
Parallel SCC and Centrality
Lecture 5

CSCI 4974/6971

15 Sep 2016

1 / 16

Today’s Biz

1. Quick Review

2. Reminders

3. Parallel SCC

4. More Centrality

5. Even More MPI

6. More PageRank Tutorial

2 / 16

Today’s Biz

1. Quick Review

2. Reminders

3. Parallel SCC

4. More Centrality

5. Even More MPI

6. More PageRank Tutorial

3 / 16

Quick Review

I Structure of the Web
I Directed graph - SCCs and DAGs
I Bowtie - big SCC, in set, out set, tendrils, tubes,

disconnected components

I PageRank
I Centrality measure - which pages hold highest influence
I Random surfer - PageRank equivalent to relative

probability a random surfer visits a given page

More MPI functions
I MPI Allgather(sbuf, scount, MPI TYPE, rbuf,

rcount, MPI TYPE, MPI COMM WORLD)
I MPI Alltoall(sbuf, scount, MPI TYPE, rbuf,

rcount, MPI TYPE, MPI COMM WORLD)

4 / 16

Today’s Biz

1. Quick Review

2. Reminders

3. Parallel SCC

4. More Centrality

5. Even More MPI

6. More PageRank Tutorial

5 / 16

Reminders

I Assignment 1: Monday 19 Sept 16:00

I Assignment 2: Thursday 29 Sept 16:00 (posted soon)

I Project Proposal: Thursday 22 Sept 16:00

I Office hours: Tuesday & Wednesday 14:00-16:00 Lally
317

I Or email me for other availability

I Class schedule:
I Social net analysis methods
I Bio net analysis methods
I Random networks and usage

I Today: Leave advisor info for CCI at end of class

6 / 16

Today’s Biz

1. Quick Review

2. Reminders

3. Parallel SCC

4. More Centrality

5. Even More MPI

6. More PageRank Tutorial

7 / 16

Parallel Strongly Connected Components Algorithms

8 / 16

Previous Algorithms
Forward-Backward (FW-BW)

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))
Intersection of those two sets is an SCC (S = P ∩D)
Now have three distinct sets leftover (D \ S), (P \ S), and remainder (R)

Previous Algorithms
Forward-Backward (FW-BW)

Select pivot

Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))
Intersection of those two sets is an SCC (S = P ∩D)
Now have three distinct sets leftover (D \ S), (P \ S), and remainder (R)

Previous Algorithms
Forward-Backward (FW-BW)

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))

Find all vertices that can reach the pivot (predecessor (P))
Intersection of those two sets is an SCC (S = P ∩D)
Now have three distinct sets leftover (D \ S), (P \ S), and remainder (R)

Previous Algorithms
Forward-Backward (FW-BW)

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))

Find all vertices that can reach the pivot (predecessor (P))
Intersection of those two sets is an SCC (S = P ∩D)
Now have three distinct sets leftover (D \ S), (P \ S), and remainder (R)

Previous Algorithms
Forward-Backward (FW-BW)

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))

Intersection of those two sets is an SCC (S = P ∩D)
Now have three distinct sets leftover (D \ S), (P \ S), and remainder (R)

Previous Algorithms
Forward-Backward (FW-BW)

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))

Intersection of those two sets is an SCC (S = P ∩D)
Now have three distinct sets leftover (D \ S), (P \ S), and remainder (R)

Previous Algorithms
Forward-Backward (FW-BW)

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))

Intersection of those two sets is an SCC (S = P ∩D)
Now have three distinct sets leftover (D \ S), (P \ S), and remainder (R)

Previous Algorithms
Forward-Backward (FW-BW)

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))

Intersection of those two sets is an SCC (S = P ∩D)
Now have three distinct sets leftover (D \ S), (P \ S), and remainder (R)

Previous Algorithms
Forward-Backward (FW-BW)

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))
Intersection of those two sets is an SCC (S = P ∩D)

Now have three distinct sets leftover (D \ S), (P \ S), and remainder (R)

Previous Algorithms
Forward-Backward (FW-BW)

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P))
Intersection of those two sets is an SCC (S = P ∩D)
Now have three distinct sets leftover (D \ S), (P \ S), and remainder (R)

Forward-Backward (FW-BW) Algorithm

1: procedure FW-BW(V)
2: if V = ∅ then
3: return ∅
4: Select a pivot u ∈ V
5: D ← BFS(G(V,E(V)), u)
6: P ← BFS(G(V,E′(V)), u)
7: R← (V \ (P ∪D)
8: S ← (P ∩D)
9: new task do FW-BW(D \ S)

10: new task do FW-BW(P \ S)
11: new task do FW-BW(R)

Previous Algorithms
Trimming

Used to find trivial SCCs

Detect and prune all vertices that have an in/out degree of 0 or an in/out
degree of 1 with a self loop (simple trimming)
Repeat iteratively until no more vertices can be removed (complete
trimming)

Previous Algorithms
Trimming

Used to find trivial SCCs
Detect and prune all vertices that have an in/out degree of 0 or an in/out
degree of 1 with a self loop (simple trimming)

Repeat iteratively until no more vertices can be removed (complete
trimming)

Previous Algorithms
Trimming

Used to find trivial SCCs
Detect and prune all vertices that have an in/out degree of 0 or an in/out
degree of 1 with a self loop (simple trimming)

Repeat iteratively until no more vertices can be removed (complete
trimming)

Previous Algorithms
Trimming

Used to find trivial SCCs
Detect and prune all vertices that have an in/out degree of 0 or an in/out
degree of 1 with a self loop (simple trimming)
Repeat iteratively until no more vertices can be removed (complete
trimming)

Previous Algorithms
Trimming

Used to find trivial SCCs
Detect and prune all vertices that have an in/out degree of 0 or an in/out
degree of 1 with a self loop (simple trimming)
Repeat iteratively until no more vertices can be removed (complete
trimming)

Previous Algorithms
Coloring

Consider vertex identifiers as colors

Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable
backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

Previous Algorithms
Coloring

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets

Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable
backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

Previous Algorithms
Coloring

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets

Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable
backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

Previous Algorithms
Coloring

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets

Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable
backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

Previous Algorithms
Coloring

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC

Each SCC is all vertices (of the same color as the root) reachable
backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

Previous Algorithms
Coloring

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable
backward from each root.

Remove found SCCs, reset colors, and repeat until no vertices remain

Previous Algorithms
Coloring

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable
backward from each root.

Remove found SCCs, reset colors, and repeat until no vertices remain

Previous Algorithms
Coloring

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable
backward from each root.

Remove found SCCs, reset colors, and repeat until no vertices remain

Previous Algorithms
Coloring

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable
backward from each root.

Remove found SCCs, reset colors, and repeat until no vertices remain

Previous Algorithms
Coloring

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable
backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

Previous Algorithms
Coloring

Consider vertex identifiers as colors
Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable
backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain

Coloring Algorithms

1: procedure ColorSCC(G(V,E))
2: while G 6= ∅ do
3: for all u ∈ V do Colors(u)← u

4: while at least one vertex has changed colors do
5: for all u ∈ V in parallel do
6: for all 〈u, v〉 ∈ E do
7: if Colors(u) > Colors(v) then
8: Colors(v)← Colors(u)

9: for all unique c ∈ Colors in parallel do
10: Vc ← {u ∈ V : Colors(u) = c}
11: SCCVc ← BFS(G(Vc, E′(Vc)), u)
12: V ← (V \ SCCVc)

Today’s Biz

1. Quick Review

2. Reminders

3. Parallel SCC

4. More Centrality

5. Even More MPI

6. More PageRank Tutorial

9 / 16

Network Centrality
Slides from Ahmed Louri, University of Arizona

10 / 16

Network Centrality

Based on materials by Lada Adamic, UMichigan

Which nodes are most ‘central’?

Definition of ‘central’ varies by context/purpose.

Local measure:

 degree

Relative to rest of network:

 closeness, betweenness,
 eigenvector (Bonacich power centrality)

How evenly is centrality distributed among nodes?

 centralization…

Applications:

 Friedkin: Interpersonal Influence in Groups
 Baker: The Social Organization of Conspiracy

Network Centrality

Centrality: Who’s Important Based On Their
Network Position

Y

X

Y

X

Y X

Y

X

indegree

In each of the following networks, X has higher centrality than Y according to
a particular measure

outdegree betweenness closeness

He or she who has many friends is most important.

Degree Centrality (Undirected)

When is the number of connections the best centrality
measure?

o  people who will do favors for you
o  people you can talk to / have coffee with

Degree: Normalized Degree Centrality

divide by the max. possible, i.e. (N-1)

Freeman’s general formula for centralization (can use other metrics, e.g.
gini coefficient or standard deviation):

€

CD =
CD (n

*) −CD (i)[]i=1

g
∑
[(N −1)(N − 2)]

Centralization: How Equal Are The Nodes?

How much variation is there in the centrality scores among the nodes?

maximum value in the network

Degree Centralization Examples

CD = 0.167

CD = 0.167

CD = 1.0

Degree Centralization Examples

example financial trading networks

high centralization: one
node trading with many
others

low centralization: trades
are more evenly distributed

When Degree Isn’t Everything

In what ways does degree fail to capture centrality in the
following graphs?

In What Contexts May Degree Be Insufficient To
Describe Centrality?

n  ability to broker between groups
n  likelihood that information originating anywhere in the

network reaches you…

Betweenness: Another Centrality Measure

n  Intuition: how many pairs of individuals would have to go
through you in order to reach one another in the
minimum number of hops?

n  Who has higher betweenness, X or Y?

Y X

Y

X

X Y

€

CB (i) = g jk (i) /g jk
j<k
∑

Where gjk = the number of geodesics connecting jk, and
 gjk(i)= the number of geodesics that actor i is on.

Usually normalized by:

€

CB
' (i) = CB (i) /[(n −1)(n − 2) /2]

number of pairs of vertices
excluding the vertex itself

Betweenness Centrality: Definition

adapted from a slide by James Moody

Example facebook network: nodes are sized by degree,
and colored by betweenness.

Example

Can you spot nodes
with high betweenness
but relatively low
degree?

Explain how this
might arise.

Betweenness Example (Continued)

What about high
degree but
relatively low
betweenness?

Betweenness On Toy Networks

n  non-normalized version:

A B C E D

n  A lies between no two other vertices
n  B lies between A and 3 other vertices: C, D, and E
n  C lies between 4 pairs of vertices (A,D),(A,E),(B,D),(B,E)

n  note that there are no alternate paths for these pairs to
take, so C gets full credit

Betweenness On Toy Networks

n  non-normalized version:

Betweenness On Toy Networks

n  non-normalized version:

Betweenness On Toy Networks

n  non-normalized version:

A B

C

E

D

n  why do C and D each have
betweenness 1?

n  They are both on shortest
paths for pairs (A,E), and (B,E),
and so must share credit:
n  ½+½ = 1

n  Can you figure out why B has
betweenness 3.5 while E has
betweenness 0.5?

All-pairs shortest paths...	

“Floyd-Warshall algorithm”!

A	

B	

E	

D	

C	

8	

13	

 1	

6	

12	

9	

7	
 0	

11	
 0	
 8	
 13	
 -	
 1	

-	
 0	
 -	
 6	
 12	

-	
 9	
 0	
 -	
 -	

7	
 -	
 0	
 0	
 -	

-	
 -	
 -	
 11	
 0	

A
B
C
D
E	

FROM

TO

Matrix representation!

D0	
 A B C D E	

All-pairs shortest paths...	

0	
 8	
 13	
 -	
 1	

-	
 0	
 -	
 6	
 12	

-	
 9	
 0	
 -	
 -	

7	
 -	
 0	
 0	
 -	

-	
 -	
 -	
 11	
 0	

A
B
C
D
E	

D0 = (dij)	

0	

D1 = (dij)	

1	

 dij = shortest distance from i to j 	

	
through {1, …, k} 	

k	

0	
 8	
 13	
 -	
 1	

-	
 0	
 -	
 6	
 12	

-	
 9	
 0	
 -	
 -	

7	
 15	
 0	
 0	
 8	

-	
 -	
 -	
 11	
 0	

A
B
C
D
E	

A	

B	

E	

D	

C	

8	

13	

 1	

6	

12	

9	

7	
 0	

11	

All-pairs shortest paths...	

0	
 8	
 13	
 14	
 1	

-	
 0	
 -	
 6	
 12	

-	
 9	
 0	
 15	
 21	

7	
 15	
 0	
 0	
 8	

-	
 -	
 -	
 11	
 0	

A
B
C
D
E	

D2 = (dij)	

2	

0	
 8	
 13	
 14	
 1	

-	
 0	
 -	
 6	
 12	

-	
 9	
 0	
 15	
 21	

7	
 9	
 0	
 0	
 8	

-	
 -	
 -	
 11	
 0	

A
B
C
D
E	

D3 = (dij)	

3	

0	
 8	
 13	
 14	
 1	

13	
 0	
 6	
 6	
 12	

22	
 9	
 0	
 15	
 21	

7	
 9	
 0	
 0	
 8	

18	
 20	
 11	
 11	
 0	

A
B
C
D
E	

D4 = (dij)	

4	

A
B
C
D
E	

D5 = (dij)	

5	

to store the path, another matrix can track the last intermediate vertex 	

0	
 8	
 12	
 12	
 1	

13	
 0	
 6	
 6	
 12	

22	
 9	
 0	
 15	
 21	

7	
 9	
 0	
 0	
 8	

18	
 20	
 11	
 11	
 0	

Floyd-Warshall Pseudocode	

Input: 	
 	
 	
(the initial edge-cost matrix)	

Output: 	
 	
(the final path-cost matrix)	

D0 = (dij)	

0	

Dn = (dij)	

n	

for k = 1 to n // intermediate vertices considered 	

 for i = 1 to n // the “from” vertex	

 for j = 1 to n // the “to” vertex	

 dij = min{ dij , dik + dkj }	

k-1	
k	
 k-1	
 k-1	

best, ignoring vertex k
best, including vertex k

Closeness: Another Centrality Measure

n  What if it’s not so important to have many direct friends?
n  Or be “between” others
n  But one still wants to be in the “middle” of things, not too

far from the center

Closeness is based on the length of the average shortest
path between a vertex and all vertices in the graph

€

Cc (i) = d(i, j)
j=1

N

∑

$
%
%

&

'
(
(

−1

€

CC
' (i) = (CC (i)) /(N −1)

Closeness Centrality:

Normalized Closeness Centrality

Closeness Centrality: Definition

€

Cc
' (A) =

d(A, j)
j=1

N

∑

N −1

$

%

&
&
&
&

'

(

)
)
)
)

−1

=
1+ 2 + 3+ 4

4
$

% &
'

()

−1

=
10
4

$

% &
'

()

−1

= 0.4

Closeness Centrality: Toy Example

A B C E D

Closeness Centrality: More Toy Examples

n  degree (number of
connections)
denoted by size

n  closeness (length
of shortest path to
all others) denoted
by color

How Closely Do Degree And Betweenness
Correspond To Closeness?

•  generally different centrality metrics will be positively correlated
•  when they are not, there is likely something interesting about the network
•  suggest possible topologies and node positions to fit each square

Low
Degree Low

Closeness Low
 Betweenness

High Degree

High Closeness

High
Betweenness

Centrality: Check Your Understanding

adapted from a slide by James Moody

•  generally different centrality metrics will be positively correlated
•  when they are not, there is likely something interesting about the network
•  suggest possible topologies and node positions to fit each square

Centrality: Check Your Understanding

adapted from a slide by James Moody

High Degree

Embedded in cluster
that is far from the
rest of the network

Ego's connections
are redundant -
communication
bypasses him/her

 High Closeness

Key player tied to
important/active
players

Probably multiple
paths in the
network, ego is near
many people, but so
are many others

 High
Betweenness

Ego's few ties are
crucial for network
flow

Very rare cell.
Would mean that
ego monopolizes
the ties from a small
number of people to
many others.

Low
Degree Low

Closeness Low
 Betweenness

Extending Betweenness Centrality To Directed Networks

n  We now consider the fraction of all directed paths
between any two vertices that pass through a node

n  Only modification: when normalizing, we have
(N-1)*(N-2) instead of (N-1)*(N-2)/2, because we have
twice as many ordered pairs as unordered pairs €

CB (i) = g jk
j ,k
∑ (i) /g jk

betweenness of vertex i
paths between j and k that pass through i

all paths between j and k

€

C
B

' (i) = C
B
(i) /[(N −1)(N − 2)]

Directed Geodesics

n  A node does not necessarily lie on a geodesic from j to k
if it lies on a geodesic from k to j

k

j

Extensions Of Undirected Degree Centrality - Prestige

n  degree centrality
n  indegree centrality

n  a paper that is cited by many others has high prestige
n  a person nominated by many others for a reward has high prestige

Extensions Of Undirected Closeness Centrality

n  closeness centrality usually implies
n  all paths should lead to you

and unusually not:
n  paths should lead from you to everywhere else

n  usually consider only vertices from which the node i in
question can be reached

Influence Range

n  The influence range of i is the set of vertices who are
reachable from the node i

Wrap Up

Centrality
n many measures: degree, betweenness,

closeness, ...
n may be unevenly distributed

n measure via centralization

n extensions to directed networks:
n prestige

n  influence
n PageRank

Today’s Biz

1. Quick Review

2. Reminders

3. Parallel SCC

4. More Centrality

5. Even More MPI

6. More PageRank Tutorial

11 / 16

Even More MPI – Alltoallv
Slides from Lori Pollock, University of Delaware

12 / 16

MPI_AlltoAllv Function Outline
int MPI_Alltoallv (void *sendbuf, int *sendcnts, int *sdispls,
MPI_Datatype sendtype,
void *recvbuf, int *recvcnts, int *rdispls,
MPI_Datatype recvtype,
MPI_Comm comm)

Input Parameters
sendbuf starting address of send buffer (choice)
sendcounts integer array equal to the group size specifying the number of
elements to send to each processor
sdispls integer array (of length group size). Entry j specifies the
displacement (relative to sendbuf from which to take the outgoing data
destined for process j
recvcounts integer array equal to the group size specifying the maximum
number of elements that can be received from each processor
rdispls integer array (of length group size). Entry i specifies the
displacement (relative to recvbuf at which to place the incoming data from
process i

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

send buffer
send count
array

send displacement
array

Each node in parallel
community has

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Example of Send for Proc 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

index

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Example of Send for Proc 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

index

start at index 0

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Example of Send for Proc 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

index

get next 2
elements

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Example of Send for Proc 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

index

send to receive
buffer of proc
with same rank
as index

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Example of Send for Proc 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

index

send to receive
buffer of proc
with same rank
as index

this chunk
of send
buffer
goes to
receive
buffer of
proc 0

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Example of Send for Proc 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

index

for this proc’s
next send, start
at index 2 of
send buffer

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Example of Send for Proc 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

index

get next 3
elements of
send buffer

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Example of Send for Proc 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

index

send to receive
buffer of proc 1

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Example of Send for Proc 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

for final send,
start at index 5

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Example of Send for Proc 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

get next 2
elements

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Example of Send for Proc 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

send to receive
buffer of proc 2

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Example of Send for Proc 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

this process
occurs for each
node in the
community

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0

1

2

3

4

5

6

7

8

proc 0

3 0

3 3

2 6

0

1

2

3

4

5

6

7

8

proc 1

2 0

1 2

4 3

0

1

2

3

4

5

6

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2

3

4

5

6

7

8

proc 0

3 0

3 3

2 6

0

1

2

3

4

5

6

7

8

proc 1

2 0

1 2

4 3

0

1

2

3

4

5

6

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2

3

4

5

6

7

8

proc 0

3 0

3 3

2 6

0 C

1 D

2 E

3

4

5

6

7

8

proc 1

2 0

1 2

4 3

0

1

2

3

4

5

6

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2

3

4

5

6

7

8

proc 0

3 0

3 3

2 6

0 C

1 D

2 E

3

4

5

6

7

8

proc 1

2 0

1 2

4 3

0 F

1 G

2

3

4

5

6

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2

3

4

5

6

7

8

proc 0

3 0

3 3

2 6

0 C

1 D

2 E

3

4

5

6

7

8

proc 1

2 0

1 2

4 3

0 F

1 G

2

3

4

5

6

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2 H

3 I

4 J

5

6

7

8

proc 0

3 0

3 3

2 6

0 C

1 D

2 E

3

4

5

6

7

8

proc 1

2 0

1 2

4 3

0 F

1 G

2

3

4

5

6

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2 H

3 I

4 J

5

6

7

8

proc 0

3 0

3 3

2 6

0 C

1 D

2 E

3 K

4 L

5 M

6

7

8

proc 1

2 0

1 2

4 3

0 F

1 G

2

3

4

5

6

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2 H

3 I

4 J

5

6

7

8

proc 0

3 0

3 3

2 6

0 C

1 D

2 E

3 K

4 L

5 M

6

7

8

proc 1

2 0

1 2

4 3

0 F

1 G

2 N

3

4

5

6

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2 H

3 I

4 J

5

6

7

8

proc 0

3 0

3 3

2 6

0 C

1 D

2 E

3 K

4 L

5 M

6

7

8

proc 1

2 0

1 2

4 3

0 F

1 G

2 N

3

4

5

6

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2 H

3 I

4 J

5 O

6

7

8

proc 0

3 0

3 3

2 6

0 C

1 D

2 E

3 K

4 L

5 M

6

7

8

proc 1

2 0

1 2

4 3

0 F

1 G

2 N

3

4

5

6

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2 H

3 I

4 J

5 O

6

7

8

proc 0

3 0

3 3

2 6

0 C

1 D

2 E

3 K

4 L

5 M

6 P

7 Q

8

proc 1

2 0

1 2

4 3

0 F

1 G

2 N

3

4

5

6

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2 H

3 I

4 J

5 O

6

7

8

proc 0

3 0

3 3

2 6

0 C

1 D

2 E

3 K

4 L

5 M

6 P

7 Q

8

proc 1

2 0

1 2

4 3

0 F

1 G

2 N

3 R

4 S

5 T

6 U

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

0 H

1 I

2 J

3 K

4 L

5 M

6 N

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

3 0

3 3

1 6

1 0

2 1

4 3

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2 H

3 I

4 J

5 O

6

7

8

proc 0

3 0

3 3

2 6

0 C

1 D

2 E

3 K

4 L

5 M

6 P

7 Q

8

proc 1

2 0

1 2

4 3

0 F

1 G

2 N

3 R

4 S

5 T

6 U

7

8

proc 2

S
E
N
D

R
E
C
E
I
V
E

r
c
n
t

r
d
s
plr

b
u
f
f
e
r

Notes on AlltoAllv

• A receive buffer could potentially be as
large as the sum of all send buffer sizes

• Care must be taken to coincide send
counts with receive counts and
displacements so data is not overwritten

Today’s Biz

1. Quick Review

2. Reminders

3. Parallel SCC

4. More Centrality

5. Even More MPI

6. More PageRank Tutorial

13 / 16

More PageRank Tutorial

1. OpenMP - Work Queueing

2. MPI - Alltoallv Communication

14 / 16

More PageRank Tutorial
Blank code and data available on website

(Lecture 5)
www.cs.rpi.edu/∼slotag/classes/FA16/index.html

15 / 16

