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Today's Biz

1. Reminders
2. Review

3. Temporal Networks
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Reminders

v

Assignment 6: due date Dec 8th

Final Project Presentation: December 8th

v

v

Project Report: December 11th

Office hours: Tuesday & Wednesday 14:00-16:00 Lally
317

» Or email me for other availability

v
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Today's Biz

1. Reminders
2. Review
3. Temporal Networks
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Quick Review

Graph Sampling:
» Vertex sampling methods
» Uniform random
» Degree-biased
» Centrality-biased (PageRank)
» Edge sampling methods

» Uniform random
» Vertex-edge (select vertex, then random edge)
» Induced edge (select edge, include all edges of attached

vertices)
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Quick Review

Random Walks:
» Sample by exploring the graph
» Sampling methods

» Uniform random

» Random with restarts
» Random with jumps
» Biased
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Today's Biz

1. Reminders
2. Review

3. Dynamic Networks
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Temporal Graphs for Dynamic Network Analysis
Mirco Musolesi, University of Birmingham
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Temporal Graphs for
Dynamic Network Analysis

Mirco Musolesi
School of Computer Science
University of Birmingham

Joint work with Vito Latora, Cecilia Mascolo, Vincenzo Nicosia, Salvatore Scellato and John Tang
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Mirco Musolesi

Reality Mining Dataset
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HINT In
confirm

FluTracker H1N1 Incidents 12:24 EDT 22 July 2009 o palieated by

on Jul 23, 2009
http:/iflutracker2.thizalabs.com/cbilsnapshot/page?concept=~fd000a02514fc4680a0 d0322ec303fb50c 1f1baD035a4ed8a00c

Credit: Flutracker.com
Mirco Musolesi




Problem: existing metrics do not capture the
inherent dynamism of networks over time.

We need new temporal metrics defined over
temporal graphs for studying dynamic
processes over these networks.



An Example of Temporal Graph
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...and the Corresponding Static Graph
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Calculating the Temporal Distance
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Calculating the Temporal Distance

(t=1)
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Calculating the Temporal Distance

(t=2)
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Calculating the Temporal Distance
(t=3)

B and C at distance 3
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Calculating the Temporal Distance
(t=4)

F at distan
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What about the Static Distance?
E is statically reachable but in reality it is not dynamically reachable!

A-> F requires 2 transmissions (hops), but in reality it requires 3

No information about the duration of the process

Mirco Musolesi



What about the Symmetric Distance
(F to A)?
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Calculating the Inverse Temporal Distance

(t=1)
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Calculating the Inverse Temporal Distance

(t=2)
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Calculating the Inverse Temporal Distance
(t=3)
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Calculating the Inverse Temporal Distance
(t=4)

0@0@

ot reachable
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Characteristic Temporal Path Length

* Characteristic temporal path length:

1
Lh (t7nin7 tm,(w:) — X A N Z dfj (tvnin; tnlam)

* Defined considering the horizon of the
infection

* Possible problem related to the potential
divergence due to pairs of nodes that are not
temporally connected



Characteristic Temporal Path Length

* Characteristic temporal path length:
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* Defined considering the horizon of the
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Impact of the Horizon Parameter

(F->A,h=1)
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Impact of the Horizon Parameter
(F->A, h=2)

A was not reachable at all with h =1 (in 4 time windows), but with h = 2 it is a distan
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Characteristic Temporal Path Length

* Characteristic temporal path length:

h
L (tmzﬁutmaa) — 1 Z d nun 771(1:17)

* Defined considering the horizon of the
infection

* Possible problem related to the potential
divergence due to pairs of nodes that are not
temporally connected



Temporal Efficiency

* Solution: definition of temporal efficiency:

1

BT, (tminstmaz) =
Tz]( min; ma:r) dilj (tnu'n:tm,aa?)

1 Z }
Eh tminy tma’r — X At N E L~ ; tm’ina tnza’r

* High value of E (low value of L) means that the
nodes of the graphs can communicate efficiently

Mirco Musolesi



Centrality Metrics

* Most number of friends
* Quickly spread information to many people
* Mediates between the most information flows




Degree

« C%9 = number of links to i

* Popular nodes




Static Closeness Centrality

tCi= D di

* Average shortest path length to all other nodes
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Static Betweenness Centrality

° Cbet — E . 55 t(Z) where d4; is # shortest paths from s to ¢
{2 ’L#S#t 6st 0s¢(7) is # shortest paths passing through 4

* Fraction of shortest paths which pass through node i




Temporal Centrality Measures

* Static Closeness and Betweenness based on
static shortest paths

* Definition of closeness and betweenness with
temporal paths:
— Duration
— Time Order
— Frequency



Temporal Closeness

Average over shortest temporal paths to all
other nodes:

C’iz Zd
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Temporal Closeness

(24+2)+(3+3+3)

Cy= = 0.867
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Temporal Betweenness

e Using temporal path length
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Temporal Betweenness

* Take into account duration
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Temporal Betweenness

Co) = oD 2 2 g MJ’

jGV’%iV Jk’
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Where:

- U(Z, t, j, ]{3) number of shortest paths from j to k, where node i is
holding a message at time window t

| | number of shortest temporal paths between jand k



Temporal Betweenness

Sum over all time windows for each node:

w
CP = Z ((t X W) + tmin)



Evaluating Centrality

* Corporate Email Dataset

* Two perspectives:
— Semantic: roles of each node

— Dynamic Processes: simulate communication
* Information Dissemination
* Information Mediation



Evaluating Centrality:

Herman Miller
LEAST ADMIRED
Trump Hotels & Casinos
Fruitof the Loom

f Shoney's

Enron in the News

JEFFREY SKILLING

remains a true believer

ENE Daily =

Enron Corporation









L I F E NEWS CELEBRITY TRAVEL ANIMALS

Return to Search Results.
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Public Investigation

Telephone logs
Documents
Financials 459

Emails

- 151 user mailboxes

- May 1999 to Jun 2002
- 250,000 emails

- NOT anonymised

Mirco Musolesi



Email exchanges to Temporal Graph

* Core 151 users
* Window size= 1 business day

* 1137 days




Static BETWEENNESS

Static CLOSENESS.

Semantics
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013, 048, 067

1D Role

009 (Unknown)

013 Legal

017 Manager

048 Executive

053 Trader

054 President

067 Vice President

073 Trader

075  Director of Trading

107 Trader
anaging Director

127 Manager

139 Director

147 Trader

150 Secretary




Semantics

ID Name Role
9  Stephanie Panus (Unknown)
13 Marie Heard Legal
17 Mike Grigsby Manager
48 Tana Jones Executive
53 John Lavorato Trader
54 Greg Whalley President
67  Sara Shackleton Vice President
73 Jeff Dasovich Trader
75 Gerald Nemec  Director of Trading
107  Louise Kitchen Trader
122 Sally Beck Managing Director
127 Kenneth Lay Manager
139 Mary Hain Director
147 Carol Clair Trader
150 Liz "laylor Secretary

W .com./LAWCENTER

Top bonuses awarded

[r—

Big bonuses linked with information

Mirco Musolesi

John Lavorato: $5 million

Louise Kitchen: $2 million
efirey McManon: 51.

million

James Fallon: $1.5 million

Raymond Bowen Jr.:

$750,000

Mark Haedicke: $750,000

Gary Hickerson: $700,000

Wesley Colwell: $600,000

Richard Dimichele:
eANN NNN

mediators




Small-world Behaviour

in Time-Varying Networks

BrJétooth
(INFOCOM'06)

Facebook
London
Network

| C Cw'and L Lrand E Eran.d
o (044 018 3.9 (100%) 4.2 (98%)  0.50 0.48
81040 017 6.0 (94%) 3.6 (92%)  0.41 0.45
v 1048 013 12.2 (86%) 8.7 (89%)  0.39 0.37
51044 017 22 (100%) 24 (92%) 057 0.56
dl [ 0.80 044 884 (61%) 6.00 (65%) 0.192  0.209
d2 | 0.78  0.35 5.04 (87%) 4.01 (88%) 0.293  0.298
d3 | 081 0.38 9.06 (57%) 6.76 (59%) 0.134  0.141
d4 | 0.83 0.39 2142 (15%) 15.55(22%) 0.019  0.028
Mar|0.044 0.007 456 451 0.000183 0.000210
Jun [0.046 0.006 380 361 0.000047 0.000057
Sep [0.046 0.006 414 415 0.000058 0.000074
Dec [0.049 0.006 403 395 0.000047 0.000059
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What’s Next?

Analysis vs Prediction
Multi-dimensional networks

Integration of the geographic aspects: spatio-
temporal analysis

Application to security problems

System issues: design of scalable systems for
real-time data processing



Introduction to Dynamic Networks Models, Algorithms,
and Analysis
Rajmohan Rajaraman, Northeastern University
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Introduction to Dynamic Networks
Models, Algorithms, and Analysis

Rajmohan Rajaraman, Northeastern U.

www.ccs.neu.edu/home/rraj/Talks/DynamicNetworks/DYNAMO/
June 2006

Introduction to Dynamic Networks 1



Many Thanks to...

e Filipe Araujo, Pierre Fraigniaud, Luis Rodrigues,
Roger Wattenhofer, and organizers of the summer
school

e All the researchers whose contributions will be
discussed in this tutorial

Introduction to Dynamic Networks



What is a Network?
D

7

4 V4

————

General undirected or directed graph

Ll

Introduction to Dynamic Networks



Classification of Networks

e Synchronous: e Static:
- Messages delivered - Nodes never crash
within one time unit - Edges maintain
- Nodes have access to a operational status forever

common clock

e Dynamic:
e Asynchronous: - Nodes may come and go
- Message delays are - Edges may crash and
arbitrary recover

— No common clock

Introduction to Dynamic Networks



Dynamic Networks: What?

e Network dynamics:
- The network topology changes over times
- Nodes and/or edges may come and go
- Captures faults and reliability issues
e Input dynamics:
- Load on network changes over time
- Packets to be routed come and go
- Objects in an application are added and deleted

Introduction to Dynamic Networks



Dynamic Networks: How?

e Duration:

- Transient: The dynamics occur for a short
period, after which the system is static for an
extended time period

- Continuous: Changes are constantly occurring
and the system has to constantly adapt to
them

e Control:
— Adversarial
- Stochastic
- Game-theoretic

Introduction to Dynamic Networks



Dynamic Networks are Everywhere

e Internet

- The network, traffic, applications are all
dynamically changing

e Local-area networks
- Users, and hence traffic, are dynamic

e Mobile ad hoc wireless networks
- Moving nodes
- Changing environmental conditions

e Communication networks, social networks,
Web, transportation networks, other
infrastructure

Introduction to Dynamic Networks



Adversarial Models

e Dynamics are controlled by an adversary

- Adversary decides when and where changes
occur

- Edge crashes and recoveries, node arrivals and
departures

- Packet arrival rates, sources, and destinations
e For meaningful analysis, need to constrain

adversary

- Maintain some level of connectivity

- Keep packet arrivals below a certain rate

Introduction to Dynamic Networks



Stochastic Models

e Dynamics are described by a probabilistic
process
- Neighbors of new nodes randomly selected

- Edge failure/recovery events drawn from some
probability distribution

- Packet arrivals and lengths drawn from some
probability distribution

e Process parameters are constrained

- Mean rate of packet arrivals and service time
distribution moments

- Maintain some level of connectivity in network

Introduction to Dynamic Networks



Game-Theoretic Models

e Implicit assumptions in previous two
models:
- All network nodes are under one administration
- Dynamics through external influence

e Here, each node is a potentially
independent agent
- Own utility function, and rationally behaved
- Responds to actions of other agents
- Dynamics through their interactions

e Notion of stability:
- Nash equilibrium

Introduction to Dynamic Networks 10



Design & Analysis Considerations

Distributed computing:
- For static networks, can do pre-processing

- For dynamic networks (even with transient dynamics),
need distributed algorithms

Stability:

- Transient dynamics: Self-stabilization

- Continuous dynamics: Resources bounded at all times
- Game-theoretic: Nash equilibrium

Convergence time

Properties of stable states:

- How much resource is consumed?

- How well is the network connected?

- How far is equilibrium from socially optimal?

Introduction to Dynamic Networks



Five Illustrative Problem Domains

e Spanning trees

- Transient dynamics, self-stabilization

Load balancing

- Continuous dynamics, adversarial input
Packet routing

- Transient & continuous dynamics, adversarial
Queuing systems

- Adversarial input

Network evolution

- Stochastic & game-theoretic

Introduction to Dynamic Networks



Spanning Trees

Introduction to Dynamic Networks
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Spanning Trees

¢ One of the most fundamental network structures

e Often the basis for several distributed system
operations including leader election, clustering,
routing, and multicast

e Variants: any tree, BFS, DFS, minimum spanning
trees

Introduction to Dynamic Networks 14



Spanning Tree in a Static Network

Assumption: Every node has a unique identifier
The largest id node will become the root

Each node v maintains distance d(v) and next-hop h(v) to
largest id node r(v) it is aware of:

- Node v propagates (d(v),r(v)) to neighbors

- If message (d,r) from u with r > r(v), then store (d+1,r,u)

- If message (d,r) from p(v), then store (d+1,r,p(v))

Introduction to Dynamic Networks 15



Spanning Tree in a Dynamic Network

e Suppose node 8 crashes
e Nodes 2, 4, and 5 detect the crash

e Each separately discards its own triple, but believes it can
reach 8 through one of the other two nodes
- Can result in an infinite loop

¢ How do we design a self-stabilizing algorithm?

Introduction to Dynamic Networks 16



Exercise

Consider the following spanning tree algorithm in
a synchronous network

Each node v maintains distance d(v) and next-

hop h(v) to largest id node r(v) it is aware of

In each step, node v propagates (d(v),r(v)) to

neighbors

On receipt of a message:

- If message (d,r) from u with r > r(v), then store
(d+1,r,u)

- If message (d,r) from p(v), then store (d+1,r,p(v))

Show that there exists a scenario in which a node

fails, after which the algorithm never stabilizes

Introduction to Dynamic Networks 17



Self-Stabilization

Introduced by Dijkstra [Dij74]

- Motivated by fault-tolerance issues [Sch93]

- Hundreds of studies since early 90s

A system S is self-stabilizing with respect to
predicate P

- Once P is established, P remains true under no dynamics

- From an arbitrary state, S reaches a state satisfying P
within finite number of steps

Applies to transient dynamics

Super-stabilization notion introduced for
continuous dynamics [DH97]

Introduction to Dynamic Networks



Self-Stabilizing ST Algorithms

e Dozens of self-stabilizing algorithms for finding
spanning trees under various models [Gar03]
- Uniform vs non-uniform networks
- Fixed root vs non-fixed root
- Known bound on the number of nodes
- Network remains connected

e Basic idea:
- Some variant of distance vector approach to build a BFS
- Symmetry-breaking
e Use distinguished root or distinct ids
- Cycle-breaking
e Use known upper bound on number of nodes
e Local detection paradigm

Introduction to Dynamic Networks



Self-Stabilizing Spanning Tree

Suppose upper bound N known on number of nodes [AG90]
Each node v maintains distance d(v) and parent h(v) to
largest id node r(v) it is aware of:

- Node v propagates (d(v),r(v)) to neighbors

- If message (d,r) from u with r > r(v), then store (d+1,r,u)

- If message (d,r) from p(v), then store (d+1,r,p(v))

If d(v) exceeds N, then store (0,v,v): breaks cycles

Introduction to Dynamic Networks 20



Self-Stabilizing Spanning Tree

e Suppose upper bound N not known [AKY90]
e Maintain triple (d(v),r(v),p(v)) as before
- If v > r(u) of all of its neighbors, then store
(0,v,v)
- If message (d,r) received from u with r > r(v),
then v “joins” this tree
e Sends a join request to the root r
e On receiving a grant, v stores (d+1,r,u)

- Other local consistency checks to ensure that
cycles and fake root identifiers are eventually
detected and removed

Introduction to Dynamic Networks 21



Spanning Trees: Summary

Model:
- Transient adversarial network dynamics
Algorithmic techniques:

- Symmetry-breaking through ids and/or a distinguished
root

- Cycle-breaking through sequence numbers or local
detection

Analysis techniques:

- Self-stabilization paradigm

Other network structures:

- Hierarchical clustering

- Spanners (related to metric embeddings)

Introduction to Dynamic Networks
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Load Balancing

Introduction to Dynamic Networks
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Load Balancing

Each node v has w(v) tokens

Goal: To balance the tokens among the nodes
Imbalance: max, , [w(u) - W4l

In each step, each node can send at most one
token to each of its neighbors

Introduction to Dynamic Networks
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Load Balancing

In a truly balanced configuration, we have |w(u) - w(v)| <

Our goal is to achieve fast approximate balancing
Preprocessing step in a parallel computation
Related to routing and counting networks [PU89, AHS91]

Introduction to Dynamic Networks
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Local Balancing

e Each node compares its
number of tokens with its
neighbors
e In each step, for each
edge (u,v): I
- If w(u) > w(v) + 2d, then u
sends a token to v
- Here, d is maximum degree
of the network .

e Purely local operation

Introduction to Dynamic Networks
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Convergence to Stable State

e How long does it take local balancing to
converge?

e What does it mean to converge?
- Imbalance is “constant” and remains so

e What do we mean by “how long”?

- The number of time steps it takes to achieve
the above imbalance

- Clearly depends on the topology of the network
and the imbalance of the original token
distribution

Introduction to Dynamic Networks 27



Expansion of a Network

e Edge expansion a:
- Minimum, over all sets S of size
< n/2, of the term
[E(S)I/1S]
e Lower bound on convergence
time:
(W(S) - [S|-W,,g)/E(S)
= (W(S)/IS] - W,ayg)/ @

Expansion =12/6=2
=3
Lower bound = (29 - 18)/12

Introduction to Dynamic Networks 28



Properties of Local Balancing

e For any network G with expansion o, any
token distribution with imbalance A converges
to a distribution with imbalance O(d:-log(n)/ a)
in O(A/ o) steps [AAMR93, GLM+99]

e Analysis technique:
- Associate a potential with every node v, which is a
function of the w(v)
e Example: (w(v) - avg)?, cw(v)-avg
¢ Potential of balanced configuration is small
- Argue that in every step, the potential decreases by
a desired amount (or fraction)
- Potential decrease rate yields the convergence time

e There exist distributions with imbalance A that
would take Q(A/ o) steps

Introduction to Dynamic Networks
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Exercise

e For any graph G with edge expansion «,
show that there is an initial distribution
with imbalance A such that the time taken

to reduce the imbalance by even half is
Q(A/ o) steps

Introduction to Dynamic Networks 30
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Local Balancing in Dynamic Networks

e The “purely local” nature of the algorithm useful
for dynamic networks
e Challenge:

- May not “know” the correct load on neighbors since
links are going up and down
e Key ideas:
- Maintain an estimate of the neighbors’ load, and
update it whenever the link is live
- Be more conservative in sending tokens
e Result:
- Essentially same as for static networks, with a slightly
higher final imbalance, under the assumption that the

the set of live edges form a network with edge
expansion a at each step
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Adversarial Load Balancing

Dynamic load [MR02]

- Adversary inserts and/or
deletes tokens

In each step:

- Balancing

- Token insertion/deletion

For any set S, let d(S) be

the change in number of

tokens at step t

Adversary is constrained in

how much imbalance can

be increased in a step

Local balancing is stable

against rate 1 adversaries  d(S) — (avg,, —avg)[S| <1 - e(S)

[AKKO02]

ALL

</ [T
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Stochastic Adversarial Input

Studied under a different model [AKUO5]

- Any number of tokens can be exchanged per step, with
one neighbor

Local balancing in this model [GM96]

- Select a random matching

- Perform balancing across the edges in matching
Load consumed by nodes

- One token per step

Load placed by adversary under statistical
constraints

- Expected injected load within window of w steps is at
most rnw

- The pth moment of total injected load is bounded, p > 2
Local balancing is stable if r < 1

Introduction to Dynamic Networks

33



Load Balancing: Summary

e Algorithmic technique:
- Local balancing
e Design technique:

- Obtain a purely distributed solution for static
network, emphasizing local operations

- Extend it to dynamic networks by maintaining
estimates

¢ Analysis technique:
- Potential function method
- Martingales

Introduction to Dynamic Networks
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Today: In class work

» Implement framework for dynamic graph analysis
» Implement temporal BFS

» (Maybe) implement temporal load balancing

Blank code and data available on website
(Lecture 21)
www.cs.rpi.edu/~slotag/classes/FA16/index.html

10/10



