there
is a path between every pair
of nodes

= Components
= Connected subgraphsin a
graph
= Connected graph has 1
component

= Two disconnected graphs are
one social network!!!

Folie:
59



Connected Graphs, Components, Cutpoints and
Bridges

= Connectivity of pairs of nodes and

oo e o

= Weakly connected

‘ = Joined by semipath
= Unilaterally connected

@@
‘ ‘ ‘ ‘ ® Path from n;to n;or from n;to n;
= Strongly connected
® Path from n;to n;and from n;to n,
= Path may contain different nodes
= Recursively Connected

= Nodes are strongly connected and
both paths use the same nodes

‘ ‘ ‘ ‘ and arcs in reverse order

Folie:
60



Connected Graphs, Components, Cutpoints and
Bridges

= Cutpoints
= number of components in
the graph that contain
node n;is fewer than
number of components in
subgraphs that results from
deleting n;from the graph

= Cutsets (of size k)
= k-node cut
= Bridges / line cuts

= Number of
components...that contain
line /,

Folie:
61



Node- and Line Connectivity

= How vulnerable is a graph to removal of nodes or lines?

Point connectivity / Line connectivity / Edge
Node connectivity connectivity

* Minimum number of k for * Minimum number A for
which the graph has a k- which for which graph has a
node cut A-line cut

= For any value <k the graph
is k-node-connected

Folie: 62



How to Analyze Networks (cont.)
Slides from Jon Crowcroft, Introduction to Network Theory



Subgraph

m Vertex and edge sets are subsets of those of G

a supergraph of a graph G is a graph that contains G as a
subgraph.



Isomorphism

m Bijection, i.e., a one-to-one mapping:
f:V(G) -> V(H)
u and v from G are adjacent if and only if f(u) and f(v) are
adjacent in H.

m [f an isomorphism can be constructed between two graphs, then
we say those graphs are isomorphic.



Isomorphism Problem

m Determining whether two graphs are
isomorphic
m Although these graphs look very different,
they are isomorphic; one isomorphism
between them is
f(a)=1 f(b)=6 f(c)=8 f(d)=3
f(g)=5 f(h)=2 f(i)=4 f(j)=7




Analyzing using subgraph counting (more cont.)



Subgraph Counting

Template



Subgraph Counting

Template
Larger Network



Subgraph Counting

Template
Larger Network



Subgraph Counting

Template
Larger Network



Subgraph Counting

Template
Larger Network



Motivations for Subgraph Counting, Path Finding

Why do we want fast algorithms for subgraph counting and weighted path finding?

m Important to social network analysis, communication
network analysis,bioinformatics, chemoinformatics, etc.
m Forms basis of more complex analysis

m Motif finding, anomaly detection

m Graphlet frequency distance (GFD)
m Graphlet degree distributions (GDD)
m Graphlet degree signatures (GDS)

m Counting and enumeration on large networks is very
tough, O(n*) complexity for naive algorithm

m Finding minimum-weight paths — NP-hard problem



Motif Finding

m Motif finding: Look for all subgraphs of a certain size (and

structure)

m Highly occuring subgraphs can have structural significance

-+ E.coli -e~ S.cerevisiae -/ H.pylori -} C.elegans
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Graphlet Frequency Distance Analysis

m GFD: Numerically compare occurrence frequency to other
networks

m 5;(G) — relative frequency for subgraph /i in graph G

m C; — counts of subgraph /

m D(G, H) — frequency distance between two graphs G,H

Ci(G) )

%; Ci(G)

Si(G) = —log(

D(G,H) => |S:i(G) — S:(H)|

221 164 1



Graphlet Frequency Distance Analysis

m GFD: Numerically compare occurrence frequency to other networks

m Heatmap of distances between many networks (red = similar, white =
dissimilar)

m Note occurrence of high intra-network type similarities

}Web crawls
Small world
graphs

}Social networks

PR N

Scale free graphs

:|» Road networks

}PPI networks

P2P Gnutella
network

} G(n,p) graphs
Communication
networks

Collaboration
networks 41
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Computational Aspects for Massive Graphs
AKA why efficient parallelization is important - i.e. the point
of this class

6/6



What?



Graph Analytics and HPC

Or, given modern extreme-scale graph-structured datasets
(web crawls, brain graphs, human interaction networks) and
modern high performance computing systems (Blue Waters),
how can we develop a generalized approach to efficiently study
such datasets on such systems?

4~/ 23



Why?



Why do want to study these large graphs?

Human Interaction Graphs:
» Finding hidden communities, individuals, malicious actors
» Observe how information and knowledge propagates
Brain Graphs:
» Study the topological properties of neural connections

» Finding latent computational substructures, similarities to
other information processing systems

Web Crawils:
» ldentifying trustworthy/important sites
» Spam networks, untrustworthy sites



Prior Approaches

Can we use them to analyze large graphs on HPC?
> Some limited by shared-memory and/or specialized hardware
> Some run in distributed memory but graph scale is still limited
> Others, graph scale isn't limiting factor but performance can be
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Graph analytics on HPC
So why do we want to run graph analytics on HPC?
» Scalability for analytic performance and graph size
» Efficient implementations should be limited only by
distributed memory capacity
» Graphb00.org - demonstration of performance achievable
for irregular computations through breadth-first search
(BFS)
» Relative availability of access in academic/research
communities
» Private clusters of various scales, shared supercomputers
» Access for domain experts, those using analytics on
real-world graphs
Can we create an approach that is as simple to use as
the aforementioned frameworks but runs on common
cluster hardware and gives state-of-the-art
performance?



Challenges



Scale

This work considers “extreme-scale” graphs — billion+
vertices and up to trillion+ edges

Processing these graphs requires at least hundreds to
thousands of compute nodes or tens of thousands of cores

Graph analytic algorithms are generally memory-bound

instead of compute-bound; in the distributed space, this
results in a ratio of communication versus computation
that increases with core/node count

1023



Complexity

» Real-world extreme-scale graphs have similar
characteristics: small-world nature with skewed degree
distributions

» Small-world graphs are difficult to partition for distributed
computation or to optimize in terms of cache due to “too
much locality”

» Skewed degree distributions make efficient parallelization
and load balance difficult to achieve

» Multiple levels of cache/memory and increasing reliance
on wide parallelism for modern HPC systems compounds
the above challenges

11/R23



