
Computing on Graphs – An Overview
Lecture 2

CSCI 4974/6971

1 Sep 2016

1 / 16

Today’s Learning

1. Computations of Graphs

2. OpenMP refresher

3. Hands-on: Breadth-First Search

2 / 16

Computations of Graphs
Overview

I Vertex-centric Model

I Bulk-Synchronous Parallization

I Push vs. Pull updating

I Storing graphs in memory

3 / 16

Bulk Synchronous Parallel Model
Slides from Rob Bisseling

4 / 16

Lecture 1.2 Bulk Synchronous Parallel Model

Parallel computer: abstract model

M
P P P PP

M M M M

Communication
network

Bulk synchronous parallel (BSP) computer.
Proposed by Leslie Valiant, 1989.

6 / 17

Lecture 1.2 Bulk Synchronous Parallel Model

BSP computer

I A BSP computer consists of a collection of processors, each
with its own memory. It is a distributed-memory computer.

I Access to own memory is fast, to remote memory slower.

I Uniform-time access to all remote memories.

I No need to open the black box of the communication
network. Algorithm designers should not worry about network
details, only about global performance.

I Algorithms designed for a BSP computer are portable: they
can be run efficiently on many different parallel computers.

7 / 17

Lecture 1.2 Bulk Synchronous Parallel Model

Parallel algorithm: supersteps

P(0) P(1) P(2) P(3) P(4)

sync

sync

sync

sync

sync

comm

comm

comm

comp

comp

8 / 17

Lecture 1.2 Bulk Synchronous Parallel Model

BSP algorithm

I A BSP algorithm consists of a sequence of supersteps.

I A computation superstep consists of many small steps, such
as the floating-point operations (flops) addition, subtraction,
multiplication, division. In scientific computing, flops are the
common unit for expressing computation cost.

I A communication superstep consists of many basic
communication operations, each transferring a data word such
as a real or integer from one processor to another.

I In our theoretical algorithms, we distinguish between the two
types of supersteps. This helps in the design and analysis of
parallel algorithms.

I In our practical programs, we drop the distinction and mix
computation and communication freely in each superstep.

9 / 17

Vertex-centric Model
Slides from Wenfei Fan, QSX: Advanced Topics in Databases

5 / 16

Vertex-centric models

11

2

Bulk Synchronous Parallel Model (BSP)

 Processing: a series of supersteps

 Vertex: computation is defined to run on each vertex

 Superstep S: all vertices compute in parallel; each vertex v
may

– receive messages sent to v from superstep S – 1;

– perform some computation: modify its states and the states
of its outgoing edges

– Send messages to other vertices (to be received in the next
superstep)

Vertex-centric, message passing

 Leslie G. Valiant: A Bridging Model for Parallel Computation.
Commun. ACM 33 (8): 103-111 (1990)

3

Pregel: think like a vertex

 Vertex: modify its state/edge state/edge sets (topology)

 Supersteps: within each, all vertices compute in parallel

 Termination:

– Each vertex votes to halt

– When all vertices are inactive and no messages in transit

 Synchronization: supersteps

Asynchronous: all vertices within each superstep

 Input: a directed graph G

– Each vertex v: a node id, and a value

– Edges: contain values (associated with vertices)

Example: maximum value

3 6 2 1 Superstep 0

6 6 2 6

6 6 6 6

6 6 6 6

Superstep 1

Superstep 2

Superstep 3

Shaded vertices: voted to halt

message
passing

4

Pushing vs. Pulling

6 / 16

Push vs. Pull
General idea

I We have a graph structure we want to compute on

I We have a algorithm we want to run

I That algorithm utilizes stored per-vertex data

I We iteratively update that data with a vertex-centric
computation

I We can update that data by having vertices push data
updates to their neighbors or pull in data updates

I Either the vertices’ own data gets updated or the
neighbors’ data gets updated

7 / 16

Push vs. Pull
Pushing

Pushing:

I Information is pushed – a vertex updates its neighbor’s
data

I The Good:
I Can be work-optimal – only push needed updates

I The Bad:
I Synchronization concerns – race-conditions updating

neighbor’s data

I The Algorithms:
I Standard breadth-first search – push “discovery” to

neighbors and update distance/level/parent data
I Color Propagation connectivity algorithm – push colors

to neighbors

8 / 16

Push vs. Pull
Pulling

Pulling:
I Each vertex pulls in information from neighbors to update

their own value
I The Good:

I Minimal synchronization concerns, only updating own
value

I Easier to parallelize – can often get better scaling

I The Bad:
I Not necessarily work-optimal – but there exist ways to

make it close

I The Algorithms:
I Standard PageRank – pull in neighbors’ PageRanks,

update own value
I Label Propagation – find max label count among

neighbors, update own value to it
9 / 16

An Introduction to OpenMP
Ruud van der Pas

10 / 16

1

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

An Introduction Into OpenMP

Ruud van der Pas

Senior Staff Engineer
Scalable Systems Group

Sun Microsystems

IWOMP 2005
University of Oregon
Eugene, Oregon, USA

June 1-4, 2005

2

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Outline
❑ The OpenMP Programming Model

❑OpenMP Guided Tour

❑OpenMP Overview

● Clauses

● Worksharing constructs

● Synchronization constructs

● Environment variables

● Global Data

● Runtime functions

❑Wrap-up

3

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The OpenMP Programming Model

4

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

0 1 P

Memory

5

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Shared Memory Model

T
private

T
private

T
private

T
private

T

private

Programming Model

Shared
Memory

✔All threads have access to the
same, globally shared,
memory

✔Data can be shared or private

✔ Shared data is accessible by
all threads

✔ Private data can be accessed
only by the threads that owns
it

✔Data transfer is transparent to
the programmer

✔ Synchronization takes place,
but it is mostly implicit

6

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

About Data
 In a shared memory parallel program variables have a

"label" attached to them:

☞ Labelled "Private" ⇨ Visible to one thread only

✔ Change made in local data, is not seen by others
✔ Example - Local variables in a function that is

executed in parallel

☞ Labelled "Shared" ⇨ Visible to all threads

✔ Change made in global data, is seen by all others
✔ Example - Global data

7

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The OpenMP execution model

Fork and Join Model

Master
Thread

Worker
Threads

Parallel region

Parallel region

Synchronization

"threads"

8

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

TID = 0
for (i=0,1,2,3,4)

TID = 1
for (i=5,6,7,8,9)

Example - Matrix times vector

i = 0 i = 5

i = 1 i = 6

a[1] = sum a[6] = sum
sum =  b[i=1][j]*c[j] sum =  b[i=6][j]*c[j]

... etc ...

for (i=0; i<m; i++)
{
 sum = 0.0;
 for (j=0; j<n; j++)
 sum += b[i][j]*c[j];
 a[i] = sum;

 }

 #pragma omp parallel for default(none) \
 private(i,j,sum) shared(m,n,a,b,c)

= *

j

i

a[0] = sum a[5] = sum
sum =  b[i=0][j]*c[j] sum =  b[i=5][j]*c[j]

9

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

OpenMP Guided Tour

10

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

http://www.openmp.org

http://www.compunity.org

11

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

When to consider using OpenMP?
❑ The compiler may not be able to do the parallelization in

the way you like to see it:

● A loop is not parallelized

✔ The data dependency analysis is not able to
determine whether it is safe to parallelize or not

● The granularity is not high enough

✔ The compiler lacks information to parallelize at
the highest possible level

❑ This is when explicit parallelization through OpenMP
directives and functions comes into the picture

12

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

About OpenMP
❑ The OpenMP programming model is a powerful, yet

compact, de-facto standard for Shared Memory
Programming

❑ Languages supported: Fortran and C/C++

❑ Current release of the standard: 2.5

● Specifications released May 2005

❑We will now present an overview of OpenMP

❑Many details will be left out

❑ For specific information, we refer to the OpenMP
language reference manual (http://www.openmp.org)

13

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Terminology
❑OpenMP Team := Master + Workers

❑ A Parallel Region is a block of code executed by all
threads simultaneously

☞ The master thread always has thread ID 0

☞ Thread adjustment (if enabled) is only done before entering a
parallel region

☞ Parallel regions can be nested, but support for this is
implementation dependent

☞ An "if" clause can be used to guard the parallel region; in case
the condition evaluates to "false", the code is executed
serially

❑ A work-sharing construct divides the execution of the
enclosed code region among the members of the team;
in other words: they split the work

14

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

A loop parallelized with OpenMP

!$omp parallel default(none) &
!$omp shared(n,x,y) private(i)
!$omp do
 do i = 1, n
 x(i) = x(i) + y(i)
 end do
!$omp end do
!$omp end parallel

#pragma omp parallel default(none) \
 shared(n,x,y) private(i)
{
 #pragma omp for
 for (i=0; i<n; i++)
 x[i] += y[i];
} /*-- End of parallel region --*/

clauses

15

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Components of OpenMP

 Parallel regions

 Work sharing

 Synchronization

 Data scope attributes

☞ private

☞ firstprivate

☞ lastprivate

☞ shared

☞ reduction

 Orphaning

Directives Environment
variables

 Number of threads

 Scheduling type

 Dynamic thread
adjustment

 Nested parallelism

Runtime
environment

 Number of threads

 Thread ID

 Dynamic thread
adjustment

 Nested parallelism

 Timers

 API for locking

16

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Directive format

❑ Fortran: directives are case insensitive

● Syntax: sentinel directive [clause [[,] clause]...]

● The sentinel is one of the following:

✔ !$OMP or C$OMP or *$OMP (fixed format)

✔ !$OMP (free format)

❑ Continuation: follows the language syntax

❑ Conditional compilation: !$ or C$ -> 2 spaces

❑ C: directives are case sensitive

● Syntax: #pragma omp directive [clause [clause] ...]

❑ Continuation: use \ in pragma

❑ Conditional compilation: _OPENMP macro is set

17

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

A more elaborate example

for (i=0; i<n; i++)
 z[i] = x[i] + y[i];

scale = sum(a,0,n) + sum(z,0,n) + f;

#pragma omp barrier synchronization

#pragma omp for nowait

parallel loop
(work will be distributed)

Statement is executed
by all threads

f = 1.0; Statement is executed
by all threads

#pragma omp for nowait

parallel loop
(work will be distributed)

#pragma omp parallel if (n>limit) default(none) \
 shared(n,a,b,c,x,y,z) private(f,i,scale)
{

} /*-- End of parallel region --*/

p
a

ralle
l reg

io
n

for (i=0; i<n; i++)
 a[i] = b[i] + c[i];

18

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Another OpenMP example
 1 void mxv_row(int m,int n,double *a,double *b,double *c)
 2 {
 3 int i, j;
 4 double sum;
 5
 6 #pragma omp parallel for default(none) \
 7 private(i,j,sum) shared(m,n,a,b,c)
 8 for (i=0; i<m; i++)
 9 {
10 sum = 0.0;
11 for (j=0; j<n; j++)
12 sum += b[i*n+j]*c[j];
13 a[i] = sum;
14 } /*-- End of parallel for --*/
15 }

% cc -c -fast -xrestrict -xopenmp -xloopinfo mxv_row.c
"mxv_row.c", line 8: PARALLELIZED, user pragma used
"mxv_row.c", line 11: not parallelized

19

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

0 1 10 100 1000 10000 100000 1000000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

OpenMP - 1 CPU

OpenMP - 2 CPUs

OpenMP - 4 CPUs

OpenMP performance

SunFire 6800
UltraSPARC III Cu @ 900 MHz
8 MB L2-cache

Memory Footprint (KByte)

P
er

fo
rm

an
ce

 (
M

fl
o

p
/s

)

Matrix too
small *

*) With the IF-clause in OpenMP this performance
degradation can be avoided

s
ca

le
s

20

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Some OpenMP Clauses

21

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

About OpenMP clauses
❑Many OpenMP directives support clauses

❑ These clauses are used to specify additional information
with the directive

❑ For example, private(a) is a clause to the for directive:

● #pragma omp for private(a)

❑ Before we present an overview of all the directives, we
discuss several of the OpenMP clauses first

❑ The specific clause(s) that can be used, depends on the
directive

22

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The if/private/shared clauses

✔ Only execute in parallel if
expression evaluates to true

✔ Otherwise, execute serially

if (scalar expression)

✔ No storage association with original object

✔ All references are to the local object

✔ Values are undefined on entry and exit

✔ Data is accessible by all threads in the team

✔ All threads access the same address space

private (list)

shared (list)

#pragma omp parallel if (n > threshold) \
 shared(n,x,y) private(i)
 {
 #pragma omp for
 for (i=0; i<n; i++)
 x[i] += y[i];
 } /*-- End of parallel region --*/

23

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

About storage association
❑ Private variables are undefined on entry and exit of the

parallel region

❑ The value of the original variable (before the parallel
region) is undefined after the parallel region !

❑ A private variable within a parallel region has no storage
association with the same variable outside of the region

❑ Use the first/last private clause to override this
behaviour

❑We will illustrate these concepts with an example

24

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Example private variables
main()
{
 A = 10;

 for (i=0; i<n; i++)
 {

 B = A + i;

 }

 C = B;

}

#pragma omp for private(i,A,B) ...

/*-- A undefined, unless declared
 firstprivate --*/

/*-- B undefined, unless declared
 lastprivate --*/

#pragma omp parallel
{

} /*-- End of OpenMP parallel region --*/

#pragma omp for private(i,B) firstprivate(A) ...#pragma omp for private(i) firstprivate(A) lastprivate(B)...

25

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The first/last private clauses

firstprivate (list)

✔ All variables in the list are initialized with the
value the original object had before entering
the parallel construct

✔ The thread that executes the sequentially last
iteration or section updates the value of the
objects in the list

lastprivate (list)

26

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The default clause

default (none | shared | private)

✔ No implicit defaults

✔ Have to scope all variables explicitly

none

✔ All variables are shared

✔ The default in absence of an explicit "default" clause

✔ All variables are private to the thread

✔ Includes common block data, unless THREADPRIVATE

Fortran

C/C++
Note: default(private) is
not supported in C/C++

default (none | shared)

shared

private

27

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

 sum = 0.0
!$omp parallel default(none) &
!$omp shared(n,x) private(i)
!$omp do reduction (+:sum)
 do i = 1, n
 sum = sum + x(i)
 end do
!$omp end do
!$omp end parallel
 print *,sum

The reduction clause - example

Variable SUM is a
shared variable

☞ Care needs to be taken when updating shared variable SUM

☞ With the reduction clause, the OpenMP compiler generates
code such that a race condition is avoided

28

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The reduction clause

reduction ([operator | intrinsic]) : list)

✔ Reduction variable(s) must be shared variables

✔ A reduction is defined as:

Fortran

C/C++

x = x operator expr
x = expr operator x
x = intrinsic (x, expr_list)
x = intrinsic (expr_list, x)

x = x operator expr
x = expr operator x
x++, ++x, x--, --x
x <binop> = expr

Fortran C/C++

✔ Note that the value of a reduction variable is undefined
from the moment the first thread reaches the clause till
the operation has completed

✔ The reduction can be hidden in a function call

Check the docs
for details

reduction (operator : list)

29

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The nowait clause
❑ To minimize synchronization, some OpenMP

directives/pragmas support the optional nowait clause

❑ If present, threads will not synchronize/wait at the end of
that particular construct

❑ In Fortran the nowait is appended at the closing part of
the construct

❑ In C, it is one of the clauses on the pragma

!$omp do
 :
 :
!$omp end do nowait

#pragma omp for nowait
{
 :
}

30

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The parallel region

!$omp parallel [clause[[,] clause] ...]

 "this will be executed in parallel"

!$omp end parallel (implied barrier)

#pragma omp parallel [clause[[,] clause] ...]
{
 "this will be executed in parallel"

} (implied barrier)

A parallel region is a block of code executed by multiple
threads simultaneously

31

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The parallel region - clauses

if (scalar expression)
private (list)
shared (list)
default (none|shared) (C/C++)
default (none|shared|private) (Fortran)
reduction (operator: list)
copyin (list)
firstprivate (list)
num_threads (scalar_int_expr)

A parallel region supports the following clauses:

32

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Worksharing Directives

33

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Work-sharing constructs
The OpenMP work-sharing constructs

☞ The work is distributed over the threads
☞ Must be enclosed in a parallel region
☞ Must be encountered by all threads in the team, or none at all
☞ No implied barrier on entry; implied barrier on exit (unless

nowait is specified)
☞ A work-sharing construct does not launch any new threads

#pragma omp for
{

}

!$OMP DO

!$OMP END DO

#pragma omp sections
{

}

!$OMP SECTIONS

!$OMP END SECTIONS

#pragma omp single
{

}

!$OMP SINGLE

!$OMP END SINGLE

34

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The WORKSHARE construct

Fortran has a fourth worksharing construct:

!$OMP WORKSHARE

 <array syntax>

!$OMP END WORKSHARE [NOWAIT]

Example:

!$OMP WORKSHARE
 A(1:M) = A(1:M) + B(1:M)
!$OMP END WORKSHARE NOWAIT

35

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The omp for/do directive

!$omp do [clause[[,] clause] ...]
<original do-loop>

!$omp end do [nowait]

The iterations of the loop are distributed over the threads

#pragma omp for [clause[[,] clause] ...]
<original for-loop>

private firstprivate
lastprivate reduction
ordered* schedule
nowait

Clauses supported:

covered later

*) Required if ordered sections are in the dynamic extent of this construct

36

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The omp for directive - example

#pragma omp parallel default(none)\
 shared(n,a,b,c,d) private(i)
 {
 #pragma omp for nowait

 #pragma omp for nowait

 } /*-- End of parallel region --*/
(implied barrier)

for (i=0; i<n; i++)
 d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
 b[i] = (a[i] + a[i+1])/2;

37

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Load balancing
❑ Load balancing is an important aspect of performance

❑ For regular operations (e.g. a vector addition), load
balancing is not an issue

❑ For less regular workloads, care needs to be taken in
distributing the work over the threads

❑ Examples of irregular worloads:

● Transposing a matrix

● Multiplication of triangular matrices

● Parallel searches in a linked list

❑ For these irregular situations, the schedule clause
supports various iteration scheduling algorithms

38

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The schedule clause/1

schedule (static | dynamic | guided [, chunk])
schedule (runtime)

✔ Distribute iterations in blocks of size "chunk" over the
threads in a round-robin fashion

✔ In absence of "chunk", each thread executes approx. N/P
chunks for a loop of length N and P threads

static [, chunk]

Example: Loop of length 16, 4 threads:

TID 0 1 2 3

no chunk 1-4 5-8 9-12 13-16

chunk = 2 1-2 3-4 5-6 7-8

9-10 11-12 13-14 15-16

39

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The schedule clause/2

✔ Fixed portions of work; size is controlled by the value of
chunk

✔ When a thread finishes, it starts on the next portion of
work

✔ Same dynamic behaviour as "dynamic", but size of the
portion of work decreases exponentially

✔ Iteration scheduling scheme is set at runtime through
environment variable OMP_SCHEDULE

dynamic [, chunk]

guided [, chunk]

runtime

40

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The experiment

0 50 100 150 200 250 300 350 400 450 500

3

2

1

0

3

2

1

0

3

2

1

0

static

dynamic, 5

guided, 5

Iteration Number

T
h

re
ad

 ID
500 iterations on 4 threads

49

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Synchronization Controls

50

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Barrier/1

Suppose we run each of these two loops in parallel over i:

This may give us a wrong answer (one day)

Why ?

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

51

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Barrier/2

We need to have updated all of a[] first, before using a[]

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

All threads wait at the barrier point and only continue
when all threads have reached the barrier point

wait !

barrier
for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

52

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Barrier/3

Barrier Region

idle

idle

idle

!$omp barrier

Each thread waits until all others have reached this point:

#pragma omp barrier

time

53

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

When to use barriers ?
❑When data is updated asynchronously and the data

integrity is at risk

❑ Examples:

● Between parts in the code that read and write the
same section of memory

● After one timestep/iteration in a solver

❑ Unfortunately, barriers tend to be expensive and also
may not scale to a large number of processors

❑ Therefore, use them with care

54

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

for (i=0; i < N; i++){

 sum += a[i];

}

Critical region/1

If sum is a shared variable, this loop can not be run in parallel

We can use a critical region for this:

one at a time can proceed

next in line, please

for (i=0; i < N; i++){

 sum += a[i];

}

55

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Critical region/2
❑ Useful to avoid a race condition, or to perform I/O (but

which still will have random order)

❑ Be aware that your parallel computation may be
serialized and so this could introduce a scalability
bottleneck (Amdahl's law)

critical region time

56

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Critical region/3

!$omp critical [(name)]
<code-block>

!$omp end critical [(name)]

All threads execute the code, but only one at a time:

#pragma omp critical [(name)]
{<code-block>}

There is no implied
barrier on entry or

exit !

!$omp atomic
<statement>

#pragma omp atomic
<statement>

This is a lightweight, special
form of a critical section

#pragma omp atomic
 a[indx[i]] += b[i];

57

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

#pragma omp parallel for
for (i=0; i < N; i++)
{

 "read a[0..N-1]";

}

for (i=0; i < N; i++)
{

 "read a[0..N-1]";

}

Single processor region/1

This construct is ideally suited for I/O or initialization

Serial

one volunteer requested

thanks, we're done

"declare A to be be shared"

Parallel

May have to insert a
barrier here

58

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Single processor region/2
❑ Usually, there is a barrier needed after this region

❑Might therefore be a scalability bottleneck (Amdahl's
law)

single processor
region

Threads wait
in the barrier

time

59

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

SINGLE and MASTER construct

!$omp single [clause[[,] clause] ...]
<code-block>

!$omp end single [nowait]

Only one thread in the team executes the code enclosed
#pragma omp single [clause[[,] clause] ...]
{

<code-block>
}

!$omp master
<code-block>

!$omp end master

Only the master thread executes the code block:

#pragma omp master
{<code-block>} There is no implied

barrier on entry or
exit !

60

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

More synchronization directives
The enclosed block of code is executed in the order in

which iterations would be executed sequentially:

Expensive !
!$omp ordered

<code-block>
!$omp end ordered

#pragma omp ordered
{<code-block>}

Ensure that all threads in a team have a consistent view of
certain objects in memory:

In the absence of a list,
all visible variables are

flushed!$omp flush [(list)]

#pragma omp flush [(list)]

81

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Summary
❑OpenMP provides for a compact, but yet powerful,

programming model for shared memory programming

❑OpenMP supports Fortran, C and C++

❑OpenMP programs are portable to a wide range of
systems

❑ An OpenMP program can be written such that the
sequential version is still “built-in”

Graph Representations, Computing for Data Analytics:
Methods and Tools
Da KuangG, Polo Chau

11 / 16

Sparse matrix: Graph adjacency matrix
How to represent a graph?

A node in a graph is typically connected to only a small fraction of nodes.

Fall 2014 CSE 6040 COMPUTING FOR DATA ANALYSIS 8

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1 1 1 1

2 1 1 1

3 1 1 1 1

4 1 1 1 1

5 1 1 1

6 1 1 1

7 1 1

Source: www.cs.umn.edu/~metis

Sparse matrix is often very sparse
Term-document matrix for 4.5M English Wikipedia articles:

0.05% nonzeros

DBLP co-authorship network for 300,000 academic authors:

0.0007% nonzeros

We need efficient storage for sparse matrices.

Fall 2014 CSE 6040 COMPUTING FOR DATA ANALYSIS 9

Storage of a sparse matrix
We store only the nonzeros and their positions

◦ (row, column, value)-triplet

Use the same example:

Viewing indices of the matrix as graph nodes, these triplets are edges.

Symmetric sparse matrix (𝐴 = 𝐴𝑇) ⇔ Undirected graph

Non-symmetric sparse matrix ⇔ Bipartite graph

Fall 2014 CSE 6040 COMPUTING FOR DATA ANALYSIS 10

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1 1 1 1

2 1 1 1

3 1 1 1 1

4 1 1 1 1

5 1 1 1

6 1 1 1

7 1 1

(1, 2, 1) (1, 3, 1) (1, 5, 1)
(2, 1, 1) (2, 3, 1) (2, 4, 1)
(3, 1, 1) (3, 2, 1) (3, 4, 1) (3, 5, 1)
(4, 2, 1) (4, 3, 1) (4, 6, 1) (4, 7, 1)
(5, 1, 1) (5, 3, 1) (5, 6, 1)
(6, 4, 1) (6, 5, 1) (6, 7, 1)
(7, 4, 1) (7, 6, 1)

What about the adjacency matrix of directed graph?
And Bipartite graph?

This is the “edge list” format; in this case, an array of
tuples of length 3.

Coordinate list (COO) format
The triplets can be stored as 3 arrays: rows, cols, values.

rows = [0,0,0,1,1,1,2,2,2,2,3,3,3,3,4,4,4,5,5,5,6,6]

cols = [1,2,4,0,2,3,0,1,3,4,1,2,5,6,0,2,5,3,4,6,3,5]

values = [1,1]

Note: 0-based arrays

Fall 2014 CSE 6040 COMPUTING FOR DATA ANALYSIS 11

1

2

3

4

5

6

7

0 1 2 3 4 5 6

0 1 1 1

1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 1 1 1

5 1 1 1

6 1 1

Compressed sparse row (CSR) format
Suppose a sparse matrix has nnz nonzero entries.

rows = [0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6]

cols = [1, 2, 4, 0, 2, 3, 0, 1, 3, 4, 1, 2, 5, 6, 0, 2, 5, 3, 4, 6, 3, 5]

values = [1, 1]

The COO format needs 3nnz elements to store the matrix. Can we do better?

When the nonzeros are stored row by row (and row IDs start at 0), we can
compress the above storage:

rowptr = [0, 3, 6, 10, 14, 17, 20, 22]

colind = [1, 2, 4, 0, 2, 3, 0, 1, 3, 4, 1, 2, 5, 6, 0, 2, 5, 3, 4, 6, 3, 5]

values = [1, 1]

This CSR format needs 2nnz+n elements to store the matrix.

Similarly, we have compressed sparse column (CSC) format.

Fall 2014 CSE 6040 COMPUTING FOR DATA ANALYSIS 12

Row pointer

Column index

Values

Breadth-First Search
Overview

I General Algorithm

I “Pushing”

I “Pulling”

I C++ demonstration

12 / 16

Breadth-First Search
Algorithm

Why BFS? Prototypical graph algorithm, high memory
access/communication to computation ratio. Has been used
as an example for extreme optimization (Graph500.org)

I We select a root

I We want to figure out the number of hops/distance of
every vertex reachable from the root

I Naturally iterative – one level/hop from the root at a time

I Algorithm concludes when no new vertices are found on a
level

13 / 16

Breadth-first search - pushing

1: procedure BFS(G (V ,E), root)
2: for all v ∈ V do
3: Levels(v)← −1 . Initialize levels

4: level ← 0
5: Q ← root
6: Levels(root)← level
7: while Q 6= ∅ do . Finishing when queue is empty
8: level ← level + 1
9: for all v ∈ Q do

10: for all 〈v , u〉 ∈ E do
11: if Level(u) < 0 then . Have we discovered u?
12: Level(u)← level . v pushes update to u
13: Qnext ← u
14: Swap(Q,Qnext)
15: Qnext ← ∅

14 / 16

Breadth-first search - pulling

1: procedure BFS(G (V ,E), root)
2: for all v ∈ V do
3: Levels(v)← −1

4: level ← 0
5: Q ← root
6: Levels(root)← level
7: size = 1
8: while size > 0 do . Instead of a queue, just track level size
9: level ← level + 1

10: size ← 0
11: for all v ∈ V do
12: if level(v) < 0 then . We haven’t discovered v yet
13: for all 〈v , u〉 ∈ E do
14: if Level(u) = level − 1 then
15: Level(v)← level . v pulls update from u
16: size ← size + 1
17: break . No need to go further

15 / 16

C++ Demonstration – Blank code and data available
on website

www.cs.rpi.edu/∼slotag/classes/FA16/index.html

16 / 16

