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Today’s Biz

1. Reminders

2. Review

3. Random Walks
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Reminders

I Assignment 5: due date November 22nd
I Distributed triangle counting

I Assignment 6: due date TBD (early December)

I Tentative: No class November 14 and/or 17

I Final Project Presentation: December 8th

I Project Report: December 11th

I Office hours: Tuesday & Wednesday 14:00-16:00 Lally
317

I Or email me for other availability
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Quick Review

Graph Sampling:

I Vertex sampling methods
I Uniform random
I Degree-biased
I Centrality-biased (PageRank)

I Edge sampling methods
I Uniform random
I Vertex-edge (select vertex, then random edge)
I Induced edge (select edge, include all edges of attached

vertices)
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Today’s Biz

1. Reminders

2. Review

3. Random Walks
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Random Walks on Graphs - Classification, Clustering,
and Ranking

Ahmed Hassan, University of Michigan

7 / 10



Random Walks on Graphs  

Classification, Clustering, and Ranking
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Ph.D. Candidate
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Random Walks on Graphs

Why Graphs?

The underlying data is naturally a graph

• Papers linked by citation

• Authors linked by co-authorship

• Bipartite graph of customers and products

• Web-graph 

• Friendship networks: who knows whom
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What is a Random Walk

• Given a graph and a starting node, we select a neighbor 

of it at random, and move to this neighbor
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What is a Random Walk

• We select a neighbor of it at random, and move to this 

neighbor
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What is a Random Walk

• Then we select a neighbor of this node and move to it, 

and so on.
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What is a Random Walk

•The (random) sequence of nodes selected this way 

is a random walk on the graph
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Adjacency Matrix vs. Transition Matrix

• A transition matrix is a stochastic matrix where each

element aij represents the probability of moving from i to

j, with each row summing to 1.
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Markov chains

•A Markov chain describes a discrete time stochastic process  
over a set of states

according to a transition probability matrix

Pij = probability of moving to state j when at state i

• Markov Chains are memoryless: The next state of the chain 
depends only at the current state

S = {s1, s2, … sn}

P = {Pij}
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Random Walks & Markov chains

• Random walks on graphs correspond to Markov

Chains

- The set of states S is the set of nodes of the graph

- The transition probability matrix is the probability that

we follow an edge from one node to another
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Random Walks & Markov chains

P1
ij is the probability that the random walk starting 

in node i,  will be in node j after 1 step

5.005.0
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Random Walks & Markov chains

375.0125.025.0

125.0375.05.0

25.025.05.0
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P2
ij is the probability that the random walk starting 

in node i,  will be in node j after 2 steps
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Random Walks & Markov chains

A

B C

3125.01875.05.0

1875.03125.05.0
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3p

P3
ij is the probability that the random walk starting 

in node i,  will be in node j after 2 steps
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Stationary Distribution

• xt(i) = probability that the surfer is at node i at time t

• xt+1(j) = ∑i xt(i) . Pij

• xt+1 = xt P = xt-1 P P = x0 P
t

• What happens when the surfer keeps walking for a 
long time?

– We get a stationary distribution

13



Stationary Distribution

• The stationary distribution at a node is related to the 
amount of time a random walker spends visiting that node

• When the surfer keeps walking for a long time, the 
distribution does not change any more: xt+1(i) = xt(i)

• For “well-behaved” graphs this does not depend on 
the start distribution
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Hitting Time

• How long does it take to hit node b in a random 
walk starting at node a ?

• Hitting time from node i to node j 

• Expected number of hops 
to hit node j starting at node i.

• Not symmetric 

• h(i,j) = 1 + Σk Є adj(i) P(i,k) h(k,j)

a

b
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Commute Time

• How long does it take to hit node b in a random 
walk starting at node a and come back to a?

• Commute time from node i to node j

• Expected number of hops 
to hit node j starting at node i
and come back to i.

• Symmetric 

• c(i,j) = h(i,j) + h(j,i)

a

b
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Ranking using Random Walks



Ranking Web Pages

• Problem Defenition:
• Given:

• a search query, and
• A large number of web pages relevant to that query

• Rank web pages based on the hyperlink structure

• Algorithm
• Pagerank (Page et al. 1999)

• PageRank Citation Ranking: Bringing Order to the Web 

• HITS (Kleinberg 1998)
• Authoritative sources in a hyperlinked environment

18



Pagerank (Page et al. 1999)

• Simulate a random surfer on the Web

graph

• The surfer jumps to an arbitrary page

with non-zero probability

• A webpage is important if other

important pages point to it

• s works out to be the stationary

distribution of the random walk on the

Web graph
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Power Iteration

• Power iteration is an algorithm for

computing the stationary distribution

• Start with any distribution x0

• Let xt+1 = xt P

• Iterate

• Stop when xt+1 and xt are almost the same

20



Pagerank Demo
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Ranking Sentences for Extractive 

Summarization

• Problem Defenition:
• Given:

• document
• A similarity measure between sentences in the document

• Rank sentences based on the similarity structure

• Algorithm
• Lexrank (Erkan et al. 2004)

• Graph-based centrality as salience in text summarization. 
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Lexrank (Erkan et al. 2004)

• Perform a random walk on a sentence similarity 
graph

• Rank sentences according to node probabilities in 
the stationary distribution
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Graph Construction

• They use the bag-of-words model to
represent each sentence as an n- n-
dimensional vector

• tf-idf representation

• The similarity between two
sentences is then defined by the
cosine between two corresponding
vectors
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1 2 3 4 5 6 7 8 9 10 11

1 1.00 0.45 0.02 0.17 0.03 0.22 0.03 0.28 0.06 0.06 0.00

2 0.45 1.00 0.16 0.27 0.03 0.19 0.03 0.21 0.03 0.15 0.00

3 0.02 0.16 1.00 0.03 0.00 0.01 0.03 0.04 0.00 0.01 0.00

4 0.17 0.27 0.03 1.00 0.01 0.16 0.28 0.17 0.00 0.09 0.01

5 0.03 0.03 0.00 0.01 1.00 0.29 0.05 0.15 0.20 0.04 0.18

6 0.22 0.19 0.01 0.16 0.29 1.00 0.05 0.29 0.04 0.20 0.03

7 0.03 0.03 0.03 0.28 0.05 0.05 1.00 0.06 0.00 0.00 0.01

8 0.28 0.21 0.04 0.17 0.15 0.29 0.06 1.00 0.25 0.20 0.17

9 0.06 0.03 0.00 0.00 0.20 0.04 0.00 0.25 1.00 0.26 0.38

1

0

0.06 0.15 0.01 0.09 0.04 0.20 0.00 0.20 0.26 1.00 0.12

11 0.00 0.00 0.00 0.01 0.18 0.03 0.01 0.17 0.38 0.12 1.00

Slide from “Random walks, eigenvectors, and their applications to Information Retrieval, Natural Language 

Processing, and Machine Learning”. Dragomir Radev.

Cosine Similarity
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Slide from “Random walks, eigenvectors, and their applications to Information Retrieval, Natural Language 

Processing, and Machine Learning”. Dragomir Radev.
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d5s3
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Lexical centrality (t=0.2)

Slide from “Random walks, eigenvectors, and their applications to Information Retrieval, Natural Language 

Processing, and Machine Learning”. Dragomir Radev.
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Lexical centrality (t=0.1)

Slide from “Random walks, eigenvectors, and their applications to Information Retrieval, Natural Language 

Processing, and Machine Learning”. Dragomir Radev.
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Sentence Ranking

• Simulate a random surfer on the

sentence similarity graph

• A sentence is important if other

important sentences are similar to it

• Rank sentences according to the

stationary distribution of the random

walk on the sentence graph
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Results

• l

Degree Centrality

DUC 2004

Lexrank

DUC 2004
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Lexrank Demo
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Graph Clustering using Random Walks



Graph Clustering

• Problem Defenition:
• Given:

• a graph

• Assign nodes to subsets (clusters) such
that intra-cluster links are minimized and
inter-cluster links are maximized

• Algorithm
• (Yen et al. 2005)

• Clustering using a random walk based
distance measure

• MCL (van Dongen 2000)
• A cluster algorithm for graphs
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Clustering using a random-walk based distance 

measure  (Yen et al. 2005)

• The Euclidean Commute Time
distance (ECT)

• A random walk based distance
measure between nodes in a graph

• Clustering using K-means on the new
distance measure

34



Euclidean Commute Time distance 

• Average hitting time m(k|i): average number of
steps a random walker starting at node i will take
to reach node k

• Average commute time c(k|i): average number of
steps a random walker starting at node i will take
to reach node k and go back to i

• Use the average commute time as a distance
measure between any nodes in the graph

35



Kmeans + ECT

• Randomly guess k cluster prototypes

36



Kmeans + ECT

• Find the prototype with the least ECT distance to
each data point and assign it to that cluster
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Kmeans + ECT

• Calculate new cluster prototypes (minimize the
within cluster variance w.r.t. ECT ) and repeat …..
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MCL (van Dongen 2000)

• Many links within cluster and fewer 
links between clusters

• A random walk starting at a node is 
more likely to stay within a cluster 
than travel between clusters

• This is the key idea behind MCL
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MCL (van Dongen 2000)

1 2

3

Node Prob.  Next Step 

within cluster 

Prob.  Next Step 

between clusters

1 80% 20%

2 100% 0%

3 67% 33%

Random walks on a graph reveal where the flow 

tends gather in a graph.
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Stochastic Flow

• Flow is easier within clusters than 
across clusters

• To simulate flow:
• Raise the transition matrix to integer 

powers (In each step of the random walk, 
we do one matrix multiplication)

• During the earlier powers of the 
transition matrix, edge weights will be 
higher in links within clusters

• However, in the long run this effect 
disappears 41



Stochastic Flow 

• MCL boosts this effect by stopping the random 
walk and adjusting weights 

• Weights are adjusted such that:
• Strong neighbors are further strengthened
• Weak neighbors are further weakened
• This process is called inflation

a
1/2

1/6
1/3

31
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4/14

Squaring Normalization
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MCL Overview

Slide from ”Scalable Graph Clustering using Stochastic Flow” Venu Satuluri and Srinivasan Parthasarathy

Expand: M := M*M

Inflate: M := M.^r (r usually 
2), renormalize columns

Converged?

Input: A, Adjacency matrix
Initialize M to MG, the canonical 
transition matrix

Yes

Output clusters

No

Prune

Enhances flow to well-connected 
nodes as well as to new nodes.

Increases inequality in each 
column. “Rich get richer, poor 
get poorer.”

Saves memory by removing entries 
close to zero.
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MCL Overview

Expand: M := M*M

Inflate: M := M.^r (r usually 
2), renormalize columns

Converged?

Input: A, Adjacency matrix
Initialize M to MG, the canonical 
transition matrix

Yes

Output clusters

No

Prune

1 2

3 4

1011

0101

1011

1111

3103141

021041

3103141

31213141
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MCL Overview

Expand: M := M*M

Inflate: M := M.^r (r usually 
2), renormalize columns

Converged?

Input: A, Adjacency matrix
Initialize M to MG, the canonical 
transition matrix

Yes

Output clusters

No

Prune

1 2

3 4

3103141

021041

3103141

31213141

3103141

021041

3103141

31213141

=

31.013.031.023.0

08.038.008.019.0

31.013.031.023.0

31.038.031.035.0

*
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MCL Overview

Expand: M := M*M

Inflate: M := M.^r (r usually 
2), renormalize columns

Converged?

Input: A, Adjacency matrix
Initialize M to MG, the canonical 
transition matrix

Yes

Output clusters

No

Prune

1 2

3 4

31.013.031.023.0

08.038.008.019.0

31.013.031.023.0

31.038.031.035.0

09.002.009.005.0

01.014.001.004.0

09.002.009.005.0

09.014.009.013.0

33.005.033.020.0

02.045.002.013.0

33.005.033.020.0

33.045.033.047.0

inflation

normalization
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MCL Overview

Expand: M := M*M

Inflate: M := M.^r (r usually 
2), renormalize columns

Converged?

Input: A, Adjacency matrix
Initialize M to MG, the canonical 
transition matrix

Yes

Output clusters

No

Prune

1 2

3 4

33.005.033.020.0

02.045.002.013.0

33.005.033.020.0

33.045.033.047.0

33.005.033.020.0

045.0013.0

33.005.033.020.0

33.045.033.047.0

47



MCL Inflation Parameter
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MCL Summary

• Time O(N3)

• Input: Undirected weighted/unweighted graph

• Number of clusters not specified ahead of time

• Parameters: inflation parameter

• Evaluation: Random graphs (10000 nodes)

• Convergence: 10 ~ 100 steps 
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MCL Demo
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Classification using Random Walks



Semi-Supervised Learning

Semi-Supervised Learning

Supervised Learning Unsupervised Learning

52



Why Semi-Supervised Learning?

• Labeled data:
• Expensive
• Hard to obtain

• Unlabeled data:
• Cheap
• Easy to obtain
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Partially labeled classification with Markov random 

walks (Szummer 2000)

• Represent data points through a Markov random 
walk

• Advantages:
• Data points in the same high density clusters have 

similar representation
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Overview

Input: a set of points (x1,…,xN)
A metric d(xi,xj)

Construct a k nearest neighbor 
graph over the points

Assign a weight Wij

= 1 i=j
=  d(i,j) i and j are 

neighbors
= 0 otherwise 

Normalize  the graph

Estimate the probability that the 
random walk started  at i given 
that  it ended at k 55



Representation

• Each node k is represented as a vector
[P0|t(x1|k), ……. , P0|t(xn|k)]

• P0|t(i|k) is the probability than the random walk 
ending at k started at i

• Two points are similar  their random walks have 

indistinguishable starting points

56



Classification 

  -  parameters that are estimated for all points

  -  Markov random walk representation(

( | )

| )

Q y i

P i k

( | ) (( | | ))
i L U

P iQ yy kiP k

Question:  how do we obtain Q(y|i)?

Maximize conditional log-likelihood over the labeled 

data using the EM algorithm
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unlabeled
labeled +1
labeled -1

Swiss roll problem
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t=20
unlabeled +1
unlabeled -1
labeled +1
labeled -1

Swiss roll problem
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Semi-Supervised Learning Using Gaussian Fields 

and Harmonic Functions (Zhu et al. 2003)

et al
• Labeled and Unlabeled data are represented as 

vertices in a weighted graph

• Edge weights encode similarity between 
instances

Instances

Similarities
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Semi-Supervised Learning Using Gaussian Fields 

and Harmonic Functions (Zhu et al. 2003)

et al
• The value of f at  each unlabeled point is the 

average of f at neighboring points

• Edge weights encode similarity between 
instances

• f is called a harmonic function

~

1
( ) ( )ij

i ji

f i w f j
d

( ) if i y

i is unlabeled

i is labeled
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Partially labeled classification with Markov random 

walks (Szummer 2000)

• f(i) is the probability that a random surfer starting 
at node i hits a labeled node with label 1

Figure from “Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions” ( Zhu et al. 2003)
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Other Applications using Random Walks



Query Suggestion Using Hitting Time

(Mei et al. 2008)

• How can query suggestions be generated in a principled 

way? 

• Construct a bipartite Graph of queries and url’s

• Use Hitting Time to any given query to find related 

queries
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MSG

1. Difficult for a user to express 

information need

2. Difficult for a Search engine to 

infer information need

Query Suggestions: Accurate to  

express the information need;

Easy to infer information need

Sports 

center

Food 

Additive

Motivating Example

Slide from Query Suggestion Using Hitting Time (Mei et al. 2008) 
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T
aa

american
airline

mexiana

www.aa.com

www.theaa.com/travelwatch/
planner_main.jsp

en.wikipedia.org/wiki/Mexicana

30
0

15

Query Url
• Construct a (kNN) 

subgraph from the query 

log data (of a predefined 

number of queries/urls)

• Compute transition 

probabilities p(i j)

• Compute hitting time hi
A

• Rank candidate queries 

using hi
A

Generate Query Suggestion

Slide from Query Suggestion Using Hitting Time (Mei et al. 2008) 
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Hitting time

wikipedia friends

friends tv show wikipedia

friends home page

friends warner bros

the friends series

friends official site

friends(1994)

Google

friendship

friends poem

friendster

friends episode guide

friends scripts

how to make friends

true friends

Yahoo

secret friends

friends reunited

hide friends

hi 5 friends

find friends

poems for friends

friends quotes

Query = friends

Result: Query Suggestion

Slide from Query Suggestion Using Hitting Time (Mei et al. 2008) 
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Collaborative Recommendation (Fouss et al.)

• How can query recommend movies to users?

• Construct a tripartite graph of users, movies, and movie 

categories

• Use Hitting Time, Commute Time, or Return Time to 

any given user to find closes movies
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A
30
0

15

Users Movies • Construct a tripartite graph of 

users, movies, and categories

• Compute hitting time, 

commute time and return time 

from each movie to user A

• Rank movies and recommend 

the closet one to A

Collaborative Recommendation

Categories
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Result: Collaborative Recommendation

76

78

80

82

84

86

88

Commute Time Hitting Time Return Time
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Language Model-Based Document Clustering 

Using Random Walks (Erkan 2006)

• A new document representation for clustering

• A document is represented as an n-dimensional vector 

• The value at each dimension of the vector is closely 

related to the generation probability based on the 

language model of the corresponding document. 

• Generation probabilities are reinforced by iterating 

random walks on the underlying graph
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Language Model-Based Document Clustering 

Using Random Walks (Erkan 2006)

• For each ordered document pair (di, dj):

• Build a language model from dj (lmj)

• compute the generation probability of di from lmj

• Build a generation graph where nodes are documents 

edge weights represent generation probabilities
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Language Model-Based Document Clustering 

Using Random Walks (Erkan 2006)

• There are “strong” generation links 

from A to B and B to C, but no link 

from A to C. 

• The intuition says that A must be 

semantically related to C 

• This relation is approximated by 

considering the probabilities of t-step 

random walks from A to C

A

B

C

73



Sampling and Summarization for Social Networks
ShouDe Lin, MiYen Yeh, and ChengTe Li, National Taiwan

University
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Sampling by Exploration
• Random Walk [Gjoka’10]

– The next‐hop node is chosen uniformly among the 
neighbors of the current node 

• Random Walk with Restart [Leskovec’06]
– Uniformly select a random node and perform a 
random walk with restarts

• Random Jump [Ribeiro’10]
– Same as random walk but with a probability p we 
jump to any node in the network

• Forest Fire [Leskovec’06]
– Choose a node u uniformly 
– Generate a random number z and select z out links of 
u that are not yet visited

– Apply this step recursively for all newly added nodes
Lin et al., Sampling and Summarization for 
Social Networks, PAKDD 2013 tutorial 

13/05/02 20



Sampling by Exploration (cont.)

Lin et al., Sampling and Summarization for 
Social Networks, PAKDD 2013 tutorial 13/05/02 21

• Ego‐Centric Exploration (ECE) Sampling
– Similar to random walk, but each neighbor has p 
probability to be selected

– Multiple ECE (starting with multiple seeds)
• Depth‐First / Breadth‐First Search [Krishnamurthy’05]

– Keep visiting neighbors of earliest / most recently visited nodes

• Sample Edge Count [Maiya’11]

– Move to neighbor with the highest degree, and keep 
going

• Expansion Sampling [Maiya’11]

– Construct a sample with the maximal expansion. Select 
the neighbor v based on

S: the set of sampled nodes, N(S): the 1st neighbor set of S

௩∈ேሺௌሻݔܽ݉݃ݎܽ ܰ ݒ െ ሺܰሺܵሻ ∪ ܵሻ



Example: Expansion Sampling

E
G

H

F

A

B C

D

|N({A})|=4

|N({E}) – N({A}) ∪{A}|=|{F,G,H}|=3
|N({D}) – N({A}) ∪{A}|=|{F}|=1



qk ‐ sampled 
node degree 
distribution

pk ‐ real node 
degree distribution

Drawback of Random Walk: Degree Bias!

• Real average node degree ~ 94, Sampled average node degree ~ 338
• Solution: modify the transition probability :

13/05/02 23
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∗ min	ሺ1,
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If w is a neighbor of v

If w = v

otherwise



Metropolis Graph Sampling
• Step 1: Initially pick one subgraph sample S with n’ 
nodes randomly

• Step 2: Iterate the following steps until convergence
2.1: Remove one node from S
2.2: Randomly add a new node to S  S’
2.3: Compute the likelihood ratio

– *(S) measures the similarity of a certain property 
between the sample S and the original network G

• Be derived approximately using Simulated Annealing

[Hubler’08]

Lin et al., Sampling and Summarization for 
Social Networks, PAKDD 2013 tutorial 13/05/02 24

ܽ ൌ
ሺܵ′ሻ∗ߩ
ܽ	ሺܵሻ݂݅∗ߩ ൒ 1: :݊݋݅ݐ݅ݏ݊ܽݎݐ	ݐ݌݁ܿܿܽ ܵ ≔ ܵᇱ

݂݅	ܽ ൏ 1: :݊݋݅ݐ݅ݏ݊ܽݎݐ	ݐ݌݁ܿܿܽ ܵ	 ≔ ܵᇱ with probability ܽ
:݊݋݅ݐ݅ݏ݊ܽݎݐ	ݐ݆ܿ݁݁ݎ ܵ	 ≔ ܵᇱ with probability 1 െ ܽ



Today: In class work

I Implement random walk sampling methods

I Compare their efficacy on various networks
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Graph Sampling
Blank code and data available on website

(Lecture 20)
www.cs.rpi.edu/∼slotag/classes/FA16/index.html
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