Random Graphs

Lecture 10

CSCI 4974/6971

3 Oct 2016

Today's Biz

1. Reminders
2. Review
3. Random Networks
4. Random network generation and comparisons

Today's Biz

1. Reminders
2. Review
3. Random Networks
4. Random network generation and comparisons

Reminders

- Project Presentation 1: in class 6 October
- Email me your slides (pdf only please) before class
- 5-10 minute presentation
- Introduce topic, give background, current progress, expected results
- No class 10/11 October
- Assignment 3: Thursday 13 Oct 16:00
- Office hours: Tuesday \& Wednesday 14:00-16:00 Lally 317
- No office hours 11-12 Oct, available via email
- Or email me for other availability

Today's Biz

1. Reminders
2. Review
3. Random Networks
4. Random network generation and comparisons

Quick Review

- Network motifs
- Small recurring patterns (subgraphs) that may serve important function
- Functional context is network-dependent
- Motif: occurs more frequently than expected vs. random networks
- Anti-motif: less frequent, possible anomaly
- Graph alignment
- Identify regions of high similarity between networks
- "Approximate subgraph isomorphism" - allow edge/node deletions/additions
- Weighted path finding
- Detecting signaling pathways - interaction pathways of high probability

Today's Biz

1. Reminders
2. Review
3. Random Networks
4. Random network generation and comparisons

Random Networks

Slides from Maarten van Steen, VU Amsterdam

Introduction

Observation

Many real-world networks can be modeled as a random graph in which an edge $\langle u, v\rangle$ appears with probability p.

Spatial systems: Railway networks, airline networks, computer networks, have the property that the closer x and y are, the higher the probability that they are linked.
Food webs: Who eats whom? Turns out that techniques from random networks are useful for getting insight in their structure.
Collaboration networks: Who cites whom? Again, techniques from random networks allows us to understand what is going on.

Erdös-Rényi graphs

Erdös-Rényi model

An undirected graph $E R(n, p)$ with n vertices. Edge $\langle u, v\rangle(u \neq v)$ exists with probability p.

Note
There is also an alternative definition, which we'll skip.

ER-graphs

Notation

$\mathbb{P}[\delta(u)=k]$ is probability that degree of u is equal to k.

- There are maximally $n-1$ other vertices that can be adjacent to u.
- We can choose k other vertices, out of $n-1$, to join with u $\Rightarrow\binom{n-1}{k}=\frac{(n-1)!}{(n-1-k)!\cdot k!}$ possibilities.
- Probability of having exactly one specific set of k neighbors is:

$$
p^{k}(1-p)^{n-1-k}
$$

Conclusion

$$
\mathbb{P}[\delta(u)=k]=\binom{n-1}{k} p^{k}(1-p)^{n-1-k}
$$

ER-graphs: average vertex degree (the simple way)

Observations

- We know that $\sum_{v \in V(G)} \delta(v)=2 \cdot|E(G)|$
- We also know that between each two vertices, there exists an edge with probability p.
- There are at most $\binom{n}{2}$ edges
- Conclusion: we can expect a total of $p \cdot\binom{n}{2}$ edges.

Conclusion

$$
\bar{\delta}(v)=\frac{1}{n} \sum \delta(v)=\frac{1}{n} \cdot 2 \cdot p\binom{n}{2}=\frac{2 \cdot p \cdot n \cdot(n-1)}{n \cdot 2}=p \cdot(n-1)
$$

Even simpler

Each vertex can have maximally $n-1$ incident edges \Rightarrow we can expect it to have $p(n-1)$ edges.

ER-graphs: average vertex degree (the hard way)

Observation

All vertices have the same probability of having degree k, meaning that we can treat the degree distribution as a stochastic variable δ. We now know that δ follows a binomial distribution.

Recall

Computing the average (or expected value) of a stochastic variable x, is computing:

$$
\bar{x} \stackrel{\text { def }}{=} \mathbb{E}[x] \stackrel{\text { def }}{=} \sum_{k} k \cdot \mathbb{P}[x=k]
$$

ER-graphs: average vertex degree (the hard way)

$$
\begin{aligned}
\sum_{k=1}^{n-1} k \cdot \mathbb{P}[\delta=k] & =\sum_{k=1}^{n-1}\binom{n-1}{k} k p^{k}(1-p)^{n-1-k} \\
& =\sum_{k=1}^{n-1}\binom{n-1}{k} k p^{k}(1-p)^{n-1-k} \\
& =\sum_{k=1}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} k p^{k}(1-p)^{n-1-k} \\
& =\sum_{k=1}^{n-1} \frac{(n-1)(n-2)!}{k(k-1)!(n-1-k)!} k p \cdot p^{k-1}(1-p)^{n-1-k} \\
& =\sum_{k=1}^{n-1} \frac{(n-1)(n-2)!}{k(k-1)!(n-1-k)!} k p \cdot p^{k-1}(1-p)^{n-1-k} \\
& =p(n-1) \sum_{k=1}^{n-1} \frac{(n-2)!}{(k-1)!(n-1-k)!} p^{k-1}(1-p)^{n-1-k}
\end{aligned}
$$

ER-graphs: average vertex degree (the hard way)

$$
\sum_{k=1}^{n-1} k \cdot \mathbb{P}[\delta=k]=p(n-1) \sum_{k=1}^{n-1} \frac{(n-2)!}{(k-1)!(n-1-k)!} p^{k-1}(1-p)^{n-1-k}
$$

$$
\{\text { Take } I \equiv k-1\}=p(n-1) \sum_{\substack{l=0 \\ n-2}}^{n-2} \frac{(n-2)!}{!(n-1-(l+1))!} p^{\prime}(1-p)^{n-1-(l+1)}
$$

$$
=p(n-1) \sum_{l=0}^{n-2} \frac{(n-2)!}{I!(n-2-l)!} p^{\prime}(1-p)^{n-2-1}
$$

$$
=p(n-1) \sum_{l=0}^{n-2}\binom{n-2}{l} p^{\prime}(1-p)^{n-2-l}
$$

$\{$ Take $m \equiv n-2\}=p(n-1) \sum_{l=0}^{m}\binom{m}{l} p^{\prime}(1-p)^{m-1}$

$$
=p(n-1) \cdot 1
$$

Examples of ER-graphs

Important

$E R(n, p)$ represents a group of Erdös-Rényi graphs: most $E R(n, p)$ graphs are not isomorphic!

Examples of ER-graphs

Some observations

- $G \in E R(100,0.3) \Rightarrow$
- $\bar{\delta}=0.3 \times 99=29.7$
- Expected $|E(G)|=$

$$
\frac{1}{2} \cdot \sum \delta(v)=n p(n-1) / 2=\frac{1}{2} \times 100 \times 0.3 \times 99=1485
$$

- In our example: 490 edges.
- $G^{*} \in E R(2000,0.015) \Rightarrow$
- $\bar{\delta}=0.015 \times 1999=29.985$
- Expected $|E(G)|=$

$$
\frac{1}{2} \sum \delta(v)=n p(n-1) / 2=\frac{1}{2} \times 2000 \times 0.015 \times 1999=29,985
$$

- In our example: 29,708 edges.
- The larger the graph, the more probable its degree distribution will follow the expected one (Note: not easy to show!)

ER-graphs: average path length

Observation

For any large $H \in E R(n, p)$ it can be shown that the average path length $\bar{d}(H)$ is equal to:

$$
\bar{d}(H)=\frac{\ln (n)-\gamma}{\ln (p n)}+0.5
$$

with γ the Euler constant (≈ 0.5772).

Observation

With $\bar{\delta}=p(n-1)$, we have

$$
\bar{d}(H) \approx \frac{\ln (n)-\gamma}{\ln (\bar{\delta})}+0.5
$$

ER-graphs: average path length

Example: Keep average vertex degree fixed, but change size of graphs:

ER-graphs: average path length

Example: Keep size fixed, but change average vertex degree:

ER-graphs: clustering coefficient

Reasoning

- Clustering coefficient: fraction of edges between neighbors and maximum possible edges.
- Expected number of edges between k neighbors: $\binom{k}{2} p$
- Maximum number of edges between k neighbors: $\binom{k}{2}$
- Expected clustering coefficient for every vertex: p

ER-graphs: connectivity

Giant component

Observation: When increasing p, most vertices are contained in the same component.

ER-graphs: connectivity

Robustness

Experiment: How many vertices do we need to remove to partition an ER-graph? Let $G \in E R(2000,0.015)$.

Small worlds: Six degrees of separation

Stanley Milgram

- Pick two people at random
- Try to measure their distance: A knows B knows C...
- Experiment: Let Alice try to get a letter to Zach, whom she does not know.
- Strategy by Alice: choose Bob who she thinks has a better chance of reaching Zach.
- Result: On average 5.5 hops before letter reaches target.

Small-world networks

General observation

Many real-world networks show a small average shortest path length.

Observation

ER-graphs have a small average shortest path length, but not the high clustering coefficient that we observe in real-world networks.

Question

Can we construct more realistic models of real-world networks?

Watts-Strogatz graphs

Algorithm (Watts-Strogatz)

$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let k be even. Choose $n \gg k \gg \ln (n) \gg 1$.
(1) Order the n vertices into a ring
(2) Connect each vertex to its first $k / 2$ right-hand (counterclockwise) neighbors, and to its k/2 left-hand (clockwise) neighbors.
(3) With probability p, replace edge $\langle u, v\rangle$ with an edge $\langle u, w\rangle$ where $w \neq u$ is randomly chosen, but such that $\langle u, w\rangle \notin E(G)$.
(4) Notation: $W S(n, k, p)$ graph

Watts-Strogatz graphs

Note

$n=20 ; k=8 ; \ln (n) \approx 3$. Conditions are not really met.

Watts-Strogatz graphs

Observation

For many vertices in a WS-graph, $d(u, v)$ will be small:

- Each vertex has k nearby neighbors.
- There will be direct links to other "groups" of vertices.
- weak links: the long links in a WS-graph that cross the ring.

WS-graphs: clustering coefficient

Theorem

For any G from $W S(n, k, 0), C C(G)=\frac{3}{4} \frac{k-2}{k-1}$.

Proof

Choose arbitrary $u \in V(G)$. Let $H=G[N(u)]$. Note that $G[\{u\} \cup N(u)]$ is equal to:

WS-graphs: clustering coefficient

Proof (cntd)

- $\delta\left(v_{1}^{-}\right)$: The "farthest" right-hand neighbor of v_{1}^{-}is $v_{k / 2}^{-}$
- Conclusion: v_{1}^{-}has $\frac{k}{2}-1$ right-hand neighbors in H.
- v_{2}^{-}has $\frac{k}{2}-2$ right-hand neighbors in H.
- In general: v_{i}^{-}has $\frac{k}{2}-i$ right-hand neighbors in H.

WS-graphs: clustering coefficient

Proof (cntd)

- v_{i}^{-}is missing only u as left-hand neighbor in $H \Rightarrow v_{i}^{-}$has $\frac{k}{2}-1$ left-hand neighbors.
- $\delta\left(v_{i}^{-}\right)=\left(\frac{k}{2}-1\right)+\left(\frac{k}{2}-i\right)=k-i-1$ [Same for $\left.\delta\left(v_{i}^{+}\right)\right]$

WS-graphs: clustering coefficient

Proof (cntd)

- $|E(H)|=\frac{1}{2} \sum_{v \in V(H)} \delta(v)=$
$\frac{1}{2} \sum_{i=1}^{k / 2}\left(\delta\left(v_{i}^{-}\right)+\delta\left(v_{i}^{+}\right)\right)=\frac{1}{2} \cdot 2 \sum_{i=1}^{k / 2} \delta\left(v_{i}^{-}\right)=\sum_{i=1}^{k / 2}(k-i-1)$
- $\sum_{i=1}^{m} i=\frac{1}{2} m(m+1) \Rightarrow|E(H)|=\frac{3}{8} k(k-2)$
- $|V(H)|=k \Rightarrow$

$$
c c(u)=\frac{|E(H)|}{\binom{k}{2}}=\frac{\frac{3}{8} k(k-2)}{\frac{1}{2} k(k-1)}=\frac{3(k-2)}{4(k-1)}
$$

WS-graphs: average shortest path length

Theorem

$\forall G \in W S(n, k, 0)$ the average shortest-path length $\bar{d}(u)$ from vertex u to any other vertex is approximated by

$$
\bar{d}(u) \approx \frac{(n-1)(n+k-1)}{2 k n}
$$

WS-graphs: average shortest path length

Proof

- Let $L(u, 1)=$ left-hand vertices $\left\{v_{1}^{+}, v_{2}^{+}, \ldots, v_{k / 2}^{+}\right\}$
- Let $L(u, 2)=$ left-hand vertices $\left\{v_{k / 2+1}^{+}, \ldots, v_{k}^{+}\right\}$.
- Let $L(u, m)=$ left-hand vertices $\left\{v_{(m-1) k / 2+1}^{+}, \ldots, v_{m k / 2}^{+}\right\}$.
- Note: $\forall v \in L(u, m): v$ is connected to a vertex from $L(u, m-1)$.

Note

$L(u, m)=$ left-hand neighbors connected to u through a (shortest) path of length m. Define analogously $R(u, m)$.

WS-graphs: average shortest path length

Proof (cntd)

- Index p of the farthest vertex v_{p}^{+}contained in any $L(u, m)$ will be less than approximately $(n-1) / 2$.
- All $L(u, m)$ have equal size $\Rightarrow m \cdot k / 2 \leq(n-1) / 2 \Rightarrow m \leq \frac{(n-1) / 2}{k / 2}$.

$$
\bar{d}(u) \approx 2 \frac{1 \cdot|L(u, 1)|+2 \cdot|L(u, 2)|+\ldots \frac{n-1}{k} \cdot|L(u, m)|}{n}
$$

which leads to

$$
\bar{d}(u) \approx \frac{k}{n} \sum_{i=1}^{(n-1) / k} i=\frac{k}{2 n}\left(\frac{n-1}{k}\right)\left(\frac{n-1}{k}+1\right)=\frac{(n-1)(n+k-1)}{2 k n}
$$

WS-graphs: comparison to real-world networks

Observation

$W S(n, k, 0)$ graphs have long shortest paths, yet high clustering coefficient. However, increasing p shows that average path length drops rapidly.

Scale-free networks

Important observation

In many real-world networks we see very few high-degree nodes, and that the number of high-degree nodes decreases exponentially: Web link structure, Internet topology, collaboration networks, etc.

Characterization

In a scale-free network, $\mathbb{P}[\delta(u)=k] \propto k^{-\alpha}$

Definition

A function f is scale-free iff $f(b x)=C(b) \cdot f(x)$ where $C(b)$ is a constant dependent only on b

Example scale-free network

What's in a name: scale-free

Constructing SF networks

Observation

Where ER and WS graphs can be constructed from a given set of vertices, scale-free networks result from a growth process combined with preferential attachment.

Barabási-Albert networks

Algorithm (Barabási-Albert)

$G_{0} \in E R\left(n_{0}, p\right)$ with $V_{0}=V\left(G_{0}\right)$. At each step $s>0$:
(1) Add a new vertex $v_{s}: V_{s} \leftarrow V_{s-1} \cup\left\{v_{s}\right\}$.
(2) Add $m \leq n_{0}$ edges incident to v_{s} and a vertex u from V_{s-1} (and u not chosen before in current step). Choose u with probability

$$
\mathbb{P}[\text { select } u]=\frac{\delta(u)}{\sum_{w \in V_{s-1}} \delta(w)}
$$

Note: choose u proportional to its current degree.
(3) Stop when n vertices have been added, otherwise repeat the previous two steps.
Result: a Barabási-Albert graph, $B A\left(n, n_{0}, m\right)$.

BA-graphs: degree distribution

Theorem

For any $B A\left(n, n_{0}, m\right)$ graph G and $u \in V(G)$:

$$
\mathbb{P}[\delta(u)=k]=\frac{2 m(m+1)}{k(k+1)(k+2)} \propto \frac{1}{k^{3}}
$$

Generalized BA-graphs

Algorithm

G_{0} has n_{0} vertices V_{0} and no edges. At each step $s>0$:
(1) Add a new vertex v_{s} to V_{s-1}.
(2) Add $m \leq n_{0}$ edges incident to v_{s} and different vertices u from V_{s-1} (u not chosen before during current step). Choose u with probability proportional to its current degree $\delta(u)$.
(3) For some constant $c \geq 0$ add another $c \times m$ edges between vertices from V_{s-1}; probability adding edge between u and w is proportional to the product $\delta(u) \cdot \delta(w)$ (and $\langle u, w\rangle$ does not yet exist).
(4) Stop when n vertices have been added.

Generalized BA-graphs: degree distribution

Theorem

For any generalized $B A\left(n, n_{0}, m\right)$ graph G and $u \in V(G)$:

$$
\mathbb{P}[\delta(u)=k] \propto k^{-\left(2+\frac{1}{1+2 c}\right)}
$$

Observation

- For $c=0$, we have a BA-graph;
- $\lim _{c \rightarrow \infty} \mathbb{P}[\delta(u)=k] \propto \frac{1}{k^{2}}$

BA-graphs: clustering coefficient

BA-graphs after t steps

Consider clustering coefficient of vertex v_{s} after t steps in the construction of a $B A\left(t, n_{0}, m\right)$ graph. Note: v_{s} was added at step $s \leq t$.

$$
c c\left(v_{s}\right)=\frac{m-1}{8(\sqrt{t}+\sqrt{s} / m)^{2}}\left(\ln ^{2}(t)+\frac{4 m}{(m-1)^{2}} \ln ^{2}(s)\right)
$$

BA-graphs: clustering coefficient

Note: Fix m and t and vary s :

Comparing clustering coefficients

Issue: Construct an ER graph with same number of vertices and average vertex degree:

$$
\begin{aligned}
\bar{\delta}(G) & =\mathbb{E}[\delta]=\sum_{k=m}^{\infty} k \cdot \mathbb{P}[\delta(u)=k] \\
& =\sum_{k=m}^{\infty} k \cdot \frac{2 m(m+1)}{k(k+1)(k+2)} \\
& =2 m(m+1) \sum_{k=m}^{\infty} \frac{k}{k(k+1)(k+2)} \\
& =2 m(m+1) \cdot \frac{1}{m+1}=2 m
\end{aligned}
$$

ER-graph: $\bar{\delta}(G)=p(n-1) \Rightarrow$ choose $p=\frac{2 m}{n-1}$

Example

$B A(100,000,0,8)$-graph has $c c(v) \approx 0.0015 ; E R(100,000, p)$-graph has $c c(v) \approx 0.00016$

Comparing clustering coefficients

Further comparison: Ratio of $c c\left(v_{s}\right)$ between
$B A(N \leq 1000000000,0,8)$-graph to an $E R(N, p)$-graph

Average path lengths

Observation

$$
\bar{d}(B A)=\frac{\ln (n)-\ln (m / 2)-1-\gamma}{\ln (\ln (n))+\ln (m / 2)}+1.5
$$

with $\gamma \approx 0.5772$ the Euler constant. For $\bar{\delta}(v)=10$:

Scale-free graphs and robustness

Observation

Scale-free networks have hubs making them vulnerable to targeted attacks.

Barabási-Albert with tunable clustering

Algorithm

Consider a small graph G_{0} with n_{0} vertices V_{0} and no edges. At each step $s>0$:
(1) Add a new vertex v_{s} to V_{s-1}.
(2) Select u from V_{s-1} not adjacent to v_{s}, with probability proportional to $\delta(u)$. Add edge $\left\langle v_{s}, u\right\rangle$.
(a) If $m-1$ edges have been added, continue with Step 3.
(b) With probability q : select a vertex w adjacent to u, but not to v_{s}. If no such vertex exists, continue with Step c. Otherwise, add edge $\left\langle v_{s}, w\right\rangle$ and continue with Step a.
(c) Select vertex u^{\prime} from V_{s-1} not adjacent to v_{s} with probability proportional to $\delta\left(u^{\prime}\right)$. Add edge $\left\langle v_{s}, u^{\prime}\right\rangle$ and set $u \leftarrow u^{\prime}$. Continue with Step a.
(3) If n vertices have been added stop, else go to Step 1.

Barabási-Albert with tunable clustering

Special case: $q=1$

If we add edges $\left\langle v_{s}, w\right\rangle$ with probability 1 , we obtain a previously constructed subgraph.

Recall

$$
c c(x)= \begin{cases}1 & \text { if } x=w_{i} \\ \frac{2}{k+1} & \text { if } x=u, v_{s}\end{cases}
$$

R-MAT
 Slides from Chakrabarti et al., CMU

R-MAT: A Recursive Model for Graph Mining

Deepayan Chakrabarti
Yiping Zhan
Christos Faloutsos

Introduction

Internet Map
[lumeta.com]

Food Web
[Martinez '91]

Protein Interactions [genomebiology.com]

- Graphs are ubiquitous
\square "Patterns" \rightarrow regularities that occur in many graphs
- We want a realistic and efficient graph generator
\square which matches many patterns
\square and would be very useful for simulation studies.

Graph Patterns

Count vs Indegree

Eigenvalue vs Rank

Count vs Outdegree

"Network values" vs Rank

Hop-plot

Count vs Stress

Our Proposed Generator

Initially

Final cell chosen,
"drop" an edge here.

Our Proposed Generator

Shows a "community" effect

Experiments (Epinions directed

Count vs Indegree

Eigenvalue vs Rank

Count vs Outdegree

"Network value"

Hop-plot

Count vs Stress

- R-MAT matches directed graphs

Experiments (Clickstream
 Count vs Indegree
 Singular value vs Rank

 Count vs Outdegree
 Left "Network value"

 Hop-plot
 Right "Network value"

 -R-MAT matches bipartite graphs

Experiments (Epinions

Count vs Indegree

Singular value vs Rank

Hop-plot

- R-MAT matches undirected graphs

Conclusions

The R-MAT graph generator
\checkmark matches the patterns mentioned before
\checkmark along with DGX/lognormal degree distributions \rightarrow can be shown theoretically
\checkmark exhibits a "Community" effect
\checkmark generates undirected, directed, bipartite and weighted graphs with ease
\checkmark requires only 3 parameters (a,b,c),
\checkmark and, is fast and scalable $\rightarrow O(E \log N)$

The "DGX"/lognormal distribution

- Deviations from power-laws have been observed [Pennock+ '02]
- These are well-modeled by the DGX distri- "Drifting" surfers bution [Bi+'01]
- Essentially fits a parabola instead of a line to the log-log plot.

Clickstream data

Our Proposed Generator

- R-MAT (Recursive MATrix) [SIAM DM'04]
- Subdivide the adjacency matrix
- and choose one quadrant with probability (a,b,c,d)
- Recurse till we reach a 1*1 cell
- where we place an edge
- and repeat for all edges.

Today's Biz

1. Reminders
2. Review
3. Random Networks
4. Random network generation and comparisons

Random Networks Blank code and data available on website (Lecture 10)

www.cs.rpi.edu/~slotag/classes/FA16/index.html

