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Graph, networks, and characteristics of real-world data
Slides from Marta Arias & R. Ferrer-i-Cancho, Intro to

Complex and Social Networks

2 / 6



Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

So, let’s start! Today, we’ll see:

1. Examples of real networks

2. What do real networks look like?
I real networks exhibit small diameter

I .. and so does the Erdös-Rényi or random model

I real networks have high clustering coefficient
I .. and so does the Watts-Strogatz model

I real networks’ degree distribution follows a power-law
I .. and so does the Barabasi-Albert or preferential attachment

model
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Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

Examples of real networks

I Social networks

I Information networks

I Technological networks

I Biological networks

Marta Arias & R. Ferrer-i-Cancho Intro to Complex and Social Networks



Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

Social networks

Links denote social “interactions”
I friendship, collaborations, e-mail, etc.
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Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

Information networks

Nodes store information, links associate information

I citation networks, the web, p2p networks, etc.
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Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

Technological networks

Man-built for the distribution of a commodity

I telephone networks, power grids, transportation networks, etc.
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Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

Biological networks

Represent biological systems

I protein-protein interaction networks, gene regulation networks,
metabolic pathways, etc.
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Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

Representing networks

I Network ≡ Graph

I Networks are just collections of “points” joined by “lines”

points lines

vertices edges, arcs math
nodes links computer science
sites bonds physics
actors ties, relations sociology
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Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

Types of networks
From [Newman, 2003]

(a) unweighted,
undirected

(b) discrete vertex and
edge types,
undirected

(c) varying vertex and
edge weights,
undirected

(d) directed
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Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

Small-world phenomenon

I A friend of a friend is also frequently a friend

I Only 6 hops separate any two people in the world
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Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

Measuring the small-world phenomenon, I

I Let dij be the shortest-path distance between nodes i and j
I To check whether “any two nodes are within 6 hops”, we use:

I The diameter (longest shortest-path distance) as

d = max
i,j

dij

I The average shortest-path length as

l =
2

n (n + 1)

∑

i>j

dij

I The harmonic mean shortest-path length as

l−1 =
2

n (n + 1)

∑

i>j

d−1
ij
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Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

From [Newman, 2003]

Marta Arias & R. Ferrer-i-Cancho Intro to Complex and Social Networks



Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

Degree distribution

Histogram of nr of nodes having a particular degree

fk = fraction of nodes of degree k
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Presentation and course logistics
Intro to Network Analysis

Examples of real networks
Measuring and modeling networks

Scale-free networks

The degree distribution of most real-world networks follows a
power-law distribution

fk = ck−α

I “heavy-tail” distribution, implies
existence of hubs

I hubs are nodes with very high degree
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How to Analyze Networks
Slides from Johannes Putzke, Social Network Analysis: Basic

Concepts, Methods & Theory
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Different Levels of Analysis 

  Actor-Level 

 Dyad-Level 

 Triad-Level 

 Subset-level (cliques / 
subgraphs) 

 Group (i.e. global) level 

Folie: 
35 



Example: Centrality Measures 

 Who is the most prominent? 

 Who knows the most actors? 

 (Degree Centrality) 

 Who has the shortest distance 
to the other actors? 

 Who controls knowledge 
flows? 

 ... 

Folie: 
18 



Closeness Centrality 
 Who knows the most 

actors? 

 Who has the shortest 
distance to the other 
actors? (Closesness 
Centrality) 

 Who controls knowledge 
flows? 

 ... 

Folie: 
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Betweenness Centrality 
 Who knows the most actors? 

 Who has the shortest distance to 
the other actors? 

 Who controls knowledge flows?  

 (Betweenness Centrality) 

 ... 

Folie: 
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Reachability, Distances and Diameter 

 Reachability 
 If there is a path between  

 nodes ni and nj 

 Geodesic 
 Shortest path between two nodes 

 (Geodesic) Distance d(i,j) 
 Length of Geodesic (also called „degrees of separation“) 

 

 

 

Folie: 
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Diameter of a Graph and Average Geodesic Distance 

 Diameter 

 Largest geodesic distance 
between any pair of nodes 

 Average Geodesic Distance 

 How fast can information 
get transmitted? 

 

Folie: 
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Density 

 Proportion of ties in a graph 
 

High density (44%) 
 

Low density (14%) 
 

Folie: 51 



Connectivity of Graphs 

Folie: 
58 



Connected Graphs, Components, Cutpoints and 
Bridges 

 Connectedness 
 A graph is connected if there 

is a path between every pair 
of nodes 

 

 Components  
 Connected subgraphs in a 

graph 

 Connected graph has 1 
component 

 Two disconnected graphs are 
one social network!!! 

 

Folie: 
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Connected Graphs, Components, Cutpoints and 
Bridges 

 

 

 

 Connectivity of pairs of nodes and 
graphs 
 Weakly connected 

 Joined by semipath 

 Unilaterally connected 

 Path from nj to nj or from nj to nj 

 Strongly connected 

 Path from nj to nj and from nj to nj 

 Path may contain different nodes 

 Recursively Connected 

 Nodes are strongly connected and 
both paths use the same nodes 
and arcs in reverse order 

Folie: 
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Connected Graphs, Components, Cutpoints and 
Bridges 

 Cutpoints 
 number of components in 

the graph that contain 
node nj is fewer than 
number of components in 
subgraphs that results from 
deleting nj from the graph 

 Cutsets (of size k) 
 k-node cut 

 Bridges / line cuts 
 Number of 

components…that contain 
line lk 
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Node- and Line Connectivity 
 How vulnerable is a graph to removal of nodes or lines? 

Point connectivity / 

Node connectivity 
 Minimum number of k for 

which the graph has a k-
node cut 

 For any value <k the graph 
is k-node-connected 

Line connectivity / Edge 
connectivity 

 Minimum number λ for 
which for which graph has a 
λ-line cut 

 

 

Folie: 62 



How to Analyze Networks (cont.)
Slides from Jon Crowcroft, Introduction to Network Theory
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SubgraphSubgraph

 Vertex and edge sets are subsets of those of GVertex and edge sets are subsets of those of G
 a a supergraphsupergraph of a graph G is a graph that contains G as a of a graph G is a graph that contains G as a

subgraphsubgraph..



IsomorphismIsomorphism

 BijectionBijection, i.e., a one-to-one mapping:, i.e., a one-to-one mapping:
f : V(G) -> V(H)f : V(G) -> V(H)

u and v from G are adjacent if and only if f(u) and f(v) areu and v from G are adjacent if and only if f(u) and f(v) are
adjacent in H.adjacent in H.

 If an isomorphism can be constructed between two graphs, thenIf an isomorphism can be constructed between two graphs, then
we say those graphs are we say those graphs are isomorphicisomorphic..



Isomorphism ProblemIsomorphism Problem

 Determining whether two graphs areDetermining whether two graphs are
isomorphicisomorphic

 Although these graphs look very different,Although these graphs look very different,
they are isomorphic; one isomorphismthey are isomorphic; one isomorphism
between them isbetween them is
f(a)=1  f(b)=6  f(c)=8  f(d)=3f(a)=1  f(b)=6  f(c)=8  f(d)=3
f(g)=5  f(h)=2  f(i)=4  f(j)=7f(g)=5  f(h)=2  f(i)=4  f(j)=7



Analyzing using subgraph counting (more cont.)
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Subgraph Counting
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Subgraph Counting
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Subgraph Counting
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Subgraph Counting

13 / 1



Subgraph Counting
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Motivations for Subgraph Counting, Path Finding
Why do we want fast algorithms for subgraph counting and weighted path finding?

Important to social network analysis, communication
network analysis,bioinformatics, chemoinformatics, etc.

Forms basis of more complex analysis

Motif finding, anomaly detection
Graphlet frequency distance (GFD)
Graphlet degree distributions (GDD)
Graphlet degree signatures (GDS)

Counting and enumeration on large networks is very
tough, O(nk) complexity for näıve algorithm

Finding minimum-weight paths – NP-hard problem
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Motif Finding

Motif finding: Look for all subgraphs of a certain size (and
structure)
Highly occuring subgraphs can have structural significance
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Graphlet Frequency Distance Analysis

GFD: Numerically compare occurrence frequency to other
networks
Si(G ) – relative frequency for subgraph i in graph G
Ci – counts of subgraph i
D(G ,H) – frequency distance between two graphs G ,H

16 / 1



Graphlet Frequency Distance Analysis

GFD: Numerically compare occurrence frequency to other networks
Heatmap of distances between many networks (red = similar, white =
dissimilar)
Note occurrence of high intra-network type similarities
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Computational Aspects for Massive Graphs
AKA why efficient parallelization is important - i.e. the point

of this class
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What?
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Graph Analytics and HPC

Or, given modern extreme-scale graph-structured datasets
(web crawls, brain graphs, human interaction networks) and
modern high performance computing systems (Blue Waters),
how can we develop a generalized approach to efficiently study
such datasets on such systems?
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Why?
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Why do want to study these large graphs?

Human Interaction Graphs:

I Finding hidden communities, individuals, malicious actors

I Observe how information and knowledge propagates

Brain Graphs:

I Study the topological properties of neural connections

I Finding latent computational substructures, similarities to
other information processing systems

Web Crawls:

I Identifying trustworthy/important sites

I Spam networks, untrustworthy sites
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Prior Approaches
Can we use them to analyze large graphs on HPC?

I Some limited by shared-memory and/or specialized hardware
I Some run in distributed memory but graph scale is still limited
I Others, graph scale isn’t limiting factor but performance can be
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Graph analytics on HPC
So why do we want to run graph analytics on HPC?

I Scalability for analytic performance and graph size
I Efficient implementations should be limited only by

distributed memory capacity
I Graph500.org - demonstration of performance achievable

for irregular computations through breadth-first search
(BFS)

I Relative availability of access in academic/research
communities

I Private clusters of various scales, shared supercomputers
I Access for domain experts, those using analytics on

real-world graphs

Can we create an approach that is as simple to use as
the aforementioned frameworks but runs on common
cluster hardware and gives state-of-the-art
performance?
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Challenges
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Scale

I This work considers “extreme-scale” graphs – billion+
vertices and up to trillion+ edges

I Processing these graphs requires at least hundreds to
thousands of compute nodes or tens of thousands of cores

I Graph analytic algorithms are generally memory-bound
instead of compute-bound; in the distributed space, this
results in a ratio of communication versus computation
that increases with core/node count
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Complexity

I Real-world extreme-scale graphs have similar
characteristics: small-world nature with skewed degree
distributions

I Small-world graphs are difficult to partition for distributed
computation or to optimize in terms of cache due to “too
much locality”

I Skewed degree distributions make efficient parallelization
and load balance difficult to achieve

I Multiple levels of cache/memory and increasing reliance
on wide parallelism for modern HPC systems compounds
the above challenges
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