Random Graphs - 2
 Lecture 12

CSCI 4974/6971

13 Oct 2016

Today's Biz

1. Reminders
2. Review
3. Random network generation and comparisons

Reminders

- Assignment 3: Monday 17 Oct 16:00
- Assignment 4: out soon - due Thursday 27 Oct 16:00
- Setting up and running on CCl clusters
- Office hours: Tuesday \& Wednesday 14:00-16:00 Lally 317
- Or email me for other availability
- Tentative class schedule:
- Next Monday: Go over assignment 3 - distributed graph representation
- Next Thursday: Fully distributed graph processing

Today's Biz

1. Reminders
2. Review
3. Random network generation and comparisons

Quick Review

Random graphs

- Several models - uniformly random, small world, scale free, recursive, many more
- Usage:
- Comparison to real networks to explain observed phenomena (e.g. Barabasi-Albert preferential attachment model to explain the structure of the Internet)
- Testing computational graph analytic code (e.g. how will my algorithm scale on a skewed skewed graph? - use R-MAT with high A probability)
- Testing analytics hypothesis (e.g. I observe some re-occurring structure on this network, how more often does it appear relative to a random graph?)
- Generation
- Ideally want $O(m)$, but $O(m) \log n$ would suffice
- Generate edges independently - i.e. fully parallelizable

Quick Review

Erdos-Renyi graphs

- "Uniformly Random" network
- Probability p any two $v, u \in V$ are connected
- As $p \rightarrow 1.0, G$ becomes fully connected
- Conversely - m edges connecting two random v, u -$p=\frac{m}{v(v-1)}$
- Clustering: very low
- Diameter: low
- Degree distribution: binomial around k

Quick Review

Watts-Strogatz

- "Small-world" network
- v connected to immediate k neighbors, probability β any connection gets rewired
- Clustering:
- As $\beta \rightarrow 0.0$, high clustering
- As $\beta \rightarrow 1.0$, approaches Erdos-Renyi
- Diameter:
- As $\beta \rightarrow 0.0$, high diameter, $O(n)$
- As $\beta \rightarrow 1.0$, approaches Erdos-Renyi
- Degree distribution:
- As $\beta \rightarrow 0.0$, Dirac delta on k
- As $\beta \rightarrow 1.0$, binomial on k

Quick Review

Barabasi-Albert

- "Scale-free" network
- Preferential attachment - add new v to network with m_{0} new edges, probability of edge creation to all existing u is proportional to degrees of u
- Clustering - moderate
- Diameter - low
- Degree distribution: power law, $P(k)=k^{-\alpha}$ where $\alpha=3$

Quick Review

Other Random Networks

- R-MAT and Kronecker - Place edge by recursively subdividing adjacency matrix A in four submatrices using probabilities a, b, c, d
- Chung-Lu - generate power law graphs using an expected degree distribution
- BTER - Block Two-Level E-R Graphs - Generate graphs using an expected degree distribution and clustering coefficient

Today's Biz

1. Reminders
2. Review
3. Random network generation and comparisons

Random Networks Blank code and data available on website (Lecture 12)

www.cs.rpi.edu/~slotag/classes/FA16/index.html

