
Graph Compression
Lecture 17

CSCI 4974/6971

31 Oct 2016

1 / 11

Today’s Biz

1. Reminders

2. Review

3. Graph Compression

2 / 11

Reminders

I Project Update Presentation: In class November 3rd

I Assignment 4: due date November 10th
I Setting up and running on CCI clusters

I Assignment 5: due date TBD (before Thanksgiving
break, probably 22nd)

I Assignment 6: due date TBD (early December)

I Office hours: Tuesday & Wednesday 14:00-16:00 Lally
317

I Or email me for other availability

I Tentative: No class November 14 and/or 17

3 / 11

Today’s Biz

1. Reminders

2. Review

3. Graph Compression

4 / 11

Quick Review

Graph Re-ordering:

I Improve cache utilization by re-organizing adjacency list

I Many methods
I Random
I Traversal-based
I Traversal+sort-based

I Optimize for bandwidth reduction? Gap minimization?

I NP-hard for common problems, heuristics for days

5 / 11

Today’s Biz

1. Reminders

2. Review

3. Graph Compression

6 / 11

Graph Compression

I Basic idea: graph is very large, can’t fit in shared (or even
distributed) memory

I Solutions:
I External memory
I Streaming algorithms
I Compress adjacency list

I Why compression: always faster to work on data stored
closer to core (usually even with the additional
computational overheads)

I Similarly - compress to use fewer nodes in distributed
environment

7 / 11

Graph Compression

I (lossless) Compression solutions:
I Delta/gap compression (general) - sort then compress

adjacency list using delta methods
I Webgraph framework (exploit web structure - specialized

form of delta)
I For general graphs? Open Question?

I Lossy compression: clustering, etc. - can still perform
some general computations

8 / 11

The WebGraph Framework: Compression Techniques
Slides from Paolo Boldi and Sebastianao Vigna, DSI, Universit

di Milano, Italy

9 / 11

Introduction
Codings

Algorithmic techniques
Conclusions

The WebGraph Framework:
Compression Techniques

Paolo Boldi Sebastiano Vigna
DSI, Università di Milano, Italy

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

“The” Web graph

◮ Given a set U of URLs, the graph induced by U is the directed
graph having U as set of nodes, and an arc from x to y iff the
page with URL x has a link that points to URL y .

◮ The transposed graph can be obtained by reversing all arcs.

◮ The symmetric graph can be obtained by “forgetting” the arc
orientation.

◮ The Web graph is huge.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

What does it mean. . .

. . . “to store (part of) the Web graph”?

◮ Being able to know the successors of each node (the
successors of x are those nodes y for which an arc x → y
exists);

◮ this must be happen in a reasonable time (e.g., much less
than 1ms/link);

◮ having a simple way to know the node corresponding to a
URL (e.g., minimal perfect hash).

◮ having a simple way to know the URL corresponding to a
node (e.g., front-coded lists).

We shall denote all nodes using natural numers (0, 1, . . . , n − 1,
where n = |U|).

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Why. . .

. . . to store the Web graph?

◮ Many algorithms for ranking and community discovery require
visits of the Web graph;

◮ Web graphs offer real-world examples of graphs with the
small-world property, and as such they can be used to perform
experiments to validate small-world theories.

◮ Web graphs can be used to validate Web graph models (not
surprisingly).

◮ It’s fun.

◮ It provides new, challenging mathematical and algorithmic
problems.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

WebGraph is. . .

◮ Algorithms for compressing and accessing Web graphs.

◮ New instantaneous codes for distributions commonly found
when compressing Web graphs.

◮ Java documented reference implementation (Gnu GPL’d) of
the above (http://webgraph.dsi.unimi.it/).

◮ Freely available large graphs.

◮ Few such collections are publicly available, and, as a matter of
fact, WebGraph was ./’d when it went public.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Previous history

◮ Connectivity Server (Bharat, Broder, Henzinger, Kumar, and
Venkatasubramanian), ≈ 32 bits/link.

◮ LINK database (Randall, Stata, Wickremesinghe, and
Wiener), ≈ 4.5 bits/link.

◮ WebBase (Raghavan and Garcia–Molina), ≈ 5.6 bits/link.

◮ Suel and Yuan, ≈ 14 bits/link.

◮ Theoretical analysis and experimental algorithms (Adler and
Mitzenmacher), ≈ 10 bits/link.

◮ Algorithms for separable graphs (Blandford, Blelloch, Kash),
≈ 5 bits/link.

Currently, WebGraph codes at ≈ 3 bits/link.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Näıf representation

n−1

1 2 3 4 5 6 7 8 9 10 m−1

0 3 8 104 4offset

3 7 2 27 3 4 7 712 14 15succ

0 1 2 3 4 5

........

0

The offset vector tells us from where successors of a given node
start. Implicitly, it contains the outdegree of the node.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

First simple idea

Use a variable-length representation, choosing it so that

◮ it is easy to decode;

◮ minimises the expected length.

And the offsets?

◮ bit displacement vs. byte displacement (with alignment)

◮ we must express explicitly the outdegree.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Variable-length representation

0 1 2 3 4 5 6 7

1 1 1 1 1 1 10 0 0

3 73 12 14

0 20offset

0 1 2 3

........

n−1

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32 33 35 36 37 38 39 40

succ 0 1 0 0 1 0 0 1 0 0 0 11 1 0 0 0 1

1

0 0 1
25

00

4

28 28

Variable-length representations are a basic technique in full-text
indexing.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Instantaneous codes

◮ An instantaneous code for S is a mapping c : S → {0, 1}∗
such that for all x , y ∈ S , if c(x) is a prefix of c(y), then
x = y .

◮ Let ℓx be the length in bits of c(x).

◮ A code with lengths ℓx has intended distribution

p(x) = 2−ℓx .

◮ The choice of the code depends, of course, on the data
distribution.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Unary coding

◮ If S = N, we can represent x ∈ S writing x zeroes followed by
a one.

◮ Thus ℓx = x + 1, and the intended distribution is

p(x) = 2−x−1 geometric distribution.

0 1
1 01
2 001
3 0001
4 00001

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

γ coding

The γ coding of x ∈ N+ can be obtained by writing the index of
the most significant bit of x in unary, followed by x (stripped of
the MSB) in binary.
Thus

ℓx = 1 + 2⌊log x⌋ =⇒ p(x) ∝ 1

2x2
(Zipf)

1 1
2 010
3 011
4 00100
5 00101

Degrees have a Zipf distribution with exponent ≈ 2.7: use γ!

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Successors & locality

◮ Since many link are navigational, the URLs they point to
share a large prefix.

◮ Thus, if we order lexicographically URLs, for many arcs x → y
often |x − y | will be small.

◮ So, we represent the successors y1 < y2 < · · · < yk using their
gaps

y1 − x , y2 − y1 − 1, . . . , yk − yk−1 − 1

which are distributed as a Zipf with exponent ≈ 1.2.
◮ Commonly used: variable-length nibble coding, a list of 4-bit

blocks whose MSB specifies whether the list has ended (it is
redundant).

◮ WebGraph uses by default ζk , a new family of non-redundant
codes with intended distribution close to a Zipfian with
exponent < 1.6 (ζ3 is the default choice).

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Similarity

URL that are close in lexicographic order are likely to have similar
successor lists, as they belong to the same site, and probably to
the same level of the site hierarchy. So, we code a list by
referentiation:

◮ an integer r (reference): if r > 0, the list is described as a
difference from the list of x − r : a bit string tells us which
successors must be copied, and which not;

◮ a list of extra nodes, for the remaining nodes.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Referentiation: an example

Node Outdegree Successors
.
15 11 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041
17 0
18 5 13, 15, 16, 17, 50
.

Node Outd. Ref. Copy list Extra nodes
.
15 11 0 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 1 01110011010 22, 316, 317, 3041
17 0
18 5 3 11110000000 50
.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Differential compression

WebGraph pushes much farther this idea: we code use a list of
copy blocks, which specify by inclusion/exclusion the sublists that
must be alternatively copied or discarded.
Node Outdegree Successors
.
15 11 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041
17 0
18 5 13, 15, 16, 17, 50
.

Node Outd. Ref. # blocks Copy blocks Extra nodes
.
15 11 0 13, 15, 16, 17, 18, 19, 23, . . .
16 10 1 7 0, 0, 2, 1, 1, 0, 0 22, 316, . . .
17 0
18 5 3 1 4 50
.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Consecutivity

◮ WebGraph exploits the fact that many links within a page are
consecutive (with respect to the lexicographic order). This is
due to at least two distinct phenomena.

◮ First of all, most pages contain sets of navigational links
which point to a fixed level of the hierarchy.

◮ Second, in the transposed Web graph pages that are high in
the site hierarchy (e.g., the home page) are pointed to by
most pages of the site.

◮ More in general, consecutivity is the dual of distance-one
similarity. If a graph is easily compressible using similarity at
distance one, its transpose must sport large intervals of
consecutive links, and viceversa.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Intervalisation

To exploit consecutivity, WebGraph uses a special representation
for extra nodes.

◮ if there are enough large intervals, they are coded using their
left extreme and their length;

◮ the remaining extra nodes, called residuals, are represented
separately.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Intervalisation: an example

Node Outdegree Successors
.
15 11 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034
16 10 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041
17 0
18 5 13, 15, 16, 17, 50
.

Node Outd. Ref. # bl. Copy bl.s # int. Lft extr. Lth Residuals
. .
15 11 0 2 0, 2 3, 0 5, 189, 111, 718
16 10 1 7 0, 0, . . . 1 600 0 12, 3018
17 0
18 5 3 1 4 0 50
. .

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Choices in the reference scheme

◮ How do you choose the reference node for x?

◮ You consider the successor lists of the last W nodes, but. . .
you do not consider lists which would cause a recursive
reference of more than R chains.

◮ The parameter R is essential for deciding the ratio
compression/speed. W essentially decreases compression time
only.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Implementation

◮ Random access to successor lists is implemented lazily
through a cascade of iterators.

◮ Each series of interval and each reference cause the creation
of an iterator; the same happens for references.

◮ The results of all iterators are then merged.

◮ The advantage of laziness is that we never have to build an
actual list of successors in memory, so the overhead is limited
to the number of actual reads, not to the number of
successors lists that would be necessary to re-create a given
one.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Access speed

◮ Access speed to a compressed graph is commonly measured in
the time required to access a link (≈ 300 ns for WebGraph).

◮ This quantity, however, is strongly dependent on the
architecture (e.g., cache size), and, even more, on low-level
optimisations (e.g., hard-coding of the first codewords of an
instantaneaous code).

◮ To compare speeds reliably, we need public data, that anyone
can access, and a common framework for the low-level
operations.

◮ A first step is http://webgraph-data.dsi.unimi.it/. We
provide freely available data to compare compression
techniques.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Introduction
Codings

Algorithmic techniques
Conclusions

Conclusions

◮ WebGraph combines new codes, new insights on the structure
of the Web graph and new algorithmic techniques to achieve a
very high compression ratio, while still retaining a good access
speed (but it could be better).

◮ Our software is highly tunable: you can experiment with
dozens of codes, algorithmic techniques and compression
parameters, and there is a large unexplored space of
combinations.

◮ A theoretically interesting question is how to combine
optimally differential compression and intervalisation: we do
not know whether is current greedy approach (first copy as
much as you can, then intervalise) is necessarily the best one.

Paolo Boldi, Sebastiano VignaDSI, Università di Milano, Italy The WebGraph Framework:Compression Techniques

Today: graph compression

I Implement basic compressed graph representation

I Examine effects of various ordering schemes

10 / 11

Graph Compression
Blank code and data available on website

(Lecture 17)
www.cs.rpi.edu/∼slotag/classes/FA16/index.html

11 / 11

