
MPI Intro
Lecture 3

CSCI 4974/6971

8 Sep 2016

1 / 14

Today’s Biz

1. Review OpenMP

2. Talk about project

3. Talk about homework

4. MPI slides

5. MPI tutorial

2 / 14

Today’s Biz

1. Review OpenMP

2. Talk about project

3. Talk about homework

4. MPI slides

5. MPI tutorial

3 / 14

OpenMP

I Basic data parallelism over for loops
I #pragma omp parallel for
I #pragma omp parallel { #pragma omp for { } }

I Avoiding race conditions
I #pragma omp atomic
I #pragma omp atomic capture
I #pragma omp critical { }
I #pragma omp single { }
I #pragma omp master { }

I Reductions
I #pragma omp parallel for

reduction(op:variable)
I op = +,-,min,max,etc. (see online resources for list)

4 / 14

Today’s Biz

1. Review OpenMP

2. Talk about project

3. Talk about homework

4. MPI slides

5. MPI tutorial

5 / 14

Project

I Small groups (1-2 students)

I Think of project ideas
I Analysis-based: implement analytic and run on

interesting dataset
I Computation-based: implement know algorithm and

optimize it or improve parallel scaling
I Other: project based on your interests or research (talk

to me)
I Come discuss with me during office hours if you need

ideas

I See website for due dates (proposal, update 1, update 2,
final presentation and report)

6 / 14

Project Proposal

Proposal due September 22

I Group Members

I Project Title

I Short (< 1 page) summary
I General project idea - problem being solved
I Related work
I Experiments - data and tests (how you’ll evaluate your

success)
I Potential Outcomes

7 / 14

Today’s Biz

1. Review OpenMP

2. Talk about project

3. Talk about homework

4. MPI slides

5. MPI tutorial

8 / 14

Assignment 1

Due September 19th before class

I Introduction to iterative parallel graph algorithms

I Graph connectivity

I 6 functions to implement
I 2 connectivity algorithms (push and pull)
I Serial, OpenMP, MPI for each

9 / 14

Today’s Biz

1. Review OpenMP

2. Talk about project

3. Talk about homework

4. MPI slides

5. MPI tutorial

10 / 14

MPI Overview
Slides from Ahmed Louri, University of Arizona

11 / 14

MPI
Message Passing
Interface

Outline

 Background
 Message Passing
 MPI

 Group and Context
 Communication Modes
 Blocking/Non-blocking
 Features
 Programming / issues

 Tutorial

Distributed Computing
Paradigms

 Communication Models:
Message Passing
Shared Memory

 Computation Models:
Functional Parallel
Data Parallel

Message Passing

 A process is a program counter and address
space.

 Message passing is used for communication
among processes.

 Inter-process communication:
 Type:

Synchronous / Asynchronous
 Movement of data from one process’s

address space to another’s

Synchronous Vs. Asynchronous

 A synchronous communication is not
complete until the message has been
received.

 An asynchronous communication
completes as soon as the message is
on the way.

Synchronous Vs. Asynchronous
(cont.)

What is message passing?

 Data transfer.

 Requires cooperation of sender and
receiver

 Cooperation not always apparent in
code

What is MPI?

 A message-passing library specifications:
• Extended message-passing model
• Not a language or compiler specification
• Not a specific implementation or product

 For parallel computers, clusters, and heterogeneous
networks.

 Communication modes: standard, synchronous, buffered,
and ready.

 Designed to permit the development of parallel software
libraries.

 Designed to provide access to advanced parallel hardware
for

• End users
• Library writers
• Tool developers

Group and Context

This image is captured from:
Writing Message Passing Parallel Programs with MPI
A Two Day Course on MPI Usage
Course Notes
Edinburgh Parallel Computing Centre
The University of Edinburgh

Group and Context (cont.)

 Are two important and indivisible concepts
of MPI.

 Group: is the set of processes that
communicate with one another.

 Context: it is somehow similar to the
frequency in radio communications.

 Communicator: is the central object for
communication in MPI. Each communicator
is associated with a group and a context.

Communication Modes

 Based on the type of send:
 Synchronous: Completes once the

acknowledgement is received by the sender.
 Buffered send: completes immediately,

unless if an error occurs.
 Standard send: completes once the

message has been sent, which may or may
not imply that the message has arrived at its
destination.

 Ready send: completes immediately, if the
receiver is ready for the message it will get it,
otherwise the message is dropped silently.

Blocking vs. Non-Blocking

 Blocking, means the program will not
continue until the communication is
completed.

 Non-Blocking, means the program will
continue, without waiting for the
communication to be completed.

Features of MPI

 General

Communications combine context and
group for message security.

Thread safety can’t be assumed for
MPI programs.

Features that are NOT part
of MPI

 Process Management

 Remote memory transfer

 Threads

 Virtual shared memory

Why to use MPI?

 MPI provides a powerful, efficient, and
portable way to express parallel programs.

 MPI was explicitly designed to enable
libraries which may eliminate the need for
many users to learn (much of) MPI.

 Portable !!!!!!!!!!!!!!!!!!!!!!!!!!

 Good way to learn about subtle issues in
parallel computing

How big is the MPI library?

 Huge (125 Functions).

 Basic (6 Functions).

Basic Commands

Standard with blocking

Skeleton MPI Program

#include <mpi.h>

main(int argc, char** argv)
{
 MPI_Init(&argc, &argv);

 /* main part of the program */

/*
 Use MPI function call depend on your data
partitioning and the parallelization
architecture
*/

 MPI_Finalize();
}

Initializing MPI

 The initialization routine MPI_INIT is
the first MPI routine called.

 MPI_INIT is called once

int mpi_Init(int *argc, char **argv);

A minimal MPI program(c)

#include “mpi.h”

#include <stdio.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf(“Hello, world!\n”);

MPI_Finalize();

Return 0;

}

A minimal MPI program(c)
(cont.)
 #include “mpi.h” provides basic MPI definitions and

types.

 MPI_Init starts MPI

 MPI_Finalize exits MPI

 Note that all non-MPI routines are local; thus “printf”
run on each process

 Note: MPI functions return error codes or
MPI_SUCCESS

Error handling

 By default, an error causes all processes to
abort.

 The user can have his/her own error
handling routines.

 Some custom error handlers are available
for downloading from the net.

Improved Hello (c)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char *argv[])
{

int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

Some concepts

 The default communicator is the
MPI_COMM_WORLD

 A process is identified by its rank in
the group associated with a
communicator.

Data Types

 The data message which is sent or received is
described by a triple (address, count, datatype).

 The following data types are supported by MPI:
 Predefined data types that are corresponding to

data types from the programming language.
 Arrays.
 Sub blocks of a matrix
 User defined data structure.
 A set of predefined data types

Basic MPI types

MPI datatype C datatype

MPI_CHAR signed char
MPI_SIGNED_CHAR signed char
MPI_UNSIGNED_CHAR unsigned char
MPI_SHORT signed short
MPI_UNSIGNED_SHORT unsigned short
MPI_INT signed int
MPI_UNSIGNED unsigned int
MPI_LONG signed long
MPI_UNSIGNED_LONG unsigned long
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double

Why defining the data types
during the send of a message?

 Because communications take place between
heterogeneous machines. Which may have
different data representation and length in the
memory.

MPI blocking send

MPI_SEND(void *start, int
count,MPI_DATATYPE datatype, int dest,
int tag, MPI_COMM comm)

 The message buffer is described by (start,
count, datatype).

 dest is the rank of the target process in the
defined communicator.

 tag is the message identification number.

MPI blocking receive

 MPI_RECV(void *start, int count,
MPI_DATATYPE datatype, int source, int tag,
MPI_COMM comm, MPI_STATUS *status)

 Source is the rank of the sender in the communicator.

 The receiver can specify a wildcard value for souce (MPI_ANY_SOURCE) and/or
a wildcard value for tag (MPI_ANY_TAG), indicating that any source and/or tag
are acceptable

 Status is used for exrtra information about the received message if a wildcard
receive mode is used.

 If the count of the message received is less than or equal to that described by the
MPI receive command, then the message is successfully received. Else it is
considered as a buffer overflow error.

MPI_STATUS

 Status is a data structure
 In C:

int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(…, MPI_ANY_SOURCE, MPI_ANY_TAG,
…, &status)

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count(&status, datatype,
&recvd_count);

More info

 A receive operation may accept
messages from an arbitrary sender,
but a send operation must specify a
unique receiver.

 Source equals destination is allowed,
that is, a process can send a
message to itself.

Why MPI is simple?

 Many parallel programs can be written
using just these six functions, only two
of which are non-trivial;

• MPI_INIT
• MPI_FINALIZE
• MPI_COMM_SIZE
• MPI_COMM_RANK
• MPI_SEND
• MPI_RECV

Simple full example

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[])
{
 const int tag = 42; /* Message tag */
 int id, ntasks, source_id, dest_id, err, i;
 MPI_Status status;
 int msg[2]; /* Message array */

 err = MPI_Init(&argc, &argv); /* Initialize MPI */
 if (err != MPI_SUCCESS) {
 printf("MPI initialization failed!\n");
 exit(1);
 }
 err = MPI_Comm_size(MPI_COMM_WORLD, &ntasks); /* Get nr of tasks */
 err = MPI_Comm_rank(MPI_COMM_WORLD, &id); /* Get id of this process */
 if (ntasks < 2) {
 printf("You have to use at least 2 processors to run this program\n");
 MPI_Finalize(); /* Quit if there is only one processor */
 exit(0);
 }

Simple full example (Cont.)

if (id == 0) { /* Process 0 (the receiver) does this */
 for (i=1; i<ntasks; i++) {
 err = MPI_Recv(msg, 2, MPI_INT, MPI_ANY_SOURCE, tag, MPI_COMM_WORLD, \
 &status); /* Receive a message */
 source_id = status.MPI_SOURCE; /* Get id of sender */
 printf("Received message %d %d from process %d\n", msg[0], msg[1], \
 source_id);
 }
 }
 else { /* Processes 1 to N-1 (the senders) do this */
 msg[0] = id; /* Put own identifier in the message */
 msg[1] = ntasks; /* and total number of processes */
 dest_id = 0; /* Destination address */
 err = MPI_Send(msg, 2, MPI_INT, dest_id, tag, MPI_COMM_WORLD);
 }

 err = MPI_Finalize(); /* Terminate MPI */
 if (id==0) printf("Ready\n");
 exit(0);
 return 0;
}

Collective Operations

Introduction to collective
operations in MPI

o Collective operations are called by all processes in a communicator
o MPI_Bcast distributes data from one process(the root) to all others

in a communicator.
Syntax:
MPI_Bcast(void *message, int count, MPI_Datatype
datatype, int root, MPI_Comm comm)

o MPI_Reduce combines data from all processes in communicator or
and returns it to one process

Syntax:
MPI_Reduce(void *message, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm
comm)

o In many numerical algorithm, send/receive can be replaced by
Bcast/Reduce, improving both simplicity and efficiency.

Collective Operations

MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD,
MPI_LAND, MPI_BAND, MPI_LOR, MPI_BOR,
MPI_LXOR, MPI_BXOR, MPI_MAXLOC,
MPI_MINLOC

Example: Compute PI (0)

Example: Compute PI (1)
#include “mpi.h”
#include <math.h>

int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, I, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_INIT(&argc, &argv);
MPI_COMM_SIZE(MPI_COMM_WORLD, &numprocs);
MPI_COMM_RANK(MPI_COMM_WORLD, &myid);
while (!done)
{
if (myid == 0)
{
printf(“Enter the number of intervals: (0 quits) “);
scanf(“%d”, &n);
}
MPI_BCAST(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n == 0)
}

Example: Compute PI (2)

h = 1.0 / (double)n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs)
{

x = h * ((double)i – 0.5);
sum += 4.0 / (1.0 + x * x);

}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0) printf(“pi is approximately %.16f, Error
is %.16f\n”, pi, fabs(pi – PI25DT));

MPI_Finalize();
return 0;

}

When to use MPI

 Portability and Performance
 Irregular data structure
 Building tools for others
 Need to manage memory on a per

processor basis

Programming with MPI

Compile and run the code

 Compile using:
mpicc –o pi pi.c

Or

mpic++ –o pi pi.cpp
 mpirun –np # of procs –machinefile XXX pi

 -machinefile tells MPI to run the program on
the machines of XXX.

MPI on ECE Solaris
Machines (1)

 Log in to draco.ece.arizona.edu
 From outside the UofA first log in to

shell.ece.arizona.edu
 Create a Text file and name it. For

example ML, and have the following
lines:

150.135.221.71
150.135.221.72
150.135.221.73
150.135.221.74
150.135.221.75
150.135.221.76
150.135.221.77
150.135.221.78

MPI on ECE Solaris
Machines (2) ex2.c

#include "mpi.h"
#include <math.h>
#include <stdio.h>

int main(argc,argv)
 int argc; char *argv[];
{
 int done = 0, n, myid, numprocs, i, rc;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x, a;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 while (!done)
 {
 if (myid == 0) {
 printf("Enter the number of intervals: (0 quits) ");
 scanf("%d",&n);
 }
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0) break;
 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs)
 {
 x = h * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
 if (myid == 0) printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - PI25DT));
 }
 MPI_Finalize();
}

MPI on ECE Solaris
Machines (3)

 How to compile:

mpicc ex2.c -o ex2 –lm

 How to run:

mpirun -np 4 -machinefile ml ex2

Where to get MPI library?

 MPICH (WINDOWS / UNICES)
 http://www-unix.mcs.anl.gov/mpi/mpich/

 Open MPI (UNICES)
 http://www.open-mpi.org/

Today’s Biz

1. Review OpenMP

2. Talk about project

3. Talk about homework

4. MPI slides

5. MPI tutorial

12 / 14

MPI tutorial

1. Basic compilation

2. Environment

3. Send/Recv

4. Collective operations

5. Implementing BFS

13 / 14

C++ Demonstration – Blank code and data available
on website

www.cs.rpi.edu/∼slotag/classes/FA16/index.html

14 / 14

