
Parallel SCC and Centrality
Lecture 5

CSCI 4974/6971

15 Sep 2016

1 / 16



Today’s Biz

1. Quick Review

2. Reminders

3. Parallel SCC

4. More Centrality

5. Even More MPI

6. More PageRank Tutorial

2 / 16



Today’s Biz

1. Quick Review

2. Reminders

3. Parallel SCC

4. More Centrality

5. Even More MPI

6. More PageRank Tutorial

3 / 16



Quick Review

I Structure of the Web
I Directed graph - SCCs and DAGs
I Bowtie - big SCC, in set, out set, tendrils, tubes,

disconnected components

I PageRank
I Centrality measure - which pages hold highest influence
I Random surfer - PageRank equivalent to relative

probability a random surfer visits a given page

More MPI functions
I MPI Allgather(sbuf, scount, MPI TYPE, rbuf,

rcount, MPI TYPE, MPI COMM WORLD)
I MPI Alltoall(sbuf, scount, MPI TYPE, rbuf,

rcount, MPI TYPE, MPI COMM WORLD)
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Reminders

I Assignment 1: Monday 19 Sept 16:00

I Assignment 2: Thursday 29 Sept 16:00 (posted soon)

I Project Proposal: Thursday 22 Sept 16:00

I Office hours: Tuesday & Wednesday 14:00-16:00 Lally
317

I Or email me for other availability

I Class schedule:
I Social net analysis methods
I Bio net analysis methods
I Random networks and usage

I Today: Leave advisor info for CCI at end of class
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Parallel Strongly Connected Components Algorithms
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Previous Algorithms
Forward-Backward (FW-BW)

Select pivot
Find all vertices that can be reached from the pivot (descendant (D))
Find all vertices that can reach the pivot (predecessor (P ))
Intersection of those two sets is an SCC (S = P ∩D)
Now have three distinct sets leftover (D \ S), (P \ S), and remainder (R)
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Forward-Backward (FW-BW) Algorithm

1: procedure FW-BW(V )
2: if V = ∅ then
3: return ∅
4: Select a pivot u ∈ V
5: D ← BFS(G(V,E(V )), u)
6: P ← BFS(G(V,E′(V )), u)
7: R← (V \ (P ∪D)
8: S ← (P ∩D)
9: new task do FW-BW(D \ S)

10: new task do FW-BW(P \ S)
11: new task do FW-BW(R)



Previous Algorithms
Trimming

Used to find trivial SCCs

Detect and prune all vertices that have an in/out degree of 0 or an in/out
degree of 1 with a self loop (simple trimming)
Repeat iteratively until no more vertices can be removed (complete
trimming)
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Previous Algorithms
Coloring

Consider vertex identifiers as colors

Highest colors are propagated forward through the network to create sets
Consider the original vertex of each color to be the root of a new SCC
Each SCC is all vertices (of the same color as the root) reachable
backward from each root.
Remove found SCCs, reset colors, and repeat until no vertices remain
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Coloring Algorithms

1: procedure ColorSCC(G(V,E))
2: while G 6= ∅ do
3: for all u ∈ V do Colors(u)← u

4: while at least one vertex has changed colors do
5: for all u ∈ V in parallel do
6: for all 〈u, v〉 ∈ E do
7: if Colors(u) > Colors(v) then
8: Colors(v)← Colors(u)

9: for all unique c ∈ Colors in parallel do
10: Vc ← {u ∈ V : Colors(u) = c}
11: SCCVc ← BFS(G(Vc, E′(Vc)), u)
12: V ← (V \ SCCVc)
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Network Centrality
Slides from Ahmed Louri, University of Arizona
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Network Centrality 

Based on materials by Lada Adamic, UMichigan 



Which nodes are most ‘central’? 
 
Definition of ‘central’ varies by context/purpose. 
 
Local measure: 

 degree 
 
Relative to rest of network: 

 closeness, betweenness,  
 eigenvector (Bonacich power centrality) 

 
How evenly is centrality distributed among nodes? 

 centralization… 
 
Applications: 

 Friedkin: Interpersonal Influence in Groups 
 Baker: The Social Organization of Conspiracy 

Network Centrality 



Centrality: Who’s Important Based On Their 
Network Position 

Y 

X 

Y 

X 

Y X 

Y 

X 

indegree 

In each of the following networks, X has higher centrality than Y according to 
a particular measure 

outdegree betweenness closeness 



He or she who has many friends is most important. 

Degree Centrality (Undirected) 

When is the number of connections the best centrality 
measure? 

o  people who will do favors for you 
o  people you can talk to / have coffee with 



Degree: Normalized Degree Centrality 

divide by the max. possible, i.e. (N-1) 



Freeman’s general formula for centralization (can use other metrics, e.g. 
gini coefficient or standard deviation): 

€ 

CD =
CD (n

*) −CD (i)[ ]i=1

g
∑
[(N −1)(N − 2)]

Centralization: How Equal Are The Nodes? 

How much variation is there in the centrality scores among the nodes? 

maximum value in the network 



Degree Centralization Examples 

CD = 0.167 

CD = 0.167 

CD = 1.0 



Degree Centralization Examples 

example financial trading networks 

high centralization: one 
node trading with many 
others 

low centralization: trades 
are more evenly distributed 



When Degree Isn’t Everything 

In what ways does degree fail to capture centrality in the 
following graphs? 



In What Contexts May Degree Be Insufficient To 
Describe Centrality? 

n  ability to broker between groups 
n  likelihood that information originating anywhere in the 

network reaches you… 



Betweenness: Another Centrality Measure 

n  Intuition: how many pairs of individuals would have to go 
through you in order to reach one another in the 
minimum number of hops? 

n  Who has higher betweenness, X or Y? 

Y X 

Y 

X 

X Y 



€ 

CB (i) = g jk (i) /g jk
j<k
∑

Where gjk = the number of geodesics connecting jk, and  
 gjk(i)= the number of geodesics that actor i is on. 

Usually normalized by: 

€ 

CB
' (i) = CB (i ) /[(n −1)(n − 2) /2]

number of pairs of vertices 
excluding the vertex itself 

Betweenness Centrality: Definition 

adapted from a slide by James Moody 



Example facebook network: nodes are sized by degree, 
and colored by betweenness.  

Example 



Can you spot nodes 
with high betweenness 
but relatively low 
degree?   
 
Explain how this 
might arise.  

Betweenness Example (Continued) 

What about high 
degree but 
relatively low 
betweenness?  



Betweenness On Toy Networks 

n  non-normalized version: 

A B C E D 

n  A lies between no two other vertices 
n  B lies between A and 3 other vertices: C, D, and E 
n  C lies between 4 pairs of vertices (A,D),(A,E),(B,D),(B,E) 

n  note that there are no alternate paths for these pairs to 
take, so C gets full credit 



Betweenness On Toy Networks 

n  non-normalized version: 



Betweenness On Toy Networks 

n  non-normalized version: 



Betweenness On Toy Networks 

n  non-normalized version: 

A B 

C 

E 

D 

n  why do C and D each have 
betweenness 1? 

n  They are both on shortest 
paths for pairs (A,E), and (B,E), 
and so must share credit: 
n  ½+½ = 1 

n  Can you figure out why B has 
betweenness 3.5 while E has 
betweenness 0.5? 



All-pairs shortest paths...	

“Floyd-Warshall algorithm”!
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TO 

Matrix representation!

D0	
 A B C D E	




All-pairs shortest paths...	
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D0 = (dij )	

0	


D1 = (dij )	
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 dij  =  shortest distance from i to j 	

	
through {1, …, k} 	
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All-pairs shortest paths...	
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D4 = (dij )	
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D5 = (dij )	

5	


to store the path, another matrix can track the last intermediate vertex 	


0	
 8	
 12	
 12	
 1	

13	
 0	
 6	
 6	
 12	

22	
 9	
 0	
 15	
 21	

7	
 9	
 0	
 0	
 8	

18	
 20	
 11	
 11	
 0	




Floyd-Warshall Pseudocode	


Input: 	
 	
 	
(the initial edge-cost matrix)	


Output: 	
 	
(the final path-cost matrix)	

D0 = (dij )	


0	


Dn = (dij )	

n	


for k = 1 to n              //  intermediate vertices considered 	


    for i = 1 to n           //  the “from” vertex	


        for j = 1 to n       //  the “to” vertex	


            dij = min{  dij  ,  dik  +  dkj }	

k-1	
k	
 k-1	
 k-1	


best, ignoring vertex k 
best, including vertex k 



Closeness: Another Centrality Measure 

n  What if it’s not so important to have many direct friends? 
n  Or be “between” others 
n  But one still wants to be in the “middle” of things, not too 

far from the center 



Closeness is based on the length of the average shortest 
path between a vertex and all vertices in the graph 

€ 

Cc (i) = d(i, j)
j=1

N

∑
# 

$ 
% 
% 

& 

' 
( 
( 

−1

€ 

CC
' (i) = (CC (i)) /(N −1)

Closeness Centrality: 

Normalized Closeness Centrality 

Closeness Centrality: Definition 



€ 

Cc
' (A) =

d(A, j)
j=1

N

∑

N −1

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

−1

=
1+ 2 + 3+ 4

4
$ 

% & 
' 

( ) 

−1

=
10
4

$ 

% & 
' 

( ) 

−1

= 0.4

Closeness Centrality: Toy Example 

A B C E D 



Closeness Centrality: More Toy Examples 



n  degree (number of 
connections) 
denoted by size 

n  closeness (length 
of shortest path to 
all others) denoted 
by color 

How Closely Do Degree And Betweenness 
Correspond To Closeness? 



•  generally different centrality metrics will be positively correlated 
•  when they are not, there is likely something interesting about the network 
•  suggest possible topologies and node positions to fit each square 

  

 
Low  
Degree   Low  

Closeness Low 
 Betweenness 

High Degree 

 
  

 

High Closeness 

 
  

 

High 
Betweenness 

 

  

 

Centrality: Check Your Understanding 

adapted from a slide by James Moody 



•  generally different centrality metrics will be positively correlated 
•  when they are not, there is likely something interesting about the network 
•  suggest possible topologies and node positions to fit each square 

Centrality: Check Your Understanding 

adapted from a slide by James Moody 

  

 
High Degree 

 
  

 
Embedded in cluster 
that is far from the 
rest of the network 

 

Ego's connections 
are redundant - 
communication 
bypasses him/her 

 High Closeness 

 
Key player tied to 
important/active 
players 

 

  

 
Probably multiple 
paths in the 
network, ego is near 
many people, but so 
are many others 

 High 
Betweenness 

 

Ego's few ties are 
crucial for network 
flow 

 

Very rare cell.  
Would mean that 
ego monopolizes 
the ties from a small 
number of people to 
many others.  

 

  

 

Low  
Degree   Low  

Closeness Low 
 Betweenness 



Extending Betweenness Centrality To Directed Networks 

n  We now consider the fraction of all directed paths 
between any two vertices that pass through a node 

n  Only modification: when normalizing, we have  
(N-1)*(N-2) instead of (N-1)*(N-2)/2, because we have 
twice as many ordered pairs as unordered pairs € 

CB (i) = g jk
j ,k
∑ (i) /g jk

betweenness of vertex i 
paths between j and k that pass through i 

all paths between j and k 

€ 

C
B

' (i) = C
B
(i) /[(N −1)(N − 2)]



Directed Geodesics 

n  A node does not necessarily lie on a geodesic from j to k 
if it lies on a geodesic from k to j 

k 

j 



Extensions Of Undirected Degree Centrality - Prestige 

n  degree centrality 
n  indegree centrality 

n  a paper that is cited by many others has high prestige 
n  a person nominated by many others for a reward has high prestige 

 
 



Extensions Of Undirected Closeness Centrality 

n  closeness centrality usually implies 
n  all paths should lead to you 

and unusually not:  
n  paths should lead from you to everywhere else  

n  usually consider only vertices from which the node i in 
question can be reached 

 

 
 



Influence Range 

n  The influence range of i is the set of vertices who are 
reachable from the node i 



Wrap Up 

Centrality 
n many measures: degree, betweenness, 

closeness, ... 
n may be unevenly distributed 

n measure via centralization 

n extensions to directed networks: 
n prestige 

n  influence 
n PageRank 
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Even More MPI – Alltoallv
Slides from Lori Pollock, University of Delaware
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MPI_AlltoAllv Function Outline
int MPI_Alltoallv ( void *sendbuf, int *sendcnts, int *sdispls, 
MPI_Datatype sendtype, 
void *recvbuf, int *recvcnts, int *rdispls, 
MPI_Datatype recvtype, 
MPI_Comm comm ) 

Input Parameters
sendbuf starting address of send buffer (choice) 
sendcounts integer array equal to the group size specifying the number of 
elements to send to each processor 
sdispls integer array (of length group size). Entry j specifies the 
displacement (relative to sendbuf from which to take the outgoing data 
destined for process j 
recvcounts integer array equal to the group size specifying the maximum 
number of elements that can be received from each processor 
rdispls integer array (of length group size). Entry i specifies the 
displacement (relative to recvbuf at which to place the incoming data from 
process i 
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0 A
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1 I

2 J
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5 T

6 U

3 0
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1 6
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4 3

proc 0 proc 1 proc 2

send buffer
send count 
array

send displacement 
array

Each node in parallel 
community has 
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Example of Send for Proc 0

Proc 0 send buffer

sendcount 
Array

0

2

5

sdispl Array

index

index
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Example of Send for Proc 0

Proc 0 send buffer

sendcount 
Array

0

2

5

sdispl Array

index

index

start at index 0
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Example of Send for Proc 0

Proc 0 send buffer

sendcount 
Array

0

2

5

sdispl Array

index

index

get next 2 
elements
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Example of Send for Proc 0

Proc 0 send buffer

sendcount 
Array

0

2

5

sdispl Array

index

index

send to receive 
buffer of proc 
with same rank 
as index
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Example of Send for Proc 0

Proc 0 send buffer

sendcount 
Array

0

2

5

sdispl Array

index

index

send to receive 
buffer of proc 
with same rank 
as index

this chunk 
of send 
buffer 
goes to 
receive 
buffer of 
proc 0
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Example of Send for Proc 0

Proc 0 send buffer

sendcount 
Array

0

2

5

sdispl Array

index

index

for this proc’s  
next send, start 
at index 2 of 
send buffer
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Example of Send for Proc 0

Proc 0 send buffer

sendcount 
Array

0

2

5

sdispl Array

index

index

get next 3 
elements of 
send buffer
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Example of Send for Proc 0

Proc 0 send buffer

sendcount 
Array

0

2

5

sdispl Array

index

index

send to receive 
buffer of proc 1
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Example of Send for Proc 0

Proc 0 send buffer

sendcount 
Array

0

2

5

sdispl Array

index

for final send, 
start at index 5
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Example of Send for Proc 0

Proc 0 send buffer

sendcount 
Array

0

2

5

sdispl Array

index

get next 2 
elements
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Example of Send for Proc 0

Proc 0 send buffer

sendcount 
Array

0

2

5

sdispl Array

index

send to receive 
buffer of proc 2
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Example of Send for Proc 0

Proc 0 send buffer

sendcount 
Array

0
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5

sdispl Array

index

this process 
occurs for each 
node in the 
community 
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Notes on AlltoAllv

• A receive buffer could potentially be as 
large as the sum of all send buffer sizes

• Care must be taken to coincide send 
counts with receive counts and 
displacements so data is not overwritten



Today’s Biz

1. Quick Review

2. Reminders

3. Parallel SCC

4. More Centrality

5. Even More MPI

6. More PageRank Tutorial
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More PageRank Tutorial

1. OpenMP - Work Queueing

2. MPI - Alltoallv Communication
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More PageRank Tutorial
Blank code and data available on website

(Lecture 5)
www.cs.rpi.edu/∼slotag/classes/FA16/index.html
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