Bio Graph Analysis Lecture 9

CSCI 4974/6971

29 Sep 2016

Today's Biz

- 1. Reminders
- 2. Review
- 3. Biological Network Analysis Topics
- 4. Hybrid processing direction optimizing push/pull
- 5. Assignment 2 solutions

Today's Biz

1. Reminders

- 2. Review
- 3. Biological Network Analysis Topics
- 4. Hybrid processing direction optimizing push/pull

イロト 不得下 イヨト イヨト 二日

3/14

5. Assignment 2 solutions

Reminders

Project Presentation 1: in class 6 October

- Email me your slides (pdf only please) before class
- 5-10 minute presentation
- Introduce topic, give background, current progress, expected results

No class 10/11 October

- Assignment 3: Thursday 13 Oct 16:00 (social analysis, posted soon)
- Office hours: Tuesday & Wednesday 14:00-16:00 Lally 317
 - Or email me for other availability

Today's Biz

- 1. Reminders
- 2. Review
- 3. Biological Network Analysis Topics
- 4. Hybrid processing direction optimizing push/pull
- 5. Assignment 2 solutions

Quick Review

- Balanced graph partitioning:
 - Create k independent subsets of graph
 - Satisfy some balance criteria
- Traditional (mesh-like graph) methods:
 - Coordinate-based methods inertial bisection, coordinate-based
 - Spectral bisection compute eigenvector using graph Laplacian
 - KL-refinement find best cost/gain for vertex swaps
 - Multilevel iterative coarsening/expanding+refinement

Quick Review

- Drawbacks of tradition methods for small-world/massive scale graphs
 - KL and spectral methods require $O(n^2)$
 - Coarsening occurs a high overhead costs
 - Traditional matching methods perform poorly on skewed graphs
- Small-world and large-graph methods:
 - Streaming methods: perform immediate assignment based on some weighted cost/gain function for each vertex/edge encountered in the stream
 - Single-level label propagation: hold full graph in memory, exploit community-like structure of small-world graphs to get quality partitions without a multilevel framework
 - Other: Use distributed label propagation for coarsening in multilevel, tradeoff in quality vs. overhead

Today's Biz

- 1. Reminders
- 2. Review

3. Biological Network Analysis Topics

- 4. Hybrid processing direction optimizing push/pull
- 5. Assignment 2 solutions

Network Motifs: simple Building Blocks of Complex Networks

Slides from Yoav Lahini, Harvard University

9/14

Network Motifs: simple Building Blocks of Complex Networks

R. Milo et. al. Science 298, 824 (2002)

Y. Lahini

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The cell and the environment

- · Cells need to react to their environment
- · Reaction is by synthesizing task-specific proteins, on demand.
- The solution regulated transcription network

- E. Coli 1000 protein types at any given moment >4000 genes (or possible protein types) – need regulatory mechanism to select the active set
- · We are interested in the design principles of this network

Proteins are encoded by DNA

DNA - the instruction manual, 4-letter chemical alphabet - A,G,T,C

<ロ> (四)、(四)、(三)、(三)、

- 12

Gene Regulation

- Proteins are encoded by the DNA of the organism.
- Proteins regulate expression of other proteins by interacting with the DNA

Two types of Transcription Factors: 1.Activators

Bound activator

Separation of time scales: TF activation level is in steady state

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Two types of Transcription Factors: Repressors

훈

Equations of gene regulation $\frac{dY}{dt} = f(X^*) - \alpha Y$

- If X* regulates Y, the net production rate of gene Y is ٠
- α- Dilution/degradation rate

- K activation coefficient [concentration]; related to the affinity ٠
- β maximal expression level
- Step approximation gene is on (rate β) or off (rate 0) with threshold K - 34

The gene regulatory network of E. coli

- Nodes are proteins (or the genes that encode them)
- Edges = regulatory relation between two proteins

Analyzing networks

- The idea- patterns that occur in the real network much more then in a randomized network, must have functional significance.
- The randomized networks share the same number of edges and number of nodes, but edges are assigned at random

590

The known E. Coli transcription network

A random graph based on the same node statistics

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣��

3-node network motif – the feedforward loop

The feedforward loop : a sign sensitive filter

$$X = X(t)$$

$$\frac{dY}{dt} = \theta(X - k_{XY}) - Y$$

$$\frac{dZ}{dt} = \theta(X - K_{XZ})\theta(Y - K_{YZ}) - Z$$

The feedforward loop is a filter for transient signals while allowing fast shutdown

The Feedforward loop : a sign sensitive filter

<ロ> (四)、(四)、(三)、(三)、

臣

Temporal and expression level program generator

- The temporal order is encoded in a hierarchy of thresholds
- · Expression levels hierarchy is encoded in hierarchy of promoter activities

Single Input Module motif is responsible for exact timing in the flagella assembly

900

Single Input Module motif is responsible for exact timing in the flagella assembly

The gene regulatory network of E. coli

• Modular

Evolution of transcription networks

- In 1 day, 10¹⁰ copies of e-coli, 10¹⁰ replication of DNA.
- Mutation rate is 10-9
 - 10 mutations per letter in the population per day
- Even single DNA base change in the promoter can change the activation/repression rate

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Edges can be lost or gained (i.e. selected) easily.

Links between WebPages – a completely different set of motifs is found

- · WebPages are nodes and Links are directed edges
- 3 node results:

Structure of a nematode neuronal circuitry

(日) (部) (注) (注)

훈

Neurons and transcription share similar motifs

BMC Biology

Published: 02 December 2004

Research article

Search for computational modules in the C. elegans brain

Markus Reigl¹, Uri Alon² and Dmitri B Chklovskii*¹

э

(日) (部) (注) (注)

Scale-Free Brain Functional Networks

July 2008 | Volume 6 | Issue 7 | e159

PLOS BIOLOGY

Mapping the Structural Core of Human Cerebral Cortex

Patric Hagmann^{1,2}, Leila Cammoun², Xavier Gigandet², Reto Meuli¹, Christopher J. Honey³, Van J. Wedeen⁴, Olaf Sporns^{3*}

Summary

- The production of proteins in cells is regulated using a complex regulation network
- Network motifs: simple building blocks of complex networks
- An algorithm to identify network motifs
- Example: the transcription network of E. coli.
- The feed forward loop as a sign sensitive filter
- The single input module: exact temporal ordering of protein expression

《曰》 《國》 《臣》 《臣》 三臣 --

Biological Network Alignment Slides from Johannes Berg, University of Cologne

イロン イロン イヨン イヨン 三日

10/14

Graph Alignment and Biological Networks

Johannes Berg

http://www.uni-koeln.de/~berg

Institute for Theoretical Physics University of Cologne Germany

New large-scale experimental data in the form of networks:

- f transcription networks
- protein interaction networks
- co-regulation networks
- signal transduction networks, metabolic networks, etc.

New large-scale experimental data in the form of networks:

I transcription networks

- ranscription factors bind to regulatory DNA
- Polymerase molecule begins transcription of the gene

- p.2/12

臣

New large-scale experimental data in the form of networks:

I transcription networks

- ranscription factors bind to regulatory DNA
- Polymerase molecule begins transcription of the gene

< □ > < 個 > < 臣 > < 臣 >

臣

New large-scale experimental data in the form of networks:

I transcription networks

- Itranscription factors bind to regulatory DNA
- Polymerase molecule begins transcription of the gene

New large-scale experimental data in the form of networks:

Protein interaction networks

- Proteins interact to form larger units
- F protein aggregates may catalyze reactions etc.

New large-scale experimental data in the form of networks:

Protein interaction networks

- Proteins interact to form larger units
- rotein aggregates may catalyze reactions etc.

protein interactions in yeast Uetz *et al.* (2000)

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

- I more than 100 organisms are fully sequenced
- / genome sizes range from 3×10^7 to 7×10^{11} basepairs

- I more than 100 organisms are fully sequenced
- **/** genome sizes range from 3×10^7 to 7×10^{11} basepairs

Global alignment: search for related sequences across species

- volutionary relationships
- I hints at common functionality

	10		:0	30	40	50	60	70
SEQ1	VHWTAEEKQL	ITGLWGKVB	VAECGAE	LARLLIVYP	TORFFASTGR	LSSPTAILGN	PMVRAHGKK	VLTSFGDAV
SEQ2	VHLTADEKAA	VSGLWGKVN	I I I.I	LGRLLVVYP	VIQREPTSPGI	LSNAAAVMGB	I.IIIII SKVRAHGKK	VLNSFGEGL
	10	2	:0	30	40	50	60	70
	80	90	100	110	120	130	140	
SEQ1	KNLDNIKNTF	SQLSELHCO	KLSVDPEN	FRLLGDILI	IVLAAHFSKDE	TPECQAAWQB	LVRVVAHAL	ARKYH
SEQ2	KNVDNLKGTF	ASLSELHCO	KLHVDPE	SFRLLGNVLV	LILL LL.I.I	TPOVOGAPOR	I. II II LALGVATAL	AHKYH
	80	90	100	110	120	130	140	

(日) (四) (日) (日) (日)

臣

- I more than 100 organisms are fully sequenced
- / genome sizes range from 3×10^7 to 7×10^{11} basepairs

Motif search: search for short repeated subsequences

I binding sites in transcription control

I more than 100 organisms are fully sequenced

/ genome sizes range from 3×10^7 to 7×10^{11} basepairs

Tools

I statistical models are used infer non-random correlations against a background

- I build score function from statistical models
- I design efficient algorithms to maximize score
- valuate statistical significance of a given score

I more than 100 organisms are fully sequenced

/ genome sizes range from 3×10^7 to 7×10^{11} basepairs

Tools

- I statistical models are used infer non-random correlations against a background
- I build score function from statistical models
- I design efficient algorithms to maximize score
- valuate statistical significance of a given score

organism	number of genes
worm C. elegans	19 000
fruit fly drosophila	17 000
human homo sapiens	\lesssim 25 000

Graph alignment

What can be learned from network data? Can we distinguish functional patterns from a random background?

- 1. Search for network motifs [Alon lab]
 - repeatedly within a given network
- 2. Alignment of networks across species
 - identify conserved regions
 - pinpoint functional innovations

Graph alignment

What can be learned from network data? Can we distinguish functional patterns from a random background?

◆□> <@> < E> < E> < E</p>

- 1. Search for network motifs [Alon lab]
 - Patterns occurring repeatedly within a given network
- 2. Alignment of networks across species
 - identify conserved regions
 - pinpoint functional innovations

Tools

- scoring function based on statistical models
- I heuristic algorithms: algorithmic complexity

- / patterns occurring repeatedly in the network
- I building blocks of information processing [Alon lab]

- patterns occurring repeatedly in the network
- I building blocks of information processing [Alon lab]
- r counting of identical patterns: Subgraph census
- I alignment of topologically similar regions of a network
- I allow for mismatches
- construct a scoring function comparing the aligned subgraphs to a background model

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

- patterns occurring repeatedly in the network
- I building blocks of information processing [Alon lab]
- r counting of identical patterns: Subgraph census
- I alignment of topologically similar regions of a network
- I allow for mismatches
- construct a scoring function comparing the aligned subgraphs to a background model

- patterns occurring repeatedly in the network
- I building blocks of information processing [Alon lab]
- r counting of identical patterns: Subgraph census
- I alignment of topologically similar regions of a network
- I allow for mismatches
- construct a scoring function comparing the aligned subgraphs to a background model

Statistical properties of alignments

Statistical properties of alignments

$$\mathbf{V}$$
 consensus motif $\overline{\mathbf{c}} = rac{1}{p} \sum_{lpha=1}^{p} \mathbf{c}^{lpha}$

- I number of internal links
- I average correlation between two subgraphs fuzziness of motif

– p.6/12

æ

<ロ> (四) (四) (三) (三)

null model:

I ensemble of uncorrelated networks with the same connectivities as the data

+□ → <□ → < ≥ → < ≥ → < ≥ → < ≥ → < >,

null model:

- I ensemble of uncorrelated networks with the same connectivities as the data
- model describing network motifs
 - rensemble with enhanced number of links
 - I enhanced correlation of subgraphs divergent vs convergent evolution?

< □ > < 個 > < 回 > < 至 > < 至 > □ 至 □

null model:

I ensemble of uncorrelated networks with the same connectivities as the data

model describing network motifs

- rensemble with enhanced number of links
- I enhanced correlation of subgraphs divergent vs convergent evolution?

Log likelihood score

$$S(\mathbf{c}^{1},\ldots,\mathbf{c}^{p}) = \log\left(\frac{Q(\mathbf{c}^{1},\ldots,\mathbf{c}^{p})}{\prod_{\alpha=1}^{p}P_{\sigma}(\mathbf{c}^{\alpha})}\right)$$
$$= (\sigma - \sigma_{0})\sum_{\alpha=1}^{p}L(\mathbf{c}^{\alpha}) - \frac{\mu}{2p}\sum_{\alpha,\beta=1}^{p}M(\mathbf{c}^{\alpha},\mathbf{c}^{\beta}) - \log Z$$

< □ > < 個 > < 回 > < 至 > < 至 > □ 至 □

null model:

I ensemble of uncorrelated networks with the same connectivities as the data

model describing network motifs

- rensemble with enhanced number of links
- I enhanced correlation of subgraphs divergent vs convergent evolution?

Log likelihood score

$$S(\mathbf{c}^{1},\ldots,\mathbf{c}^{p}) = \log\left(\frac{Q(\mathbf{c}^{1},\ldots,\mathbf{c}^{p})}{\prod_{\alpha=1}^{p}P_{\sigma}(\mathbf{c}^{\alpha})}\right)$$
$$= (\sigma - \sigma_{0})\sum_{\alpha=1}^{p}L(\mathbf{c}^{\alpha}) - \frac{\mu}{2p}\sum_{\alpha,\beta=1}^{p}M(\mathbf{c}^{\alpha},\mathbf{c}^{\beta}) - \log Z$$

Algorithm: Mapping onto a model from statistical mechanics (Potts model)

(日) (월) (문) (문) (문)

Consensus motif of the E. coli transcription network

 $\mu = \mu^* = 2.25$

 $\mu = 5$

 $\mu = 12$

Consensus motif of the E. coli transcription network

 $\mu=\mu^*=2.25$

 $\mu = 5$

 $\mu = 12$

◆□ → < □ → < ≥ → < ≥ → ≥ </p>

Alignment: Pairwise association of nodes across species

<ロ> (四)、(四)、(三)、(三)、

Last common ancestor

Evolutionary dynamics: Link attachment and deletion

<ロ> (四)、(四)、(三)、(三)、

Evolutionary dynamics: Link attachment and deletion

<ロ> (四)、(四)、(三)、(三)、

Representation of the alignment in a single network. Conserved links are shown in green.

◆□▶ ◆舂▶ ◆産≯ ◆産≯

Scoring graph alignments across species

null model P:

I ensemble of uncorrelated networks with the same connectivities as the data

Q-model

- **Correlated networks** (due to functional constraints or common ancestry)
- **V** statistical assessment of orthologs: interplay between sequence similarity and network topology

Scoring alignments

/ log-likelihood score $S = \log(Q/P)$ is used to search for conserved parts of the networks

Application to Co-Expression networks

alignment of H. sapiens and M. musculus

<ロ> (日) (日) (日) (日) (日)

Application to Co-Expression networks

alignment of H. sapiens and M. musculus

(日) (部) (注) (注)

Genomic systems biology and network analysis

New concept and tools are needed to fully utilize high-throughput data

- I functional design versus noise: statistical analysis
- volutionary conservation indicates function

Topological conservation versus sequence conservation

- I genes may change functional role in network with small corresponding change in sequence
- If the role of a gene in one species may be taken on by an entirely unrelated gene in another species

References:

- J. Berg and M. Lässig, "Local graph alignment and motif search in biological networks", *Proc. Natl. Acad. Sci. USA*, **101** (41) 14689-14694 (2004)
- J. Berg, M. Lässig, and A. Wagner, "Structure and Evolution of Protein Interaction Networks: A Statistical Model for Link Dynamics and Gene Duplications", *BMC Evolutionary Biology* **4**:51 (2004)
- J. Berg, S. Willmann und M. Lässig, "Adaptive evolution of transcription factor binding sites", *BMC Evolutionary Biology* 4(1):42 (2004)
- ✓ J. Berg and M. Lässig, "Correlated random networks", Phys. Rev. Lett. 89(22), 228701 (2002)

- p.12/12

Detecting Signaling Pathways using Color-coding Slides from Hüffner et al., Friedrich-Schiller-Universität Jena

イロト 不得下 イヨト イヨト 二日

11/14
Signaling	Pathways
000000	

C<mark>olor-Coding</mark> 2000 Algorithm Engineering

イロト イポト イヨト イヨト

590

Algorithm Engineering for Color-Coding to Facilitate Signaling Pathway Detection

Falk Hüffner Sebastian Wernicke Thomas Zichner

Friedrich-Schiller-Universität Jena

Fifth Asia Pacific Bioinformatics Conference January 17, 2007

Signaling	Pathways
000000	

Color-Coding

Algorithm Engineering

Experiments

・ 同 ト ・ ヨ ト ・ ヨ ト …

Outline

Signaling Pathways

- Protein Interaction Networks
- Signaling Pathways
- Graph Model

2 Color-Coding

- 3 Algorithm Engineering
 - Worst-case Speedup
 - Lower Bounds

4 Experiments

- Protein Interaction Networks
- Simulations

Signaling	Pathways
00000	

Color-Coding

Algorithm Engineering

Protein Interaction Networks

-3/22

Color-Coding

Algorithm Engineering

ヘロト 人間 とくほ とくほ とう

Experiments

4/22

Protein Interaction Networks

Representation of protein interactions as a graph:

- Proteins are nodes
- Interactions are edges
- Edges are annotated with interaction probability (obtained by two-hybrid screening)

Algorithm Engineering

Signaling Pathways

-5/22

Algorithm Engineering

Signaling Pathways

-5/22

Color-Coding

Algorithm Engineering

Experiments

Signaling Pathways

Sequence of distinct proteins, where each interacts strongly with the previous one.

Most Probable Path

Input: Graph G = (V, E), interaction probabilities $p : E \to [0, 1]$, integer k > 0. Task: Find a non-overlapping path v_1, \ldots, v_k of length k in G that maximizes $p(v_1, v_2) \cdot \ldots \cdot p(v_{k-1}, v_k)$.

Color-Coding

Algorithm Engineering

Experiments

Signaling Pathways

Sequence of distinct proteins, where each interacts strongly with the previous one.

Most Probable Path

Input: Graph G = (V, E), interaction probabilities $p : E \to [0, 1]$, integer k > 0.

Task: Find a non-overlapping path v_1, \ldots, v_k of length k in G that maximizes $p(v_1, v_2) \cdot \ldots \cdot p(v_{k-1}, v_k)$.

Setting $w(e) := -\log(p(e))$:

MINIMUM-WEIGHT PATH

Input: Graph G = (V, E), weights $w : E \to [0, 1]$, integer k > 0. Task: Find a non-overlapping path v_1, \ldots, v_k of length k in G that minimizes $w(v_1, v_2) + \cdots + w(v_{k-1}, v_k)$.

∽ ۹ (~ <mark>√6/22</mark>>

3

イロト イポト イヨト イヨト

Signaling	Pathways
000000	

Yeast Network

Color-Coding

Algorithm Engineering

4 400 proteins, 14 300 interactions, looking for paths of length 5-15

F. Hüffner et al. (Uni Jena) Algorithm Engineering for Color-Coding to Facilitate Signaling Pathway Detection 590 7/22

-

Color-Coding

Algorithm Engineering

(日) (周) (王) (王)

Experiments 00000

\$/22

Minimum-Weight Path

Theorem

MINIMUM-WEIGHT PATH is NP-hard [Garey&Johnson 1979].

For an exact algorithm, we have to accept exponential runtime.

Idea

Exploit the fact that the paths sought for are rather short (\approx 5–15): restrict the exponential part of the runtime to k (parameterized complexity).

イロト イポト イヨト イヨト

·9/22

Color-Coding

Color-coding [Alon, Yuster&Zwick J. ACM 1995]:

- randomly color each vertex of the graph with one of k colors
- hope that all vertices in the subgraph searched for obtain different colors (colorful)
- solve the MINIMUM-WEIGHT PATH under this assumption (which is much quicker)
- repeat until it is reasonably certain that the path was colorful at least once

Result: exponential part of the runtime depends only on k

Signaling Pathways	Color-Coding	Algorithm Engineering	Experiments
	○●○○	00000	00000
Dynamic P	rogramming for	Minimum-Weight Cold	orful Path

Idea

Table entry W[v, C] stores the minimum-weight path that ends in v and uses exactly the colors in S.

・ 同 ト ・ ヨ ト ・ ヨ ト

Signaling PathwaysColor-Coding0000000000		Algorithm Engineering 00000	Experiments 00000
Dynamic	Programming for	Minimum-Weight Cold	orful Path

Idea

Table entry W[v, C] stores the minimum-weight path that ends in v and uses exactly the colors in S.

 $W[B, \{ \bigcirc, \bigcirc, \bigcirc \}] = 4$

A B F A B F

-

Signaling PathwaysColor-Coding0000000000		Algorithm Engineering	Experiments 00000
Dynamic	Programming for	Minimum-Weight (Colorful Path

Coloring
$$c: V \to \{1, \ldots, k\}$$

Recurrence

 $W[v, C] = \min_{u \in N(v) | c(u) \in C \setminus \{c(v)\}} (W[u, C \setminus \{c(v)\}] + w(u, v))$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 - のへで

Signaling Pathways Color-Coding		Algorithm Engineering	Experiments 00000
Dynamic	Programming for	Minimum-Weight (Colorful Path

Coloring
$$c: V \to \{1, \ldots, k\}$$

Recurrence

$$W[v, C] = \min_{u \in N(v) | c(u) \in C \setminus \{c(v)\}} (W[u, C \setminus \{c(v)\}] + w(u, v))$$

- Each table entry can be calculated in O(n) time
- n2^k table entries

$$\rightsquigarrow$$
 Runtime: $O(n \cdot n2^k) = n^2 \cdot 2^k$

イロト イポト イヨト イヨト

3

Signaling	Pathways
000000	

Color-Coding

Algorithm Engineering

イロト イポト イヨト イヨト

Experiments

Color-coding Runtime

- $O(n^2 \cdot 2^k)$ time per trial
- To obtain error probability ε , one needs $O(|\ln \varepsilon| \cdot e^k)$ trials

Theorem ([ALON et al. JACM 1995])

MINIMUM-WEIGHT PATH can be solved in $O(|\ln \varepsilon| \cdot 5.44^k |G|)$ time).

Signaling	Pathways
000000	

Color-Coding

Algorithm Engineering

イロト 不得 トイヨト イヨト 二日

Experiments

Color-coding Runtime

- $O(n^2 \cdot 2^k)$ time per trial
- To obtain error probability ε , one needs $O(|\ln \varepsilon| \cdot e^k)$ trials

Theorem ([ALON et al. JACM 1995])

MINIMUM-WEIGHT PATH can be solved in $O(|\ln \varepsilon| \cdot 5.44^k |G|)$ time).

Color-coding can find minimum-weight paths of length 10 in the yeast protein interaction networks within 3 hours $(n = 4\,400, k = 10)$ [Scott et al., RECOMB'05]

Color-Coding

Algorithm Engineering

(日) (周) (王) (王)

3

Experiments

Increasing the Number of Colors

Idea

Use k + x colors instead of k colors.

Trial runtime:

$$O(2^k|G|) o O(2^{k+x}|G|)$$

Color-Coding

Algorithm Engineering

イロト イポト イヨト イヨト

3

13/22

Experiments

Increasing the Number of Colors

Idea

Use k + x colors instead of k colors.

Trial runtime:

$$O(2^k|G|) \rightarrow O(2^{k+x}|G|)$$

Probability P_c for colorful path (k = 8, $\varepsilon = 0.001$):

x	0	1	2	3	4	5
P _c	0.0024	0.0084	0.0181	0.0310	0.0464	0.0636
trials	2871	816	378	220	146	106

Color-Coding

Algorithm Engineering

Experiments

Increasing the Number of Colors

Idea

Use k + x colors instead of k colors.

Trial runtime:

$$O(2^k|G|) o O(2^{k+x}|G|)$$

Probability P_c for colorful path (k = 8, $\varepsilon = 0.001$):

x	0	1	2	3	4	5
P _c	0.0024	0.0084	0.0181	0.0310	0.0464	0.0636
trials	2871	816	378	220	146	106

Theorem

MINIMUM-WEIGHT PATH can be solved in $O(|\ln \varepsilon| \cdot 4.32^k |G|)$ time by choosing x = 0.3k.

13/22

- 4 伊ト 4 ヨト 4 ヨト

Color-Coding

Algorithm Engineering

(4 間) トイヨト イヨト

Experiments

Increasing the Number of Colors

Idea

Use k + x colors instead of k colors.

Trial runtime:

$$O(2^k|G|) o O(2^{k+x}|G|)$$

Probability P_c for colorful path (k = 8, $\varepsilon = 0.001$):

x	0	1	2	3	4	5
P _c	0.0024	0.0084	0.0181	0.0310	0.0464	0.0636
trials	2871	816	378	220	146	106

Theorem

MINIMUM-WEIGHT PATH can be solved in $O(|\ln \varepsilon| \cdot 4.32^k |G|)$ time by choosing x = 0.3k.

But: Higher memory usage

F. Hüffner et al. (Uni Jena) Algorithm Engineering for Color-Coding to Facilitate Signaling Pathway Detection 13/22

Color-Coding

Algorithm Engineering

Experiments

Increasing the Number of Colors

Runtimes for the yeast protein interaction network (highlighted point of each curve marks worst-case optimum)

14/22

ignaling	Pathways	
00000		

Color-Coding

Algorithm Engineering

(日) (周) (王) (王)

-

Experiments

Exploiting Lower Bounds

Idea

Use a known solution to prune "hopeless" table entries.

• Discard entries that already have a weight higher than the known solution.

Color-Coding

Algorithm Engineering

イロト イポト イヨト イヨト

Experiments

Exploiting Lower Bounds

Idea

Use a known solution to prune "hopeless" table entries.

- Discard entries that already have a weight higher than the known solution.
- Discard entries when

weight + (minimum edge weight · edges left)

is higher than the weight of the known solution.

Color-Codin

Algorithm Engineering

- 4 得下 4 戸下 4 戸下

Experiments

Precalculated Lower Bounds

For each vertex u and a range of lengths $1 \le i \le d$, determine the minimum weight of a path of i edges that starts at u.

Color-Codin

Algorithm Engineering

< 17 ▶

3 1 4 3

Experiments 00000

Lower Bounds Experiments

17/22

-

Signaling Pathways	Color-Coding 0000	Algorithm Engineering	Experiments •0000
Yeast Network			

18/22

-

Signaling Pathways 000000	Color-Coding	Algorithm Engineering	Experiments 00000
Network Comparis	son		

	V	E	clust. coeff.	avg. degree	max. degree
	4 389	14 319	0.067	6.5	237
- A	7 009	20 440	0.030	5.8	175

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Color-Codin

Algorithm Engineering

Experiments

Network Comparison

19/22

F. Hüffner et al. (Uni Jena)

Algorithm Engineering for Color-Coding to Facilitate Signaling Patheray Detection

	Debustance of A	l ma vitla na	
ignaling Pathways	Color-Coding 0000	Algorithm Engineering	Experiments

Simulations: Robustness of Algorithm

F. Hüffner et al. (Uni Jena) Algorithm Engineering for Color-Coding to Facilitate Signaling Pathway Detection

Color-Coding

Algorithm Engineering

(日) (周) (王) (王)

3

Experiments

Conclusion & Outlook

Color-coding, with some algorithm engineering, is a practical and reliable method for finding signaling pathways in protein interaction networks.

Color-Codin

Algorithm Engineering

イロト イポト イヨト イヨト

Experiments

Conclusion & Outlook

Color-coding, with some algorithm engineering, is a practical and reliable method for finding signaling pathways in protein interaction networks.

Future work:

- Pathway queries
- Richer motifs (cycles, trees, ...)
- Derandomization

Today's Biz

- 1. Reminders
- 2. Review
- 3. Biological Network Analysis Topics
- 4. Hybrid processing direction optimizing push/pull
- 5. Assignment 2 solutions

Direction-optimizing BFS

Slides from Yasui et al., Chuo University & JST CREST and Intel

・ロト ・回ト ・ヨト ・ヨト

э

13/14

Outline

1. Background

2. Breadth-first Search (BFS)

- 3. NUMA architecture
- 4. Proposal : NUMA-optimized parallel BFS

(日) (문) (문) (문) (문)

5. Numerical Results

Breadth-first Search (BFS)

- Obtains level of each vertices from source vertex
- Level = certain # of hops away from the source

Hybrid BFS for low-diameter graph

- Efficient for Low-diameter graph [Beamer2011, 2012]
 - scale-free and/or small-world property such as social network.
- At higher ranks in Graph500 benchmark
- Hybrid algorithm
 - combines top-down algorithm and bottom-up algorithm
 - reduces unnecessary edge traversal

Top-down algorithm

- Explores outgoing edges of frontier queue Q^F
- Appends unvisited vertices into neighbor queue Q^N

< □ > < (四 > < (回 >) < (u >

Top-down algorithm

- Explores outgoing edges of frontier queue Q^F
- Appends unvisited vertices into neighbor queue Q^N

(ロ) (四) (三) (三) (三)

- E

Top-down algorithm

- Explores outgoing edges of frontier queue Q^F
- Appends unvisited vertices into neighbor queue Q^N

- Efficient for a small frontier
- Has an unnecessary edge traversal for a large frontier

Bottom-up algorithm

• Explores frontier queue Q^F from unvisited vertices

(日) (四) (三) (三)

훈

Appends adjacent vertices into neighbors Q^N

Bottom-up algorithm

- Explores frontier queue Q^F from unvisited vertices
- Appends adjacent vertices into neighbors Q^N

Bottom-up algorithm

- Explores frontier queue Q^F from unvisited vertices
- Appends adjacent vertices into neighbors Q^N

- Efficient for a large frontier
- · Has unnecessary edge traversal for a small frontier

Hybrid BFS combines Top-down and Bottom-up

Today's Biz

- 1. Reminders
- 2. Review
- 3. Biological Network Analysis Topics
- 4. Hybrid processing direction optimizing push/pull
- 5. Assignment 2 solutions