Random Graphs - 2 Lecture 12

CSCI 4974/6971

13 Oct 2016

Today's Biz

1. Reminders

- 2. Review
- 3. Random network generation and comparisons

Reminders

- Assignment 3: Monday 17 Oct 16:00
- Assignment 4: out soon due Thursday 27 Oct 16:00
 - Setting up and running on CCI clusters
- Office hours: Tuesday & Wednesday 14:00-16:00 Lally 317
 - Or email me for other availability
- Tentative class schedule:
 - Next Monday: Go over assignment 3 distributed graph representation
 - Next Thursday: Fully distributed graph processing

Today's Biz

- 1. Reminders
- 2. Review
- 3. Random network generation and comparisons

Random graphs

- Several models uniformly random, small world, scale free, recursive, many more
- Usage:
 - Comparison to real networks to explain observed phenomena (e.g. Barabasi-Albert preferential attachment model to explain the structure of the Internet)
 - Testing computational graph analytic code (e.g. how will my algorithm scale on a skewed skewed graph? - use R-MAT with high A probability)
 - Testing analytics hypothesis (e.g. I observe some re-occurring structure on this network, how more often does it appear relative to a random graph?)
- Generation
 - Ideally want O(m), but $O(m) \log n$ would suffice
 - Generate edges independently i.e. fully parallelizable =

Erdos-Renyi graphs

- "Uniformly Random" network
- Probability p any two $v, u \in V$ are connected
 - As $p \rightarrow 1.0$, G becomes fully connected
 - Conversely *m* edges connecting two random *v*, *u* $p = \frac{m}{v(v-1)}$
- Clustering: very low
- Diameter: low
- Degree distribution: binomial around k

Watts-Strogatz

- "Small-world" network
- v connected to immediate k neighbors, probability β any connection gets rewired
- Clustering:
 - As $\beta \rightarrow$ 0.0, high clustering
 - As $\beta \rightarrow 1.0$, approaches Erdos-Renyi
- Diameter:
 - As $\beta \rightarrow 0.0$, high diameter, O(n)
 - As $\beta \rightarrow$ 1.0, approaches Erdos-Renyi
- Degree distribution:
 - As $\beta \rightarrow$ 0.0, Dirac delta on k
 - As $\beta \rightarrow 1.0$, binomial on k

Barabasi-Albert

- "Scale-free" network
- Preferential attachment add new v to network with m₀ new edges, probability of edge creation to all existing u is proportional to degrees of u
- Clustering moderate
- Diameter low
- Degree distribution: power law, $P(k) = k^{-\alpha}$ where $\alpha = 3$

Other Random Networks

- R-MAT and Kronecker Place edge by recursively subdividing adjacency matrix A in four submatrices using probabilities a, b, c, d
- Chung-Lu generate power law graphs using an expected degree distribution
- BTER Block Two-Level E-R Graphs Generate graphs using an expected degree distribution and clustering coefficient

Today's Biz

- 1. Reminders
- 2. Review

3. Random network generation and comparisons

Random Networks Blank code and data available on website (Lecture 12) www.cs.rpi.edu/~slotag/classes/FA16/index.html