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Today's Biz

1. Reminders

2. Review
3. Random Walks
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Reminders

» Assignment 5: due date November 22nd
» Distributed triangle counting

» Assignment 6: due date TBD (early December)
» Tentative: No class November 14 and/or 17
» Final Project Presentation: December 8th

» Project Report: December 11th

» Office hours: Tuesday & Wednesday 14:00-16:00 Lally
317

» Or email me for other availability

10



Today's Biz

1. Reminders
2. Review
3. Random Walks

/10



Quick Review

Graph Sampling:
» Vertex sampling methods
» Uniform random
» Degree-biased
» Centrality-biased (PageRank)
» Edge sampling methods

» Uniform random
» Vertex-edge (select vertex, then random edge)
» Induced edge (select edge, include all edges of attached

vertices)
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Random Walks on Graphs - Classification, Clustering,
and Ranking
Ahmed Hassan, University of Michigan
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Random Walks on Graphs

Why Graphs?
The underlying data is naturally a graph

» Papers linked by citation

* Authors linked by co-authorship

* Bipartite graph of customers and products
» Web-graph

* Friendship networks: who knows whom




What is a Random Walk

» Given a graph and a starting node, we select a neighbor
of it at random, and move to this neighbor




What is a Random Walk

» We select a neighbor of it at random, and move to this
neighbor




What is a Random Walk

» Then we select a neighbor of this node and move to it,
and so on.




What is a Random Walk

*The (random) sequence of nodes selected this way
Is a random walk on the graph




Adjacency Matrix vs. Transition Matrix

« A transition matrix is a stochastic matrix where each
element a; represents the probability of moving from i to
J, with each row summing to 1.

Adjacency Matrix Transition Matrix
0110 0 Y2 12 0
1011 Y3 0 Y3 Y3
0001 0 0 0 1
0010 0 o0 10




Markov chains

*A Markov chain describes a discrete time stochastic process
over a set of states
S=1{s1, Sy - Sp}
according to a transition probability matrix
P= {Pij}
P;; = probability of moving to state j when at state i

» Markov Chains are memoryless: The next state of the chain
depends only at the current state



Random Walks & Markov chains

« Random walks on graphs correspond to Markov
Chains
- The set of states S is the set of nodes of the graph

- The transition probability matrix is the probability that
we follow an edge from one node to another



Random Walks & Markov chains

PL; is the probability that the random walk starting
in node i, will be in node j after 1 step

05 0.25 0.25
p'=/05 05 0
05 0 05
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Random Walks & Markov chains

P2; is the probability that the random walk starting
in node i, will be in node j after 2 steps

05 025 0.25
p’=| 05 0.375 0.125
0.25 0.125 0.375
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Random Walks & Markov chains

P3;; is the probability that the random walk starting
in node i, will be in node j after 2 steps

05 025 025
p*=[05 0.3125 0.1875
0.5 0.1875 0.3125

12



Stationary Distribution

X((1) = probability that the surfer is at node i at time t

* X1 () = 25 Xi) - Py

— — — t
* X1 =X P=X,PP=x%,P

What happens when the surfer keeps walking for a
long time?
— We get a stationary distribution

13



Stationary Distribution

» The stationary distribution at a node is related to the
amount of time a random walker spends Visiting that node

» When the surfer keeps walking for a long time, the
distribution does not change any more: x. (i) = x(i)

* For “well-behaved” graphs this does not depend on
the start distribution

14



» How long does it take to hit node b in a random
walk starting at node a ?

* Hitting time from node i to node |

» Expected number of hops
to hit node j starting at node i.

* Not symmetric
* h(i.j) =1+ 2 cag) P(A.K) h(kj)
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» How long does it take to hit node b in a random
walk starting at node a and come back to a?

« Commute time from node i to node j

» Expected number of hops
to hit node j starting at node i
and come back to i.

« Symmetric
* ¢(i.,j) = h(ij) + h(,i)
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Ranking using Random Walks




Ranking Web Pages

* Problem Defenition:
* Given:
» asearch query, and
» Alarge number of web pages relevant to that query

» Rank web pages based on the hyperlink structure

« Algorithm
» Pagerank (Page et al. 1999)
+ PageRank Citation Ranking: Bringing Order to the Web

* HITS (Kleinberg 1998)
» Authoritative sources in a hyperlinked environment

18



Pagerank (Page et al. 1999)

« Simulate a random surfer on the Web
graph

» The surfer jumps to an arbitrary page
with non-zero probability

- A webpage is important if other ¥ *\‘
important pages point to it 7~ ‘TQ
siy= 3 U ®s ¢ ©

jcad iy deg( J)

* s works out to be the stationary
distribution of the random walk on the
Web graph r



Power lteration

» Power iteration is an algorithm for
computing the stationary distribution

« Start with any distribution x,
* Let Xy, =%P

« Iterate ’
+ Stop when x,,; and x, are almost the same |

20



Pagerank Demo




Ranking Sentences for Extractive

Summarization

* Problem Defenition:
» Given:
» document
» A similarity measure between sentences in the document

* Rank sentences based on the similarity structure

+ Algorithm
» Lexrank (Erkan et al. 2004)
» Graph-based centrality as salience in text summarization.
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Lexrank (Erkan et al. 2004)

» Perform a random walk on a sentence similarity
graph

* Rank sentences according to node probabilities in
the stationary distribution

23



Graph Construction

* They use the bag-of-words model tn N
2 d,
represent each sentence as an n- '
dimensional vector d

- tf-idf representation /

« The similarity between two
sentences is then defined by the
cosine between two corresponding
vectors

24



Cosine Similarity

1 2 3 4 5 6 7 8 9| 10 1
1 ([1:00 |[0.45 ]| 0.02 | 0.17 |0.03 |[0.22 || 0.03 |[0.28 ]| 0.06 | 0.06 |0.00
2 |[0.45 |[[@007] 0.16 |[0.27 | 0.03 |0.19 |0.03 [[0.21 ]| 0.03 | 0.15 | 0.00
3(0.02 |0.16 0.03 |0.00 |0.01 |0.03 |0.04 |0.00 |0.01 |0.00
4017 [027 | 0.03 [T007] 0.01 |0.16 0.17 | 0.00 |0.09 |0.01
5(0.03 [0.03 |0.00 |0.01 [[T:00]|[0.29 ]| 0.05 |0.15 |0.20 |0.04 |0.18
6 0.19 | 0.01 |0.16 |[0.29 |[1:00]| 0.05 [[0.29 || 0.04 |0.20 | 0.03
71003 |0.03 |0.03 |[0.28 || 0.05 |0.05 0.06 |0.00 |0.00 |0.01
8 |[0.28 ]0.21 | 0.04 | 0.17 |0.15 [[0:29 || 0.06 [[1.00 ]|[0.25 ]| 0.20 |0.17
9]0.06 |0.03 |0.00 |0.00 [0.20 |0.04 |0.00 |[0.25 |[1.00 ||[0-26 |[0-38 ]
1|0.06 |0.15 |0.01 |0.09 |0.04 [0.20 |0.00 |0.20 |[0.26 |[1.00]| 0.12
0

11 [0.00 [0.00 {0.00 [0.01 [0.18 |0.03 |0.01 |0.17 |[(0.38] 0.12 |[1.00]

Slide from “Random walks, eigenvectors, and their applications to Information Retrieval, Natural Language 2

Processing, and Machine Learning”. Dragomir Radev.



Lexical centrality (t=0.3)

Slide from “Random walks, eigenvectors, and their applications to Information Retrieval, Natural Language %

Processing, and Machine Learning”. Dragomir Radev.



Lexical centrality (t=0.2)

Slide from “Random walks, eigenvectors, and their applications to Information Retrieval, Natural Language 21

Processing, and Machine Learning”. Dragomir Radev.



Lexical centrality (t=0.1)

Slide from “Random walks, eigenvectors, and their applications to Information Retrieval, Natural Language 28

Processing, and Machine Learning”. Dragomir Radev.



Sentence Ranking

e Simulate a random surfer on the
sentence similarity graph

« A sentence is important if other
important sentences are similar to it

* Rank sentences according to the
stationary distribution of the random
walk on the sentence graph

29



ROUGE-1 Score

ROUGE-1 Score

%004,

03 Degree Centrality
DUC 2004

02 N S Y B | ] Y B B | S I Y I | ] I I O

threshold = 0.1 threshold = 0.2 threshold = 0.3 threshold = 0.4
041

00004 00 oo oo
Oso OOOO OOOO o OOOOO
04 [Se)
Lexrank

03 DUC 2004

0.2
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Lexrank Demo

% LaxRank Algorithm Demo - Mo:

Ele Edt Wew Go fookmarks Tools Help (]
@D -8 O Q[0 n v © & [ClI
Graph i
25 50 75 100
Salience (i)
0 5 w15 2
Display Options
|~ | [] pisplay edge weight
[ Display vertex name
Document Text:
Iratj Vice President Taha
assin Ramadan announced
today, Sunday, that ragy |
] |} refuses to back down fram its
decision to stop conperating
with disamament inspectors
| before its demancs are met
Iratyi Vice president Taha
Yassin Ramadan announced
|| |taday, Thursday, that Iraq.
x| | sjects cooperating with the
[« I i [»]  [United Mations except on the
e issue of Ifting the blockate
irmposed upon itsince the
Sentence Index Salience + year 1990
E] 0.16742027454452168 1 2 gaihering wih e press eld allo |~ | payagan ol reporters in | <1
8 01574 101745445 71 68 Brilsh P rime Minister Tony Elair said =
7 0.1430218712821872{The Spe cial Representative ofthe Un Create Graph...
0 0218712821872 Iraq  Vice President Taha Yassin Ra
1 7674969167067 Ir2q Vice presicient Taha Yassin Ra... | =
7674968167067 Rarmaan told reporters in Baghdan L
[ 389555660291 4 B auhtiact had decided late last Ottob fedolavout
1 0.05236 388655680281 4/4 spokesman for Tony Blairhad indic...| | About..
177514792899 4083 N [ H
117751 479285040 hat carnang out el L~ Help..
[ Find: fbrosks  |© Find Next © Find Previous [] Highlicht [ Match case
‘Applet ecu.umich 1.l Jexrank SentenceApple startec!
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Graph Clustering using Random Walks




Graph Clustering

* Problem Defenition:
* Given:
* agraph

inter- cluster links are maximized

* Algorithm
(Yen et al. 2005)

* Clustering using a random walk based
distance measure

* MCL (van Dongen 2000)
* A cluster algorithm for graphs

33



Clustering using a random-walk based distance

measure (Yen et al. 2005)

e The Euclidean Commute Time
distance (ECT)

« A random walk based distance
measure between nodes in a graph

* Clustering using K-means on the new
distance measure

34



Euclidean Commute Time distance

« Average hitting time m(k|i): average number of
steps a random walker starting at node i will take
to reach node k

» Average commute time c(k|i): average number of

steps a random walker starting at node i will take
to reach node k and go back to i

* Use the average commute time as a distance
measure between any nodes in the graph

35



Kmeans + ECT

« Randomly guess k cluster prototypes

36



Kmeans + ECT

* Find the prototype with the least ECT distance to
each data point and assiqgn it to that cluster

37



Kmeans + ECT

» Calculate new cluster prototypes (minimize the
within cluster variance w.r.t. ECT ) and repeat .....

o8




MCL (van Dongen 2000)

* Many links within cluster and fewer
links between clusters

‘z

« A random walk starting at a node is « ‘E;f ‘fgﬂ
more likely to stay within a cluster ; ‘Eq
than travel between clusters a:m]

. This is the key idea behind MCL @0 L.
| 'JTQ

39



MCL (van Dongen 2000)

Node Prob. NextStep Prob. Next Step
within cluster between clusters
1 80% 20%
2 100% 0%
3 67% 33% ;

Random walks on a graph reveal where the flow
tends gather in a graph.
40



Stochastic Flow

* Flow is easier within clusters than
across clusters

* To simulate flow: c.:&;:{ -8 {.n:vg
» Raise the transition matrix to integer <l v E. i
powers (In each step of the random walk, & &7 e

we do one matrix multiplication) G Do\ L /
) L

 During the earlier powers of the e F; .JTJ:E YN

transition matrix, edge weights will be
higher in links within clusters

* However, in the long run this effect
disappears 0



Stochastic Flow

* MCL boosts this effect by stopping the random
walk and adjusting weights

* Weights are adjusted such that:
+ Strong neighbors are further strengthened
* Weak neighbors are further weakened
» This process is called inflation

9/14
1/2
16

3 e M

9/14

1/14

4/14

1/2 Squarmg Normalization
e —

36
1/ 42



MCL Overview

Input: A, Adjacency matrix
Initialize M to M, the canonical
transition matrix

Enhances flow to well-connected
nodes as well as to new nodes.

]
| Expand: M := M*M |

I

Inflate: M := M.Ar (r usually

2), renormalize columns

> Increases inequality in each

column. “Rich get richer, poor
get poorer.”

Yes

Output clusters

Slide from ”Scalable Graph Clustering using Stochastic Flow” Venu Satuluri and Srinivasan Parthasarathy

U

Saves memory by removing entries
close to zero.

43



MCL Overview

Input: A, Adjacency matrix
Initialize M to Mg, the canonical
transition matrix

|
| Expand: M := M*M |

Inflate: M := M.Ar (r usually
2), renormalize columns

Yes
Output clusters

V4
14
4
14

o B O BB
O Rk

12 13
0 13
12 0
0 13
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MCL Overview

Input: A, Adjacency matrix

Initialize M to MG, the canonical 0 9
transition matrix
I

' ©) )

\ Expand: M := M*M ‘

Inflate: M := M.Ar (r usually Ya 3 y2 3 ya 3 32 13
2), renormalize columns Y4 Y3 0 Y3 . |¥Y4 Y3 0 I3

Y4 0 12 0 Y4 0 12 0

1/4 ]/3 0 1/3 1/4 1/3 0 1/3
Yes

035 0.31 0.38 0.31
0.23 031 013 031
0.19 0.08 0.38 0.08
0.23 031 013 031 45

Output clusters



MCL Overview

Input: A, Adjacency matrix

Initialize M to MG, the canonical 9 9
transition matrix
|
' ©) 4
| Expand: M = mem | 035 031 038 031
0.23 031 0.13 0.31 inflation
Inflate: M := M.Ar (r usually 019 008 038 0.08
2), renormalize columns ' ' ’ '
0.23 031 0.13 0.31

0.13 0.09 0.14 0.09
0.05 0.09 0.02 0.09
0.04 0.01 014 o0.01

L.os 0.09 0.02 0.09
047 0.33 045 0.33

Yes 0.20 0.33 0.05 0.33 hormalization
Output clusters

0.13 0.02 0.45 0.02
0.20 0.33 0.05 0.33
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MCL Overview

Input: A, Adjacency matrix
Initialize M to MG, the canonical
transition matrix

|
| Expand: M := M*M |

Inflate: M := M.Ar (r usually
2), renormalize columns

Yes
Output clusters

[0.47
0.20
0.13

10.20

[0.47
0.20
0.13

10.20

0.33
0.33
0.02
0.33

0.33
0.33

0.33

0.45
0.05
0.45
0.05

0.45
0.05
0.45
0.05

0.33]
0.33
0.02
0.33]

0.33]
0.33

0.33]
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MCL Inflation Parameter




MCL Summary

« Time O(N3)

* Input: Undirected weighted/unweighted graph

Number of clusters not specified ahead of time

Parameters: inflation parameter

Evaluation: Random graphs (10000 nodes)

« Convergence: 10 ~ 100 steps

49



MCL Demo




Classification using Random Walks




Semi-Supervised Learning

Supervised Learning Unsupervised Learning

52



Why Semi-Supervised Learning?

* Labeled data:
* Expensive
« Hard to obtain

* Unlabeled data:

* Cheap
» Easy to obtain

53



Partially labeled classification with Markov random

walks (Szummer 2000)

* Represent data points through a Markov random
walk

* Advantages:
« Data points in the same high density clusters have
similar representation

54



Overview

Input: a set of points (x,,...,x,)

A metric d(x,x;)

Construct a k nearest neighbor
graph over the points

|

Assign a weight W;;

=1 i=j
= d(i,j) iandjare
neighbors
=0 otherwise
v

Normalize the graph

Estimate the probability that the
random walk started atigiven
that it ended at k

55



Representation

» Each node k is represented as a vector
[Pop(Xalk), ... » Pop(nlK)]

* Poy(ilk) is the probability than the random walk
ending at k started at i

« Two points are similar < their random walks have
indistinguishable starting points

56



Classification

Py k)= > Qy|i)P@|k)

1€ LUU
Q(y | i) - parameters that are estimated for all points

P(i | k) - Markov random walk representation

Question: how do we obtain Q(y]i)?

Maximize conditional log-likelihood over the labeled
data using the EM algorithm

57



Swiss roll problem

o . * unlabeled
N ® labeled +1
. ... . A Jabeled -1
° 0. * o oo ; ° * .
R . . ..: ® ° . : °
.. °® R o * . :.’
.... . ..o ° -. .
e ..o : .'..o . b
[ ] ° [} *
I

.
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Swiss roll problem

e unlabeled +1
s unlabeled -1
e o e @® labeled +1
L] hd A

. labeled -1
L]
- o .
. . .
¢ ° A A a A
A A A
L] a R
L] a N a . N .
a A A a N
L] ° N . ) K
L]
A X AA
. LN N
e ® ° R . .
A
o ® K . .
a
. . R . A
K A
L]
; ° A a
a ..
e® 4 :
: ' o s A A
L]
L] ° R )
... °® ° .
. A
L] oo o o N
L] o 0 o ° N
° °® ° °®
a aa
.
A A
A A A a
« A
4 A
a N R
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Semi-Supervised Learning Using Gaussian Fields

and Harmonic Functions (Zhu et al. 2003)

» Labeled and Unlabeled data are represented as
vertices in a weighted graph

* Edge weights encode similarity between
instances

Instances

Similarities

60



Semi-Supervised Learning Using Gaussian Fields

and Harmonic Functions (Zhu et al. 2003)

* The value of f at each unlabeled point is the
average of f at neighboring points

. 1 .
f (I):d—ZW if (J)  iisunlabeled
ii-]

* Edge weights encode similarity between
instances

fa)=y, i is labeled

* f is called a harmonic function

61



Partially labeled classification with Markov random

walks (Szummer 2000)

« f(i) is the probability that a random surfer starting
at node i hits a labeled node with label 1

62
Figure from “Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions” ( Zhu et al. 2003)



Other Applications using Random Walks




Query Suggestion Using Hitting Time

(Mei et al. 2008)

» How can query suggestions be generated in a principled
way?

« Construct a bipartite Graph of queries and url’s

+ Use Hitting Time to any given query to find related
queries

64



Motivating Example

£ LiveSearch  msg B Related searches Sports
Madison Square Garden center

Web 1-10 0f 84,000,000 resutis - Advanced

See also: Images, Video, News. Maps. More ¥ MSG MSG Allergy
Madison Square Garden - wadisan_Saquare_SOoi o es MSG Food

Get Great Seat Selections & Prices For Madison Square Garden Tickets
MSG Network

Monosodium Glutamate
MEG Seating Chart

MSG Tickels - www RivAefierTickets com

1. Difficult for a user to express

information need _ e 1Se Tickets
2. Difficult for a Search engine to MSG Sports
infer information need

MSG Facts

How does MSG enhance food flavor? How is MSG used in cooking? What foods are glutamate-rich?
How can | tell if foods contain glutamate?
www_msgfacts.com/facts/msgfacts.html - Cached page

Query Suggestions: Accurate to
MSG - Wikipedia, the free encyclopedia o o
WISG ar msg can mean A comman aboreviaton for message. Madison Square Garden, s spors —~ @X[)I€SS the information need;

arena in New York City; Monosodium glutamate, a common food additive In music. M.S.G., former
rapper and DJ; M.S. Gopalakrishnan, Indian classical violin player: Michael Schenker Group /
McAuley Schenker Group. rock bands fronted by Michael Schenker: The Notorious MSG. New York

e bty Othr uses Easy to infer information need

en wikipedia orghviki/MSG - Cached page

65
Slide from Query Suggestion Using Hitting Time (Mei et al. 2008)



Generate Query Suggestion

2
S
=
>
(4]
Q
Q
Q
S
T
Q
<
LR
2
Q
&
S
N
.

\
Se”

oo .

1

. /)

american _en.wikipedia.org/wiki/Mexicana  ®

airline
1

\ 7

Seo

Slide from Query Suggestion Using Hitting Time (Mei et al. 2008)

Construct a (KNN)
subgraph from the query
log data (of a predefined
number of queries/urls)

Compute transition
probabilities p(i = j)
Compute hitting time hA

Rank candidate queries
using hA

66



Result: Query Suggestion

Query = friends
Google Hittingtime

wikipedia friends

friendship
. N s show wikipedia
friends poem

" secret friends friends home page
friendster i ) -
friends episode guide friends reunited friends warner bros
: : hide friends
friends scripts
hi 5 friends friends official site

how to make friends _ - :
true friends findifriends friends(1994)
poems for friends
friends quotes

67
Slide from Query Suggestion Using Hitting Time (Mei et al. 2008)



Collaborative Recommendation (Fouss et al.)

+ How can query recommend movies to users?

 Construct a tripartite graph of users, movies, and movie
categories

+ Use Hitting Time, Commute Time, or Return Time to
any given user to find closes movies

68



Collaborative Recommendation

Users Movies Categories < Construct a tripartite graph of
users, movies, and categories

« Compute hitting time,
commute time and return time
from each movie to user A

» Rank movies and recommend
the closet one to A

69



Result: Collaborative Recommendation

88

86

84
82

80
78
76 \ ‘

Commute Time  Hitting Time Return Time
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Language Model-Based Document Clustering

Using Random Walks (Erkan 2006)

* A new document representation for clustering

« A document is represented as an n-dimensional vector

» The value at each dimension of the vector is closely
related to the generation probability based on the
language model of the corresponding document.

 Generation probabilities are reinforced by iterating
random walks on the underlying graph

71



Language Model-Based Document Clustering

Using Random Walks (Erkan 2006)

 For each ordered document pair (di, dj):

« Build a language model from d; (Im;)

- compute the generation probability of d; from Im,

+ Build a generation graph where nodes are documents
edge weights represent generation probabilities

72



Language Model-Based Document Clustering

Using Random Walks (Erkan 2006)

* There are “strong” generation links
from A to B and B to C, but no link
from Ato C.

« The intuition says that A must be
semantically related to C

* This relation is approximated by

considering the probabilities of t-step
random walks from A to C

73



Sampling and Summarization for Social Networks
ShouDe Lin, MiYen Yeh, and ChengTe Li, National Taiwan
University

10



Sampling by Exploration
Random Walk [Gjoka’10]

— The next-hop node is chosen uniformly among the
neighbors of the current node

Random Walk with Restart [Leskovec'06]

— Uniformly select a random node and perform a
random walk with restarts

Random Jump [Ribeiro’10]

— Same as random walk but with a probability p we
jump to any node in the network

Forest Fire [Leskovec’06]

— Choose a node u uniformly

— Generate a random number z and select z out links of
u that are not yet visited

— Apply this step recursively for all newly added nodes

13/05/02 Lin et al., Sampling and Summarization for 20

Social Networks, PAKDD 2013 tutorial



Sampling by Exploration (cont.)

Ego-Centric Exploration (ECE) Sampling

— Similar to random walk, but each neighbor has p
probability to be selected

— Multiple ECE (starting with multiple seeds)

Depth-First / Breadth-First Search [Krishnamurthy’05]

— Keep visiting neighbors of earliest / most recently visited nodes

Sample Edge Count [Maiya’11]

— Move to neighbor with the highest degree, and keep
going

Expansion Sampling [Maiya’11]

— Construct a sample with the maximal expansion. Select

the neighbor v based on argmax,eys)|IN{vH) — (N(S) U S)]
S: the set of sampled nodes, N(S): the 15t neighbor set of S



Example: Expansion Sampling

IN({A})|=4

IN({E}) = N({A}) U{A}|=|{F,G,H}|=3
IN({D}) - N({A}) U{A}|=|{F}|=1




Drawback of Random Walk: Degree Bias!

RW - Random Walk

10?
1 -2
o ﬁ / g} - sampled
/.:93\ 103 b - — node degree |
I . distribution
10 | s
4 -5
=0 ‘
. N
10° Hmmm Uniform E
- 28 crawls
10 F| = 1+ Average crawl E
108 L& T . .
10° 10’ 107 10’

node degree k&
* Real average node degree ~ 94, Sampled average node degree ~ 338
* Solution: modify the transition probability :

7 * min(1, k—v) If w is a neighbor of v
v w

P, =
vw 1- E P,y Ifw=v
V£V

13/05/02 0 otherwise



Metropolis Graph Sampling iubleros)
* Step 1: Initially pick one subgraph sample S with n’
nodes randomly
* Step 2: Iterate the following steps until convergence
2.1: Remove one node from S

2.2: Randomly add a new nodeto S 2> &’
_p©S)
p*(S)

if a < 1:accept transition:S = S’ with probability a

2.3: Compute the likelihood ratio ¢

if a = 1:accept transition: S := S’

reject transition: S = S' with probability 1 — a
— p*(S) measures the similarity of a certain property
between the sample S and the original network G
* Be derived appyrgi)‘(i(rnyafglxﬁs”in_g(FS’ifr‘nuIated Annealing

13/05/02 N
Social Networks, PAKDD 2013 tutorial



Today: In class work

» Implement random walk sampling methods

» Compare their efficacy on various networks

10



Graph Sampling
Blank code and data available on website
(Lecture 20)

www.cs.rpi.edu/~slotag/classes/FA16/index.html

10/10



