
Partitioning Problem and Usage
Lecture 8

CSCI 4974/6971

26 Sep 2016

1 / 14

Today’s Biz

1. Reminders

2. Review

3. Graph Partitioning overview

4. Graph Partitioning Small-world Graphs

5. Partitioning Usage example

2 / 14

Today’s Biz

1. Reminders

2. Review

3. Graph Partitioning overview

4. Graph Partitioning Small-world Graphs

5. Partitioning Usage example

3 / 14

Reminders

I Assignment 2: Thursday 29 Sept 16:00

I Project Presentation 1: in class 6 October
I Email me your slides (pdf only please) before class
I 5-10 minute presentation
I Introduce topic, give background, current progress,

expected results

I Assignment 3: Thursday 13 Oct 16:00 (social analysis,
posted soon)

I Office hours: Tuesday & Wednesday 14:00-16:00 Lally
317

I Or email me for other availability

4 / 14

Today’s Biz

1. Reminders

2. Review

3. Graph Partitioning overview

4. Graph Partitioning Small-world Graphs

5. Partitioning Usage example

5 / 14

Quick Review

I Communities in social networks
I Explicitly formed by users
I Implicit through interactions

I Community detection
I Identifying communities - very subjective definition
I Node, Group, Network, Hierarchical (top-down and/or

bottom-up) methods

I Evaluation of detection methods
I Based on method - e.g. found a k-clique?
I Comparison to ground truth - explicitly formed

communities
I Implicit based on measurement - modularity, cut ratio,

etc.

6 / 14

Today’s Biz

1. Reminders

2. Review

3. Graph Partitioning Overview

4. Graph Partitioning Small-world Graphs

5. Partitioning Usage example

7 / 14

Graph Partitioning Overview
Slides from Spring 2005 CME342/AA220/CS238 - Parallel

Methods in Numerical Analysis, Stanford University

8 / 14

Outline

• Definition of graph partitioning problem

• Sample applications

• N-P complete problem

• Available heuristic algorithms (with and without nodal

coordinates)

– Inertial partitioning

– Breadth first search

– Kernighan-Lin

– Spectral bisection

• Multilevel acceleration (multigrid for graph partitioning

problems)

• Metis, ParMetis, and others

Definition of Graph Partitioning
• Given a graph G = (N, E, WN, WE)

– N = nodes (or vertices), E = edges

– WN = node weights, WE = edge weights

• N can be thought of as tasks, WN are the task costs, edge (j,k) in E means task

j sends WE(j,k) words to task k

• Choose a partition N = N1 U N2 U … U NP such that

– The sum of the node weights in each Nj is distributed evenly (load balance)

– The sum of all edge weights of edges connecting all different partitions is

minimized (decrease parallel overhead)

• In other words, divide work evenly and minimize communication

• Partition into two parts is called graph bisection, which recursively applied

can be turned into algorithms for complete graph partitioning

Applications

• Load balancing while minimizing communication

• Structured and unstructured mesh distribution for distributed memory

parallel computing (FEM, CFD, RCS, etc.)

• Sparse matrix times vector multiplication

– Solving PDEs (above)

– N = {1,…,n}, (j,k) in E if A(j,k) nonzero,

– WN(j) = #nonzeros in row j, WE(j,k) = 1

• VLSI Layout

– N = {units on chip}, E = {wires}, WE(j,k) = wire length

• Telephone network design

– Original application, algorithm due to Kernighan

• Sparse Gaussian Elimination

– Used to reorder rows and columns to increase parallelism, decrease “fill-in”

Applications-Unstructured CFD
Partitioning of an undirected nodal graph for parallel computation

of the flow over an S3A aircraft using 16 processors of an IBM

SP2 system (1995). Colors denote the partition number. Edge

separators not shown. Solution via AIRPLANE code.

Applications- TFLO Load Balancing
The static load balancing procedure for the multiblock-structured flow

solver, TFLO, developed for the ASCI project at SU, uses a graph

partitioning algorithm where the original graph has nodes corresponding

to mesh blocks with weights equal to the total number of cells in the

block, and where the edges represent the communication patterns in the

mesh; the edge weights are proportional to the surface area of the face that

is being communicated

Now, that is where that silly

picture comes from!!!!!

Sparse Matrix Vector Multiplication

Cost of Graph Partitioning

• Many possible partitionings to search:

• n choose n/2 ~ sqrt(2n/pi)*2n bisection possibilities

• Choosing optimal partitioning is NP-complete

– Only known exact algorithms have cost that is exponential in the number of

nodes in the graph, n

• We need good heuristics-based algorithms!!

First Heuristic: Repeated Graph Bisection

• To partition N into 2k parts, bisect graph recursively k

times

– Henceforth discuss mostly graph bisection

Overview of Partitioning Heuristics for Bisection

• Partitioning with Nodal Coordinates

– Each node has x,y,z coordinates

– Partition nodes by partitioning space

• Partitioning without Nodal Coordinates

– Sparse matrix of Web: A(j,k) = # times keyword j appears in URL k

• Multilevel acceleration

– Approximate problem by “coarse graph”, do so recursively

Edge Separators vs. Vertex Separators of G(N,E)

• Edge Separator: Es (subset of E) separates G if removing Es from E leaves two

~equal-sized, disconnected components of N: N1 and N2

• Vertex Separator: Ns (subset of N) separates G if removing Ns and all incident

edges leaves two ~equal-sized, disconnected components of N: N1 and N2

• Edge cut: Sum of the weights of all edges that form an edge separator

• Making an Ns from an Es: pick one endpoint of each edge in Es

– How big can |Ns| be, compared to |Es| ?

• Making an Es from an Ns: pick all edges incident on Ns

– How big can |Es| be, compared to |Ns| ?

• We will find Edge or Vertex Separators, as convenient

Es = green edges or blue edges

Ns = red vertices

Graphs with Nodal Coordinates - Planar graphs

• Planar graph can be drawn in plane without edge

crossings

• Ex: m x m grid of m2 nodes: vertex separator Ns

with |Ns| = m = sqrt(|N|) (see last slide for m=5)

• Theorem (Tarjan, Lipton, 1979): If G is planar,

Ns such that

– N = N1 U Ns U N2 is a partition,

– |N1| <= 2/3 |N| and |N2| <= 2/3 |N|

– |Ns| <= sqrt(8 * |N|)

• Theorem motivates intuition of following

algorithms

Graphs with Nodal Coordinates: Inertial Partitioning

• For a graph in 2D, choose line with half the nodes on one

side and half on the other

– In 3D, choose a plane, but consider 2D for simplicity

• Choose a line L, and then choose an L perpendicular to it,

with half the nodes on either side

• Remains to choose L

1) L given by a*(x-xbar)+b*(y-ybar)=0,

 with a2+b2=1; (a,b) is unit vector to L

2) For each nj = (xj,yj), compute coordinate

 Sj = -b*(xj-xbar) + a*(yj-ybar) along L

3) Let Sbar = median(S1,…,Sn)

4) Let nodes with Sj < Sbar be in N1, rest in N2

Inertial Partitioning: Choosing L
• Clearly prefer L on left below

• Mathematically, choose L to be a total least squares

fit of the nodes

– Minimize sum of squares of distances to L (green lines

on last slide)

– Equivalent to choosing L as axis of rotation that

minimizes the moment of inertia of nodes (unit weights) -

source of name

Inertial Partitioning: choosing L

j (length of j-th green line)2

 = j [(xj - xbar)2 + (yj - ybar)2 - (-b*(xj - xhar) + a*(yj - ybar))2]

 … Pythagorean Theorem
 = a2 * j (xj - xbar)2 + 2*a*b* j (xj - xbar)*(yj - ybar) + b2 j (yj - ybar)2

 = a2 * X1 + 2*a*b* X2 + b2 * X3

 = [a b] * X1 X2 * a

 X2 X3 b

Minimized by choosing
 (xbar , ybar) = (j xj , j yj) / N = center of mass

 (a,b) = eigenvector of smallest eigenvalue of X1 X2

 X2 X3

(a,b) is unit vector

perpendicular to L

Inertial Partitioning: Three Dimensions

• In 3D, the situation is almost identical only that the line

separating the partitions is now a plane, and the vectors and

points have three components.

• The matrix problem is simply 3x3, but conclusions are the

same:

– Choose plane that contains the center of mass of the graph, and

– Has normal vector given by the eigenvector of the 3x3 eigenvalue

problem

• Repeat recursively

Partitioning with Nodal Coordinates - Summary

• Other algorithms and variations are available (random spheres, etc.)

• Algorithms are efficient

• Rely on graphs having nodes connected (mostly) to “nearest neighbors”

in space

– algorithm does not depend on where actual edges are!

• Common when graph arises from physical model

• Can be used as good starting guess for subsequent partitioners, which do

examine edges

• Can do poorly if graph less connected:

Partitioning without Nodal Coordinates-

Breadth First Search (BFS)

• Given G(N,E) and a root node r in N, BFS produces

– A subgraph T of G (same nodes, subset of edges)

– T is a tree rooted at r

– Each node assigned a level = distance from r

Breadth First Search

• Queue (First In First Out, or FIFO)

– Enqueue(x,Q) adds x to back of Q

– x = Dequeue(Q) removes x from front of Q

• Compute Tree T(NT,ET)

NT = {(r,0)}, ET = empty set … Initially T = root r, which is at level 0

Enqueue((r,0),Q) … Put root on initially empty Queue Q

Mark r … Mark root as having been processed

While Q not empty … While nodes remain to be processed

 (n,level) = Dequeue(Q) … Get a node to process

 For all unmarked children c of n

 NT = NT U (c,level+1) … Add child c to NT

 ET = ET U (n,c) … Add edge (n,c) to ET

 Enqueue((c,level+1),Q)) … Add child c to Q for processing

 Mark c … Mark c as processed

 Endfor

Endwhile

Partitioning via Breadth First Search

• BFS identifies 3 kinds of edges
– Tree Edges - part of T

– Horizontal Edges - connect nodes at same level

– Interlevel Edges - connect nodes at adjacent levels

• No edges connect nodes in levels

 differing by more than 1 (why?)

• BFS partitioning heuristic

– N = N1 U N2, where

• N1 = {nodes at level <= L},

• N2 = {nodes at level > L}

– Choose L so |N1| close to |N2|

Partitioning without nodal coordinates -

Kernighan/Lin

• Take a initial partition and iteratively improve it

– Kernighan/Lin (1970), cost = O(|N|3) but easy to understand, better

version has cost = O(|E| log |E|)

– Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but more

complicated (it uses the appropriate data structures)

• Given G = (N,E,WE) and a partitioning N = A U B, where

|A| = |B|

– T = cost(A,B) = edge cut of A and B partitions

– Find subsets X of A and Y of B with |X| = |Y|

– Swapping X and Y should decrease cost:

• newA = (A - X) U Y and newB = (B - Y) U X

• newT = cost(newA , newB) < cost(A,B), lower edge cut

• Need to compute newT efficiently for many possible X and

Y, choose smallest

Kernighan/Lin - Preliminary Definitions

• T = cost(A, B), newT = cost(newA, newB)

• Need an efficient formula for newT; will use

– E(a) = external cost of a in A = {W(a,b) for b in B}

– I(a) = internal cost of a in A = {W(a,a’) for other a’ in A}

– D(a) = cost of a in A = E(a) - I(a)

– E(b), I(b) and D(b) defined analogously for b in B

• Consider swapping X = {a} and Y = {b}

– newA = (A - {a}) U {b}, newB = (B - {b}) U {a}

• newT = T - (D(a) + D(b) - 2*w(a,b)) = T - gain(a,b)

– gain(a,b) measures improvement gotten by swapping a and b

• Update formulas

– newD(a’) = D(a’) + 2*w(a’,a) - 2*w(a’,b) for a’ in A, a’ != a

– newD(b’) = D(b’) + 2*w(b’,b) - 2*w(b’,a) for b’ in B, b’ != b

Kernighan/Lin Algorithm

 Compute T = cost(A,B) for initial A, B … cost = O(|N|2)

 Repeat

 Compute costs D(n) for all n in N … cost = O(|N|2)

 Unmark all nodes in N … cost = O(|N|)

 While there are unmarked nodes … |N|/2 iterations

 Find an unmarked pair (a,b) maximizing gain(a,b) … cost = O(|N|2)

 Mark a and b (but do not swap them) … cost = O(1)

 Update D(n) for all unmarked n,

 as though a and b had been swapped … cost = O(|N|)

 Endwhile

 … At this point we have computed a sequence of pairs

 … (a1,b1), … , (ak,bk) and gains gain(1),…., gain(k)

 … for k = |N|/2, ordered by the order in which we marked them
 Pick j maximizing Gain = k=1 to j gain(k) … cost = O(|N|)

 … Gain is reduction in cost from swapping (a1,b1) through (aj,bj)

 If Gain > 0 then … it is worth swapping

 Update newA = (A - { a1,…,ak }) U { b1,…,bk } … cost = O(|N|)

 Update newB = (B - { b1,…,bk }) U { a1,…,ak } … cost = O(|N|)

 Update T = T - Gain … cost = O(1)

 endif

 Until Gain <= 0

• One pass greedily computes |N|/2 possible X and Y to swap, picks best

 Comments on Kernighan/Lin Algorithm

• Most expensive line show in red

• Some gain(k) may be negative, but if later gains are

large, then final Gain may be positive

– can escape “local minima” where switching no pair helps

• How many times do we Repeat?

– K/L tested on very small graphs (|N|<=360) and got

convergence after 2-4 sweeps

– For random graphs (of theoretical interest) the probability

of convergence in one step appears to drop like 2-|N|/30

Partitioning without nodal coordinates -

Spectral Bisection

• Based on theory of Fiedler (1970s), popularized by Pothen,

Simon, Liou (1990)

• Motivation, by analogy to a vibrating string

• Basic definitions

• Implementation via the Lanczos Algorithm

– To optimize sparse-matrix-vector multiply, we graph partition

– To graph partition, we find an eigenvector of a matrix associated

with the graph

– To find an eigenvector, we do sparse-matrix vector multiply

– No free lunch ...

Motivation for Spectral Bisection:

Vibrating String
• Think of G = 1D mesh as masses (nodes) connected by

springs (edges), i.e. a string that can vibrate

• Vibrating string has modes of vibration, or harmonics

• Label nodes by whether mode - or + to partition into N-

and N+

• Same idea for other graphs (eg planar graph ~ trampoline)

Basic Definitions

• Definition: The incidence matrix In(G) of a graph G(N,E) is an |N| by |E|

matrix, with one row for each node and one column for each edge. If

edge e=(i,j) then column e of In(G) is zero except for the i-th and j-th

entries, which are +1 and -1, respectively.

• Slightly ambiguous definition because multiplying column e of In(G) by

-1 still satisfies the definition, but this won’t matter...

• Definition: The Laplacian matrix L(G) of a graph G(N,E) is an |N| by |N|

symmetric matrix, with one row and column for each node. It is defined

by

– L(G) (i,i) = degree of node I (number of incident edges)

– L(G) (i,j) = -1 if i != j and there is an edge (i,j)

– L(G) (i,j) = 0 otherwise

Example of In(G) and L(G) for 1D

and 2D meshes

Properties of Incidence and

Laplacian matrices

• Theorem 1: Given G, In(G) and L(G) have the following properties

• L(G) is symmetric. (This means the eigenvalues of L(G) are real and its

eigenvectors are real and orthogonal.)

– Let e = [1,…,1]T, i.e. the column vector of all ones. Then L(G)*e=0.

– In(G) * (In(G))T = L(G). This is independent of the signs chosen for each

column of In(G).

– Suppose L(G)*v = *v, v != 0, so that v is an eigenvector and an

eigenvalue of L(G). Then

– The eigenvalues of L(G) are nonnegative:

• 0 = 1 <= 2 <= … <= n

– The number of connected components of G is equal to the number of i

equal to 0. In particular, 2 != 0 if and only if G is connected.

• Definition: 2(L(G)) is the algebraic connectivity of G

 = || In(G)T * v ||2 / || v ||2 … ||x||2 = k xk
2

 = { (v(i)-v(j))2 for all edges e=(i,j) } / i v(i)2

Spectral Bisection Algorithm

• Spectral Bisection Algorithm:

– Compute eigenvector v2 corresponding to 2(L(G))

– For each node n of G

• if v2(n) < 0 put node n in partition N-

• else put node n in partition N+

• Why does this make sense? First reasons.

• Theorem 2 (Fiedler, 1975): Let G be connected, and N- and

N+ defined as above. Then N- is connected. If no v2(n) = 0,

then N+ is also connected. Proof available.

• Recall 2(L(G)) is the algebraic connectivity of G

• Theorem 3 (Fiedler): Let G1(N,E1) be a subgraph of

G(N,E), so that G1 is “less connected” than G. Then

2(L(G)) <= 2(L(G)) , i.e. the algebraic connectivity of G1

is less than or equal to the algebraic connectivity of G.

References

• A. Pothen, H. Simon, K.-P. Liou, “Partitioning sparse

matrices with eigenvectors of graphs”, SIAM J. Mat. Anal.

Appl. 11:430-452 (1990)

• M. Fiedler, “Algebraic Connectivity of Graphs”, Czech.

Math. J., 23:298-305 (1973)

• M. Fiedler, Czech. Math. J., 25:619-637 (1975)

• B. Parlett, “The Symmetric Eigenproblem”, Prentice-Hall,

1980

Review

• Partitioning with nodal coordinates

– Rely on graphs having nodes connected (mostly) to “nearest

neighbors” in space

– Common when graph arises from physical model

– Finds a circle or line that splits nodes into two equal-sized groups

– Algorithm very efficient, does not depend on edges

• Partitioning without nodal coordinates

– Depends on edges

– Breadth First Search (BFS)

– Kernighan/Lin - iteratively improve an existing partition

– Spectral Bisection - partition using signs of components of second

eigenvector of L(G), the Laplacian of G

Introduction to Multilevel Partitioning

• If we want to partition G(N,E), but it is too big to

do efficiently, what can we do?

– 1) Replace G(N,E) by a coarse approximation

Gc(Nc,Ec), and partition Gc instead

– 2) Use partition of Gc to get a rough partitioning of G,

and then iteratively improve it

• What if Gc still too big?

– Apply same idea recursively

• This is identical to the multigrid procedure that is

used in the solution of elliptic and hyperbolic PDEs

Multilevel Partitioning - High Level Algorithm

 (N+,N-) = Multilevel_Partition(N, E)

 … recursive partitioning routine returns N+ and N- where N = N+ U N-

 if |N| is small

(1) Partition G = (N,E) directly to get N = N+ U N-

 Return (N+, N-)

 else

(2) Coarsen G to get an approximation Gc = (Nc, Ec)

(3) (Nc+ , Nc-) = Multilevel_Partition(Nc, Ec)

(4) Expand (Nc+ , Nc-) to a partition (N+ , N-) of N

(5) Improve the partition (N+ , N-)

 Return (N+ , N-)

 endif

(2,3)

(2,3)

(2,3)

(1)

(4)

(4)

(4)

(5)

(5)

(5)

How do we

 Coarsen?

 Expand?

 Improve?

“V - cycle:”

Multilevel Kernighan-Lin

• Coarsen graph and expand partition using

maximal matchings

• Improve partition using Kernighan-Lin

• This is the algorithm that is implemented in

Metis (see references in web page)

Maximal Matching

• Definition: A matching of a graph G(N,E) is a subset Em of

E such that no two edges in Em share an endpoint

• Definition: A maximal matching of a graph G(N,E) is a

matching Em to which no more edges can be added and

remain a matching

• A simple greedy algorithm computes a maximal matching:

let Em be empty

mark all nodes in N as unmatched

for i = 1 to |N| … visit the nodes in any order

 if i has not been matched

 if there is an edge e=(i,j) where j is also unmatched,

 add e to Em

 mark i and j as matched

 endif

 endif

endfor

Maximal Matching - Example

Maximal matching

given by red edges:

Any additional edge

will connect to one of

the nodes already

present

Coarsening using a maximal matching

Construct a maximal matching Em of G(N,E)

for all edges e=(j,k) in Em

 Put node n(e) in Nc

 W(n(e)) = W(j) + W(k) … gray statements update node/edge weights

for all nodes n in N not incident on an edge in Em

 Put n in Nc … do not change W(n)

… Now each node r in N is “inside” a unique node n(r) in Nc

… Connect two nodes in Nc if nodes inside them are connected in E

for all edges e=(j,k) in Em

 for each other edge e’=(j,r) in E incident on j

 Put edge ee = (n(e),n(r)) in Ec

 W(ee) = W(e’)

 for each other edge e’=(r,k) in E incident on k

 Put edge ee = (n(r),n(e)) in Ec

 W(ee) = W(e’)

If there are multiple edges connecting two nodes in Nc, collapse them,

 adding edge weights

Example of Coarsening

Example of Coarsening

Expanding a partition of Gc

to a partition of G

Multilevel Spectral Bisection

• Coarsen graph and expand partition using

maximal independent sets

• Improve partition using Rayleigh Quotient

Iteration

Maximal Independent Sets

• Definition: An independent set of a graph G(N,E) is a subset Ni of N

such that no two nodes in Ni are connected by an edge

• Definition: A maximal independent set of a graph G(N,E) is an

independent set Ni to which no more nodes can be added and remain

an independent set

• A simple greedy algorithm computes a maximal independent set:

let Ni be empty

for i = 1 to |N| … visit the nodes in any order

 if node i is not adjacent to any node already in Ni
 add i to Ni
 endif

endfor

Coarsening using Maximal Independent Sets
… Build “domains” D(i) around each node i in Ni to get nodes in Nc

… Add an edge to Ec whenever it would connect two such domains

Ec = empty set

for all nodes i in Ni

 D(i) = ({i}, empty set)

 … first set contains nodes in D(i), second set contains edges in D(i)

unmark all edges in E

repeat

 choose an unmarked edge e = (i,j) from E

 if exactly one of i and j (say i) is in some D(k)

 mark e

 add j and e to D(k)

 else if i and j are in two different D(k)’s (say D(ki) and D(kj))

 mark e

 add edge (ki, kj) to Ec

 else if both i and j are in the same D(k)

 mark e

 add e to D(k)

 else

 leave e unmarked

 endif

until no unmarked edges

Available Implementations

• Multilevel Kernighan/Lin

– METIS (www.cs.umn.edu/~metis)

– ParMETIS - parallel version

• Multilevel Spectral Bisection

– S. Barnard and H. Simon, “A fast multilevel

implementation of recursive spectral bisection …”, Proc.

6th SIAM Conf. On Parallel Processing, 1993

– Chaco (www.cs.sandia.gov/CRF/papers_chaco.html)

• Hybrids possible

– Ex: Using Kernighan/Lin to improve a partition from

spectral bisection

Available Implementations

• Multilevel Kernighan/Lin

– Demonstrated in experience to be the most efficient

algorithm available.

• Multilevel Spectral Bisection

– Gives good partitions but cost is higher than multilevel

K/L

• Hybrids possible

– For example: Using Kernighan/Lin to improve a partition

from spectral bisection

Today’s Biz

1. Reminders

2. Review

3. Graph Partitioning overview

4. Graph Partitioning of Small-world Graphs

5. Partitioning Usage example

9 / 14

Graph Partitioning of Small-world Graphs

I Large and irregular graphs require a different approach
I Direct methods (spectral/KM): O(n2) - not feasible
I Multilevel methods:

I Matching difficult with high degree vertices
I Coarsening comes with high memory costs

I Techniques for large small-world graphs:
I Simple clustering heuristics - balanced label propagation
I Streaming methods - make greedy decisions as you scan

a graph
I Both linear time complexity, avoid coarsening overheads

10 / 14

Label Propagation Partitioning (PuLP)

11 / 14

Overview
Partitioning

Graph Partitioning: Given a graph G(V,E) and p
processes or tasks, assign each task a p-way disjoint
subset of vertices and their incident edges from G

Balance constraints – (weighted) vertices per part,
(weighted) edges per part
Quality metrics – edge cut, communication volume,
maximal per-part edge cut

We consider:

Balancing edges and vertices per part
Minimizing edge cut (EC) and maximal per-part edge
cut (ECmax)

4 / 37

Overview
Partitioning - Objectives and Constraints

Lots of graph algorithms follow a certain iterative model

BFS, SSSP, FASCIA subgraph counting (Slota and
Madduri 2014)
computation, synchronization, communication,
synchronization, computation, etc.

Computational load: proportional to vertices and edges
per-part

Communication load: proportional to total edge cut and
max per-part cut

We want to minimize the maximal time among tasks for
each comp/comm stage

5 / 37

Overview
Partitioning - Balance Constraints

Balance vertices and edges:

(1− εl)
|V |
p
≤ |V (πi)| ≤ (1 + εu)

|V |
p

(1)

|E(πi)| ≤ (1 + ηu)
|E|
p

(2)

εl and εu: lower and upper vertex imbalance ratios

ηu: upper edge imbalance ratio

V (πi): set of vertices in part πi

E(πi): set of edges with both endpoints in part πi

6 / 37

Overview
Partitioning - Objectives

Given a partition Π, the set of cut edges (C(G,Π)) and
cut edge per partition (C(G, πk)) are

C(G,Π) = {{(u, v) ∈ E} | Π(u) 6= Π(v)} (3)

C(G, πk) = {{(u, v) ∈ C(G,Π)} | (u ∈ πk ∨ v ∈ πk)} (4)

Our partitioning problem is then to minimize total edge
cut EC and max per-part edge cut ECmax:

EC(G,Π) = |C(G,Π)| (5)

ECmax(G,Π) = max
k
|C(G, πk)| (6)

7 / 37

Overview
Partitioning - HPC Approaches

(Par)METIS (Karypis et al.), PT-SCOTCH (Pellegrini et
al.), Chaco (Hendrickson et al.), etc.

Multilevel methods:

Coarsen the input graph in several iterative steps
At coarsest level, partition graph via local methods
following balance constraints and quality objectives
Iteratively uncoarsen graph, refine partitioning

Problem 1: Designed for traditional HPC scientific
problems (e.g. meshes) – limited balance constraints and
quality objectives

Problem 2: Multilevel approach – high memory
requirements, can run slowly and lack scalability

8 / 37

Overview
Label Propagation

Label propagation: randomly initialize a graph with
some p labels, iteratively assign to each vertex the
maximal per-label count over all neighbors to generate
clusters (Raghavan et al. 2007)

Clustering algorithm - dense clusters hold same label
Fast - each iteration in O(n+m), usually fixed iteration
count (doesn’t necessarily converge)
Näıvely parallel - only per-vertex label updates
Observation: Possible applications for large-scale
small-world graph partitioning

9 / 37

Overview
Partitioning - “Big Data” Approaches

Methods designed for small-world graphs (e.g. social
networks and web graphs)

Exploit label propagation/clustering for partitioning:
Multilevel methods - use label propagation to coarsen
graph (Wang et al. 2014, Meyerhenke et al. 2014)
Single level methods - use label propagation to directly
create partitioning (Ugander and Backstrom 2013,
Vaquero et al. 2013)

Problem 1: Multilevel methods still can lack scalability,
might also require running traditional partitioner at
coarsest level

Problem 2: Single level methods can produce
sub-optimal partition quality

10 / 37

Overview
PuLP

PuLP : Partitioning Using Label Propagation

Utilize label propagation for:

Vertex balanced partitions, minimize edge cut (PuLP)
Vertex and edge balanced partitions, minimize edge cut
(PuLP-M)
Vertex and edge balanced partitions, minimize edge cut
and maximal per-part edge cut (PuLP-MM)
Any combination of the above - multi objective, multi
constraint

11 / 37

Algorithms
Primary Algorithm Overview

PuLP-MM Algorithm
Constraint 1: balance vertices, Constraint 2: balance
edges
Objective 1: minimize edge cut, Objective 2: minimize
per-partition edge cut
Pseudocode gives default iteration counts

Initialize p random partitions
Execute 3 iterations degree-weighted label propagation (LP)
for k1 = 1 iterations do

for k2 = 3 iterations do
Balance partitions with 5 LP iterations to satisfy constraint 1
Refine partitions with 10 FM iterations to minimize objective 1

for k3 = 3 iterations do
Balance partitions with 2 LP iterations to satisfy constraint 2

and minimize objective 2 with 5 FM iterations
Refine partitions with 10 FM iterations to minimize objective 1

12 / 37

Algorithms
Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP)
for k1 iterations do

for k2 iterations do
Balance partitions with LP to satisfy vertex

constraint
Refine partitions with FM to minimize edge cut

for k3 iterations do
Balance partitions with LP to satisfy edge

constraint and minimize max per-part cut
Refine partitions with FM to minimize edge cut

13 / 37

Algorithms
Primary Algorithm Overview

Randomly initialize p partitions (p = 4)

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)

14 / 37

Algorithms
Primary Algorithm Overview

After random initialization, we then perform label
propagation to create partitions

Initial Observations:

Partitions are unbalanced, for high p, some partitions
end up empty
Edge cut is good, but can be better

PuLP Solutions:

Impose loose balance constraints, explicitly refine later
Degree weightings - cluster around high degree vertices,
let low degree vertices form boundary between partitions

15 / 37

Algorithms
Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP)
for k1 iterations do

for k2 iterations do
Balance partitions with LP to satisfy vertex

constraint
Refine partitions with FM to minimize edge cut

for k3 iterations do
Balance partitions with LP to satisfy edge

constraint and minimize max per-part cut
Refine partitions with FM to minimize edge cut

16 / 37

Algorithms
Primary Algorithm Overview

Part assignment after random initialization.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)

17 / 37

Algorithms
Primary Algorithm Overview

Part assignment after degree-weighted label propagation.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)

18 / 37

Algorithms
Primary Algorithm Overview

After label propagation, we balance vertices among
partitions and minimize edge cut (baseline PuLP ends
here)

Observations:

Partitions are still unbalanced in terms of edges
Edge cut is good, max per-part cut isn’t necessarily

PuLP-M and PuLP-MM Solutions:

Maintain vertex balance while explicitly balancing edges
Alternate between minimizing total edge cut and max
per-part cut (for PuLP-MM, PuLP-M only minimizes
total edge cut)

19 / 37

Algorithms
Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP)
for k1 iterations do

for k2 iterations do
Balance partitions with LP to satisfy vertex

constraint
Refine partitions with FM to minimize edge cut

for k3 iterations do
Balance partitions with LP to satisfy edge

constraint and minimize max per-part cut
Refine partitions with FM to minimize edge cut

20 / 37

Algorithms
Primary Algorithm Overview

Part assignment after degree-weighted label propagation.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)

21 / 37

Algorithms
Primary Algorithm Overview

Part assignment after balancing for vertices and minimizing
edge cut.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
22 / 37

Algorithms
Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP)
for k1 iterations do

for k2 iterations do
Balance partitions with LP to satisfy vertex

constraint
Refine partitions with FM to minimize edge cut

for k3 iterations do
Balance partitions with LP to satisfy edge

constraint and minimize max per-part cut
Refine partitions with FM to minimize edge cut

23 / 37

Algorithms
Primary Algorithm Overview

Part assignment after balancing for vertices and minimizing
edge cut.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
24 / 37

Algorithms
Primary Algorithm Overview

Part assignment after balancing for edges and minimizing total
edge cut and max per-part edge cut

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
25 / 37

Results
Test Environment and Graphs

Test system: Compton
Intel Xeon E5-2670 (Sandy Bridge), dual-socket, 16 cores, 64
GB memory.

Test graphs:
LAW graphs from UF Sparse Matrix, SNAP, MPI, Koblenz
Real (one R-MAT), small-world, 60 K–70 M vertices,
275 K–2 B edges

Test Algorithms:
METIS - single constraint single objective
METIS-M - multi constraint single objective
ParMETIS - METIS-M running in parallel
KaFFPa - single constraint single objective
PuLP - single constraint single objective
PuLP-M - multi constraint single objective
PuLP-MM - multi constraint multi objective

Metrics: 2–128 partitions, serial and parallel running times, memory
utilization, edge cut, max per-partition edge cut

26 / 37

Results
Running Times - Serial (top), Parallel (bottom)

In serial, PuLP-MM runs 1.7× faster (geometric mean) than next
fastest

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

 LiveJournal R−MAT Twitter

0

100

200

300

0

500

1000

1500

5000

10000

15000

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Partitions

R
un

ni
ng

 T
im

e

Partitioner ● PULP PULP−M PULP−MM METIS METIS−M KaFFPa−FS

In parallel, PuLP-MM runs 14.5× faster (geometric mean) than
next fastest (ParMETIS times are fastest of 1 to 256 cores)

● ●

 LiveJournal R−MAT Twitter

0

25

50

75

0

500

1000

1500

0

5000

10000

15000

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Partitions

R
un

ni
ng

 T
im

e

Partitioner ● PULP PULP−M PULP−MM ParMETIS METIS−M (Serial) PULP−M (Serial)

27 / 37

Results
Memory utilization for 128 partitions

PuLP utilizes minimal memory, O(n), 8-39× less than
other partitioners

Savings are mostly from avoiding a multilevel approach

Memory Utilization Improv.Network
METIS-M KaFFPa PuLP-MM Graph Size

LiveJournal 7.2 GB 5.0 GB 0.44 GB 0.33 GB 21×
Orkut 21 GB 13 GB 0.99 GB 0.88 GB 23×
R-MAT 42 GB - 1.2 GB 1.02 GB 35×
DBpedia 46 GB - 2.8 GB 1.6 GB 28×
WikiLinks 103 GB 42 GB 5.3 GB 4.1 GB 25×
sk-2005 121 GB - 16 GB 13.7 GB 8×
Twitter 487 GB - 14 GB 12.2 GB 39×

28 / 37

Results
Performance - Edge Cut and Edge Cut Max

PuLP-M produces better edge cut than METIS-M over most graphs

PuLP-MM produces better max edge cut than METIS-M over most graphs

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

LiveJournal R−MAT Twitter

0.1

0.2

0.3

0.4

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Partitions

E
dg

e
C

ut
 R

at
io

Partitioner ● PULP−M PULP−MM METIS−M

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

LiveJournal R−MAT Twitter

0.02

0.04

0.06

0.08

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Partitions

M
ax

 P
er

−
P

ar
t R

at
io

Partitioner ● PULP−M PULP−MM METIS−M

29 / 37

Results
Balanced communication

uk-2005 graph from LAW, METIS-M (left) vs. PuLP-MM (right)
Blue: low comm; White: avg comm; Red: High comm
PuLP reduces max inter-part communication requirements and
balances total communication load through all tasks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Part Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

P
ar

t N
um

be
r

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Part Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

P
ar

t N
um

be
r

30 / 37

Streaming Partitioning (FENNEL)
Slides from Tsourakakis et al., Aalto University and MSR-UK

12 / 14

streaming k-way graph partitioning

• input is a data stream

• graph is ordered
• arbitrarily
• breadth-first search
• depth-first search

• generate an approximately balanced graph partitioning

graph stream
partitioner

⇥(n/k)
each partition
holds
vertices

Monday, August 5, 13

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 9 / 30

Graph representations

• incidence stream

• at time t, a vertex arrives with its neighbors

• adjacency stream

• at time t, an edge arrives

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 10 / 30

Partitioning strategies

• hashing: place a new vertex to a cluster/machine chosen
uniformly at random

• neighbors heuristic: place a new vertex to the
cluster/machine with the maximum number of neighbors

• non-neighbors heuristic: place a new vertex to the
cluster/machine with the minimum number of
non-neighbors

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 11 / 30

Partitioning strategies

[Stanton and Kliot, 2012]

• dc(v): neighbors of v in cluster c

• tc(v): number of triangles that v participates in cluster c

• balanced: vertex v goes to cluster with least number of
vertices

• hashing: random assignment

• weighted degree: v goes to cluster c that maximizes
dc(v) · w(c)

• weighted triangles: v goes to cluster j that maximizes
tc(v)/

(
dc (v)
2

)
· w(c)

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 12 / 30

Weight functions

• sc : number of vertices in cluster c

• unweighted: w(c) = 1

• linearly weighted: w(c) = 1− sc(k/n)

• exponentially weighted: w(c) = 1− e(sc−n/k)

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 13 / 30

fennel algorithm

The standard formulation hits the ARV barrier

minimize P=(S1,...,Sk) |∂ e(P)|
subject to |Si | ≤ ν

n

k
, for all 1 ≤ i ≤ k

• We relax the hard cardinality constraints

minimize P=(S1,...,Sk) |∂ E (P)|+ cIN(P)

where cIN(P) =
∑

i s(|Si |), so that objective self-balances

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 14 / 30

fennel algorithm

• for S ⊆ V , f (S) = e[S]− α|S |γ, with γ ≥ 1

• given partition P = (S1, . . . , Sk) of V in k parts define

g(P) = f (S1) + . . .+ f (Sk)

• the goal: maximize g(P) over all possible k-partitions

• notice:
g(P) =

∑

i

e[Si]

︸ ︷︷ ︸
m−number of

edges cut

− α
∑

i

|Si |γ

︸ ︷︷ ︸
minimized for

balanced partition!

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 15 / 30

Connection

notice

f (S) = e[S]− α

(|S |
2

)

• related to modularity

• related to optimal quasicliques [Tsourakakis et al., 2013]

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 16 / 30

fennel algorithm
Theorem

• For γ = 2 there exists an algorithm that achieves an
approximation factor log(k)/k
for a shifted objective where k is the number of clusters

• semidefinite programming algorithm
• in the shifted objective the main term takes care of the
load balancing and the second order term minimizes the
number of edges cut

• Multiplicative guarantees not the most appropriate

• random partitioning gives approximation factor 1/k

• no dependence on n

mainly because of relaxing the hard cardinality constraints

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 17 / 30

fennel algorithm — greedy scheme

• γ = 2 gives non-neighbors heuristic

• γ = 1 gives neighbors heuristic

• interpolate between the two heuristics, e.g., γ = 1.5

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 18 / 30

fennel algorithm — greedy scheme

graph stream
partitioner

⇥(n/k)
each partition
holds
vertices

Monday, August 5, 13

• send v to the partition / machine that maximizes

f (Si ∪{v})− f (Si)

= e[Si ∪ {v}]− α(|Si |+ 1)γ − (e[Si]− α|Si |γ)
= dSi (v)− αO(|Si |γ−1)

• fast, amenable to streaming and distributed setting

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 19 / 30

fennel algorithm — γ
Explore the tradeoff between the number of edges cut and
load balancing.

Fraction of edges cut λ and maximum load normalized ρ as a
function of γ, ranging from 1 to 4 with a step of 0.25, over

five randomly generated power law graphs with slope 2.5. The
straight lines show the performance of METIS.

• Not the end of the story ... choose γ∗ based on some
“easy-to-compute” graph characteristic.

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 20 / 30

fennel algorithm — γ∗

y-axis Average optimal value γ∗ for each power law slope in the
range [1.5, 3.2] using a step of 0.1 over twenty randomly generated
power law graphs that results in the smallest possible fraction of
edges cut λ conditioning on a maximum normalized load ρ = 1.2,
k = 8. x-axis Power-law exponent of the degree sequence. Error
bars indicate the variance around the average optimal value γ∗.

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 21 / 30

fennel algorithm — results
Twitter graph with approximately 1.5 billion edges, γ = 1.5

λ =
#{edges cut}

m
ρ = max

1≤i≤k

|Si |
n/k

Fennel Best competitor Hash Partition METIS
k λ ρ λ ρ λ ρ λ ρ
2 6.8% 1.1 34.3% 1.04 50% 1 11.98% 1.02
4 29% 1.1 55.0% 1.07 75% 1 24.39% 1.03
8 48% 1.1 66.4% 1.10 87.5% 1 35.96% 1.03

Table: Fraction of edges cut λ and the normalized maximum load
ρ for Fennel, the best competitor and hash partitioning of vertices
for the Twitter graph. Fennel and best competitor require around
40 minutes, METIS more than 81

2 hours.

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 22 / 30

fennel algorithm — results
Extensive experimental evaluation over > 40 large real graphs
[Tsourakakis et al., 2012]

−50 −40 −30 −20 −10 0
0

0.2

0.4

0.6

0.8

1

Relative difference(%)

C
D

F

CDF of the relative difference λfennel−λc

λc
× 100% of percentages

of edges cut of fennel and the best competitor (pointwise)
for all graphs in our dataset.

Fennel: Streaming Graph Partitioning for Massive Scale Graphs 23 / 30

fennel algorithm — “zooming in”
Performance of various existing methods on amazon0312 for
k = 32

BFS Random
Method λ ρ λ ρ

H 96.9% 1.01 96.9% 1.01
B [Stanton and Kliot, 2012] 97.3% 1.00 96.8% 1.00
DG [Stanton and Kliot, 2012] 0% 32 43% 1.48
LDG [Stanton and Kliot, 2012] 34% 1.01 40% 1.00
EDG [Stanton and Kliot, 2012] 39% 1.04 48% 1.01
T [Stanton and Kliot, 2012] 61% 2.11 78% 1.01
LT [Stanton and Kliot, 2012] 63% 1.23 78% 1.10
ET [Stanton and Kliot, 2012] 64% 1.05 79% 1.01

NN [Prabhakaran and et al., 2012] 69% 1.00 55% 1.03
Fennel 14% 1.10 14% 1.02
METIS 8% 1.00 8% 1.02
Fennel: Streaming Graph Partitioning for Massive Scale Graphs 24 / 30

Today’s Biz

1. Reminders

2. Review

3. Graph Partitioning overview

4. Graph Partitioning of Small-world Graphs

5. Partitioning Usage example

13 / 14

Graph Partitioning
Blank code and data available on website

(Lecture 8)
www.cs.rpi.edu/∼slotag/classes/FA16/index.html

14 / 14

