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Reminders

I Assignment 6: due date Dec 8th

I Final Project Presentation: December 8th

I Project Report: December 11th
I Intro, Background and Prior Work, Methodology,

Experiments, Results
I Submit as PDF

I Office hours: Tuesday & Wednesday 14:00-16:00 Lally
317

I Or email me for other availability
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Quick Review

Graphs as Matrices:

I Graph edges → adjacency matrix

I Graph algorithms → linear algebraic operations
I BFS → AT x iteratively

I Why?
I Develop abstraction for domain scientists to work with
I Matrix and vector operations have been highly studied

and optimized for all architectures
I Allow developed algorithms to be machine-independent

(“future-proof”)
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CUDA Overview

Cliff Woolley, NVIDIA

Developer Technology Group



GPUCPU

GPGPU Revolutionizes Computing
Latency Processor + Throughput processor



Low Latency or High Throughput?

CPU

Optimized for low-latency 

access to cached data sets

Control logic for out-of-order 

and speculative execution

GPU

Optimized for data-parallel, 

throughput computation

Architecture tolerant of 

memory latency

More transistors dedicated to 

computation



Low Latency or High Throughput?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor

Computation Thread/Warp

Tn Processing

Waiting for data

Ready to be processed

Context switch

W1

W2

W3

W4

T1 T2 T3 T4



Processing Flow

1. Copy input data from CPU memory to GPU 

memory

PCIe Bus



Processing Flow

1. Copy input data from CPU memory to GPU 

memory

2. Load GPU program and execute,

caching data on chip for performance

PCIe Bus



Processing Flow

1. Copy input data from CPU memory to GPU 

memory

2. Load GPU program and execute,

caching data on chip for performance

3. Copy results from GPU memory to CPU 

memory

PCIe Bus



GPU ARCHITECTURE



GPU Architecture:

Two Main Components

Global memory
Analogous to RAM in a CPU server

Accessible by both GPU and CPU

Currently up to 6 GB

Bandwidth currently up to 150 GB/s for Quadro and 
Tesla products

ECC on/off option for Quadro and Tesla products

Streaming Multiprocessors (SMs)
Perform the actual computations

Each SM has its own:

Control units, registers, execution pipelines, caches
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GPU Architecture – Fermi:

Streaming Multiprocessor (SM)

32 CUDA Cores per SM

32 fp32 ops/clock

16 fp64 ops/clock

32 int32 ops/clock

2 warp schedulers

Up to 1536 threads 

concurrently

4 special-function units

64KB shared mem + L1 cache

32K 32-bit registers

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core
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Core

Instruction Cache



GPU Architecture – Fermi:

CUDA Core

Floating point & Integer unit

IEEE 754-2008 floating-point 

standard

Fused multiply-add (FMA) 

instruction for both single and 

double precision

Logic unit

Move, compare unit

Branch unit

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

CUDA Core
Dispatch Port

Operand Collector

Result Queue

FP Unit INT Unit



GPU Architecture – Fermi:

Memory System

L1

16 or 48KB / SM, can be chosen by the program

Hardware-managed

Aggregate bandwidth per GPU: 1.03 TB/s

Shared memory

User-managed scratch-pad

Hardware will not evict until threads overwrite

16 or 48KB / SM (64KB total is split between Shared and L1)

Aggregate bandwidth per GPU: 1.03 TB/s



GPU Architecture – Fermi:

Memory System

ECC protection:

DRAM

ECC supported for GDDR5 memory

All major internal memories are ECC protected

Register file, L1 cache, L2 cache



C2050 Specifications

Processor clock 1.15 GHz

# of CUDA cores 448

Peak floating-point perf 1.03 Tflops (SP)

Memory clock 1.5 GHz

Memory bus width 384 bit

Memory size 3 GB / 6 GB

Overview of Tesla C2050/C2070 GPU



CUDA PROGRAMMING MODEL



Anatomy of a CUDA C/C++ Application

Serial code executes in a Host (CPU) thread

Parallel code executes in many Device (GPU) threads

across multiple processing elements

CUDA C/C++ Application

Serial code

Serial code

Parallel code

Parallel code

Device = GPU

…

Host = CPU

Device = GPU

...

Host = CPU



Compiling CUDA C Applications

void serial_function(… ) {

...

}

void other_function(int ... ) {

...

}

void saxpy_serial(float ... ) {

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

void main( ) {

float x;

saxpy_serial(..);

...

}

NVCC

(Open64)
CPU Compiler

CUDA C

Functions

CUDA object

files

Rest of C

Application

CPU object

files
Linker

CPU-GPU

Executable

Modify into 

Parallel 

CUDA C code



CUDA C : C with a few keywords

void saxpy_serial(int n, float a, float *x, float *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

// Invoke serial SAXPY kernel

saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n)  y[i] = a*x[i] + y[i];

}

// Invoke parallel SAXPY kernel with 256 threads/block

int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Standard C Code

Parallel C Code



CUDA C : C with a few keywords

Kernel: function called by the host that executes on the GPU
Can only access GPU memory

No variable number of arguments

No static variables

Functions must be declared with a qualifier:
__global__ : GPU kernel function launched by CPU, must return void

__device__ : can be called from GPU functions

__host__    : can be called from CPU functions (default)

__host__ and __device__ qualifiers can be combined



CUDA Kernels

Parallel portion of application: execute as a kernel

Entire GPU executes kernel, many threads

CUDA threads:

Lightweight

Fast switching

1000s execute simultaneously

CPU Host Executes functions

GPU Device Executes kernels



CUDA Kernels: Parallel Threads

A kernel is a function executed 

on the GPU as an array of 

threads in parallel

All threads execute the same 

code, can take different paths

Each thread has an ID

Select input/output data

Control decisions

float x = input[threadIdx.x];

float y = func(x);

output[threadIdx.x] = y;



CUDA Kernels: Subdivide into Blocks



CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks



CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid



CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads



CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads

GPU



Kernel Execution

• Each kernel is executed on 

one device

• Multiple kernels can execute 

on a device at one time

…
…
…

CUDA-enabled GPU

CUDA thread • Each thread is executed by a 

core

CUDA core

CUDA thread block

• Each block is executed by 

one SM and does not migrate

• Several concurrent blocks can 

reside on one SM depending 

on the blocks’ memory 

requirements and the SM’s 

memory resources

…

CUDA Streaming 

Multiprocessor

CUDA kernel grid

...



Thread blocks allow cooperation

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Threads may need to cooperate:

Cooperatively load/store blocks of 

memory all will use

Share results with each other or 

cooperate to produce a single result

Synchronize with each other



Thread blocks allow scalability

Blocks can execute in any order, concurrently or sequentially

This independence between blocks gives scalability:

A kernel scales across any number of SMs

Device with 2 SMs

SM 0 SM 1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel Grid 

Launch

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Device with 4 SMs

SM 0 SM 1 SM 2 SM 3

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7



CUDA MEMORY SYSTEM



Memory hierarchy

Thread:

Registers



Memory hierarchy

Thread:

Registers

Local memory

Local Local Local Local Local Local Local



Memory hierarchy

Thread:

Registers

Local memory

Block of threads:

Shared memory



Memory hierarchy : Shared memory

__shared__ int a[SIZE];

Allocated per thread block, same 

lifetime as the block

Accessible by any thread in the 

block

Latency: a few cycles

High aggregate bandwidth:

14 * 32 * 4 B * 1.15 GHz / 2 = 1.03 TB/s

Several uses:

Sharing data among threads in a 

block

User-managed cache (reducing 

gmem accesses)



Memory hierarchy

Thread:

Registers

Local memory

Block of threads:

Shared memory

All blocks:

Global memory



Memory hierarchy : Global memory

Accessible by all threads of any 

kernel

Data lifetime: from allocation to 

deallocation by host code
cudaMalloc (void ** pointer, size_t nbytes)

cudaMemset (void * pointer, int value, size_t

count)

cudaFree (void* pointer)

Latency: 400-800 cycles

Bandwidth: 156 GB/s

Note: requirement on access pattern to 

reach peak performance



Kight’s Landing (KNL) - Xeon Phi
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Knights Landing (KNL):  
2nd Generation Intel® Xeon Phi™ 
Processor 

Avinash Sodani 

KNL Chief Architect 

Senior Principal Engineer, Intel Corp. 



    

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,  

BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR 

SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS  

OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, 

MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE 

INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND 
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Intel may make changes to specifications and product descriptions at any time, without notice. 

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice. 

Intel processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current 

characterized errata are available on request. 

Any code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release.  Customers, licensees and other third 

parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole 

risk of the user. 

Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel’s current plan of record product 

roadmaps.  

Performance claims: Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark 

and MobileMark, are measured using specific computer systems, components, software, operations and functions.  Any change to any of those factors may cause the results to 

vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when 

combined with other products. For more information go to  

http://www.Intel.com/performance  
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Legal  



Knights Landing: Next Intel® Xeon Phi™ Processor  

First self-boot Intel® Xeon Phi™ processor that is binary 
compatible with main line IA. Boots standard OS.  

Significant improvement in scalar and vector performance 

Integration of Memory on package: innovative memory 
architecture for high bandwidth and high capacity  

Integration of Fabric on package 

Potential future options subject to change without notice.  
All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification. 

Three products 

KNL Self-Boot     KNL Self-Boot w/ Fabric        KNL Card 

(Baseline)                  (Fabric Integrated)                (PCIe-Card) 
 

Intel® Many-Core Processor targeted for HPC and Supercomputing 



Knights Landing Overview 

Chip: 36 Tiles interconnected by 2D Mesh 

Tile: 2 Cores + 2 VPU/core + 1 MB L2 

 

Memory: MCDRAM: 16 GB on-package; High BW 

                  DDR4: 6 channels @ 2400  up to 384GB  

IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset 

Node: 1-Socket only 

Fabric: Omni-Path on-package (not shown) 

 

Vector Peak Perf: 3+TF DP and 6+TF SP Flops 

Scalar Perf: ~3x over Knights Corner 

Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+ 

TILE 

4 

2 VPU 

Core 

2 VPU 

Core 

 
1MB 
L2 

CHA 

Package 

Source Intel:  All products, computer systems, dates and figures specified are preliminary based on current expectations, and 

are subject to change without notice. KNL data are preliminary based on current expectations and are subject to change 

without notice. 1Binary Compatible with Intel Xeon processors using Haswell Instruction Set (except TSX). 2Bandwidth 

numbers are based on STREAM-like memory access pattern when MCDRAM used as flat memory. Results have been 

estimated based on internal Intel analysis and are provided for informational purposes only.  Any difference in system 

hardware or software design or configuration may affect actual performance.  Omni-path not shown 

EDC EDC PCIe 
Gen 3

EDC EDC

Tile

DDR MC DDR MC

EDC EDC misc EDC EDC

36 Tiles 
connected by 

2D Mesh 
Interconnect

MCDRAM MCDRAM MCDRAM MCDRAM
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KNL Tile: 
2 Cores, each with 2 VPU  

1M L2 shared between two Cores 

2 VPU: 2x AVX512 units. 32SP/16DP per unit. X87, SSE, AVX1, AVX2 and EMU 

Core: Changed from Knights Corner (KNC) to KNL. Based on 2-wide OoO 

Silvermont™ Microarchitecture, but with many changes for HPC.  

4 thread/core. Deeper OoO. Better RAS. Higher bandwidth. Larger TLBs. 

L2: 1MB 16-way. 1 Line Read and ½ Line Write per cycle. Coherent across all Tiles 

CHA: Caching/Home Agent. Distributed Tag Directory to keep L2s coherent. MESIF 

protocol. 2D-Mesh connections for Tile 
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Many Trailblazing Improvements in KNL 
Improvements What/Why 

Self Boot Processor No PCIe bottleneck 

Binary Compatibility with Xeon Runs all legacy software. No recompilation. 

New Core: Atom™ based ~3x higher ST performance over KNC 

Improved Vector density 3+ TFLOPS (DP) peak per chip 

New AVX 512 ISA New 512-bit Vector ISA with Masks 

Scatter/Gather Engine Hardware support for gather and scatter 

New memory technology: 
MCDRAM + DDR 

Large High Bandwidth Memory  MCDRAM 
Huge bulk memory  DDR 

New on-die interconnect: Mesh High BW connection between cores and memory 

Integrated Fabric: Omni-Path Better scalability to large systems. Lower Cost 
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, 
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated 
purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance  Results have been estimated based on internal Intel analysis and are provided 
for informational purposes only.  Any difference in system hardware or software design or configuration may affect actual performance.  



Core & VPU 
 Out-of-order core w/ 4 SMT threads 

 VPU tightly integrated with core pipeline 

 

 2-wide Decode/Rename/Retire  

 ROB-based renaming. 72-entry ROB & Rename 
Buffers 

 Up to 6-wide at execution 

 Int and FP RS OoO.  

 MEM RS inorder with OoO completion. Recycle Buffer 
holds memory ops waiting for completion. 

 Int and Mem RS hold source data. FP RS does  not. 

 

 2x 64B Load & 1 64B Store ports in Dcache.  

 1st level uTLB: 64 entries 

 2nd level dTLB: 256 4K, 128 2M, 16 1G pages 

 

 L1 Prefetcher (IPP) and L2 Prefetcher.  

 46/48 PA/VA bits  

 Fast unaligned and cache-line split support.  

 Fast Gather/Scatter support 
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Icache 
(32KB 8-way) 

Fetch & 
Decode 

Bpred 

Allocate/ 
Rename 

Retire 

FP RS 
(20) 

FP RS 
(20) 

Vector 
ALUS 

Vector 
ALUs 

MEM 
RS(12) 

FP Rename Buffers 

Integer Rename Buffer 

Integer RF 

Int RS 
(12) 

Int RS 
(12) 

ALU 
Dcache 

(32KB 8-way) 

TLBs 

FP RF 

ALU 

Recycle 
Buffer 

Legacy 

iTLB 



Threading 
 4 Threads per core. Simultaneous 

Multithreading. 

 Core resources shared or 
dynamically repartitioned 
between active threads 

 ROB, Rename Buffers, RS: 
Dynamically partitioned 

 Caches, TLBs: Shared 

 E.g., 1 thread active  uses full 
resources of the core 

 Several Thread Selection points in 
the pipeline. (    ) 

 Maximize throughput while being 
fair. 

 Account for available resources, 
stalls and forward progress 
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Icache 
(32KB 8-way) 

Fetch & 
Decode 

Bpred 

Allocate/ 
Rename 

Retire 

FP RS 
(20) 

FP RS 
(20) 

Vector 
ALUS 

Vector 
ALUs 

MEM 
RS(12) 

FP Rename Buffers 

Integer Rename Buffer 

Integer RF 

Int RS 
(12) 

Int RS 
(12) 

ALU 
Dcache 

(32KB 8-way) 

TLBs 

FP RF 

ALU 

Recycle 
Buffer 

Legacy 

iTLB 



KNL ISA 
E5-2600 
(SNB1) 

SSE* 

AVX 

E5-2600v3 
(HSW1) 

SSE* 

AVX 

AVX2 

AVX-512CD 

x87/MMX x87/MMX 

KNL 
(Xeon Phi2) 

SSE* 

AVX 

AVX2 

x87/MMX 

AVX-512F 

BMI 

AVX-512ER 

AVX-512PF 

BMI 

TSX 

KNL implements all legacy instructions 

• Legacy binary runs w/o recompilation 

• KNC binary requires recompilation 

 

 

KNL introduces AVX-512 Extensions 

• 512-bit  FP/Integer Vectors 

• 32 registers, & 8 mask registers 

• Gather/Scatter 
 

Conflict Detection: Improves Vectorization 

Prefetch: Gather and Scatter Prefetch 

Exponential and Reciprocal Instructions 

LE
G

A
C

Y
 

No TSX. Under separate 
CPUID bit 

1. Previous Code name Intel® Xeon® processors 
2. Xeon Phi = Intel® Xeon Phi™ processor 
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Memory Modes 

Hybrid Mode 

DDR 
4 or 8 GB 
MCDRAM 

8 or 12GB 
MCDRAM 

16GB 
MCDRAM 

DDR 

Flat Mode 
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DDR 
16GB 

MCDRAM 

Cache Mode 

• SW-Transparent, Mem-side cache 
• Direct mapped. 64B lines. 
• Tags part of line 
• Covers whole DDR range 

Three Modes. Selected at boot 
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• MCDRAM as regular memory 
• SW-Managed 
• Same address space 

• Part cache, Part memory 
• 25% or 50% cache 
• Benefits of both 



Flat MCDRAM: SW Architecture 

Memory allocated in DDR by default  Keeps non-critical data out of MCDRAM.  

Apps explicitly allocate critical data in MCDRAM. Using two methods:  

 “Fast Malloc” functions in High BW library (https://github.com/memkind)  

 Built on top to existing libnuma API 

 “FASTMEM” Compiler Annotation for Intel Fortran 
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Flat MCDRAM with existing NUMA support in Legacy OS 

 Node 0 

Xeon Xeon DDR DDR KNL 
MC 

DRAM DDR 

MCDRAM exposed as a separate NUMA node 

Node 1 Node 0 Node 1 

Xeon with 2 NUMA nodes KNL with 2 NUMA nodes 

≈ 



Flat MCDRAM SW Usage: Code Snippets 

float   *fv; 

fv = (float *)malloc(sizeof(float)*100); 
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Allocate into DDR 

float   *fv; 

fv = (float *)hbw_malloc(sizeof(float) * 100); 

Allocate into MCDRAM 

c     Declare arrays to be dynamic 

      REAL, ALLOCATABLE :: A(:) 

 

!DEC$ ATTRIBUTES, FASTMEM :: A 

 

      NSIZE=1024 

c     allocate array ‘A’ from MCDRAM 

c  

      ALLOCATE (A(1:NSIZE)) 

Allocate into MCDRAM 

C/C++    (*https://github.com/memkind) Intel Fortran 



KNL Mesh Interconnect 
Mesh of Rings 

 Every row and column is a (half) ring 

 YX routing: Go in Y  Turn  Go in X 

 Messages arbitrate at injection and on 
turn 

 

Cache Coherent Interconnect 

 MESIF protocol (F = Forward) 

 Distributed directory to filter snoops 

 

Three Cluster Modes 

(1) All-to-All (2) Quadrant (3) Sub-NUMA 
Clustering 

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

MCDRAM MCDRAM MCDRAM MCDRAM 

MCDRAM MCDRAM MCDRAM MCDRAM 



Cluster Mode: All-to-All 
Address uniformly hashed across all 
distributed directories 
 

No affinity between Tile, Directory and 
Memory 

 

Most general mode. Lower 
performance than other modes.  

 

Typical Read L2 miss 

1. L2 miss encountered 

2. Send request to the distributed directory 

3. Miss in the directory. Forward to memory 

4. Memory sends the data to the requestor 
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Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1 

2 

3 

4 

MCDRAM MCDRAM MCDRAM MCDRAM 

MCDRAM MCDRAM MCDRAM MCDRAM 



Cluster Mode: Quadrant 
Chip divided into four virtual 
Quadrants 

 

Address hashed to a Directory in 
the same quadrant as the Memory 

 

Affinity between the Directory and 
Memory 

 

Lower latency and higher BW than 
all-to-all.  SW Transparent. 
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1) L2 miss,  2) Directory access,  3) Memory access,  4) Data return 

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1 

2 

3 

4 

MCDRAM MCDRAM MCDRAM MCDRAM 

MCDRAM MCDRAM MCDRAM MCDRAM 



Cluster Mode: Sub-NUMA Clustering (SNC) 

Each Quadrant (Cluster) exposed as a 

separate NUMA domain to OS. 

 

Looks analogous to 4-Socket Xeon 

 

Affinity between Tile, Directory and 
Memory 

 

Local communication. Lowest latency 
of all modes.  

 

SW needs to NUMA optimize to get 
benefit.  
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1) L2 miss,  2) Directory access,  3) Memory access,  4) Data return 
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KNL with Omni-Path™  
Omni-Path™ Fabric integrated on package 

 

First product with integrated fabric 

 

Connected to KNL die via 2 x16 PCIe* ports 

Output: 2 Omni-Path ports  
 25 GB/s/port (bi-dir) 

 

Benefits  

 Lower cost, latency and power 

 Higher density and bandwidth 

 Higher scalability 
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KNL 

16 GB 
MCDRAM 

Omni 
Path 

x16 PCIe* 

DDR 4 

Omni 
Path 
ports 
100 
Gb/s/
port 

X4 PCIe 

Package 

*On package connect with PCIe semantics, with MCP optimizations for physical layer 
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Root Port  

1x4 
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 PCIe 
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KNL  KNL Card KNL with Omni-Path 

DDR Channels: 6 

MCDRAM: up to 16 GB 

Gen3 PCIe (Root port): 36 lanes 

DDR Channels: 6 

MCDRAM: up to 16 GB 

Gen3 PCIe (Root port): 4 lanes 

Omni-Path Fabric: 200 Gb/s/dir 

No DDR Channels 

MCDRAM: up to 16 GB 

Gen3 PCIe (End point): 16 lanes 

NTB Chip to create PCIe EP 

Self Boot Socket PCIe Card 

C
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 PCIe 
Root port  

2x16 
1x4 

Potential future options subject to change without notice. Codenames. 

All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification. 
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Graphs are...

Everywhere

Internet
Social, communication networks
Computational biology and
chemistry
Scientific computing, meshing,
interactions

Figure sources: Franzosa et al. 2012, http://www.unc.edu/ unclng/Internet History.htm
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Graphs are...

Complex

Graph analytics is listed as one of DARPA’s 23 toughest
mathematical challenges
Highly diverse – graph structure and problems vary from
application to application
Real-world graph characteristics makes computational
analysis challenging

Skewed degree distributions
‘Small-world’ nature
Dynamic
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Accelerators (GPUs, Xeon Phi) are also ...

Everywhere

Most of the top supercomputers
and academic clusters use GPUs
and Intel Xeon Phi co-processors
Manycore processors might
replace multicore in future

Complex

Multilevel memory, processing
hierarchy
Explicit communication and data
handling
Require programming for wide
parallelism

Figure sources: NCSA, NVIDIA
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Motivating questions for this work

Q: What are some common abstractions that we can
use to develop parallel graph algorithms for manycores?

Q: What key optimization strategies can we identify
to design new parallel graph algorithms for manycores?

Q: Is it possible to develop performance-portable
implementations of graph algorithms using advanced
libraries and frameworks using the above optimizations
and abstractions?



Our contributions

Q: Common abstractions for manycores?

We use array-based data structures, express computation
in the form of nested loops.

Q: Key optimization strategies

We improve load balance by manual loop collapse.

Q: Performance-portable implementations of graph
algorithms using advanced libraries and frameworks?

We use Kokkos (Edwards et al., JPDC 2014).

We compare high-level implementations using new
framework to hand-optimized code + vary graph
computations + vary graph inputs + vary manycore
platform.



Talk Overview

Manycores and the Kokkos programming model

Abstracting graph algorithms

Optimizing for manycore processing

Algorithms

Results



Background
GPU and Xeon Phi microarchitecture

GPU

Multiprocessors (up to about 15/GPU)
Multiple groups of stream processors per MP (12×16)
Warps of threads all execute SIMT on single group of
stream processors (32 threads/warp, two cycles per
instruction)
Irregular computation (high degree verts, if/else, etc.)
can result in most threads in warp doing NOOPs

Xeon Phi (MIC)

Many simple (Pentium 4) cores, 57-61
4 threads per core, need at least 2 threads/core for OPs
on each cycle
Highly vectorized (512 bit width) - difficult for irregular
computations to exploit



Background
Kokkos and GPU microarchitecture

Kokkos

Developed as back-end for portable scientific computing
Polymorphic multi-dimensional arrays for varying access
patterns
Thread parallel execution for fine-grained parallelism

Kokkos model - performance portable programming to
multi/manycores

Thread team - multiple warps on same multiprocessor,
but all still SIMT for GPU
Thread league - multiple thread teams, over all teams all
work is performed
Work statically partitioned to teams before parallel code
is called



Abstracting graph algorithms
for large sparse graph analysis

Observation: most (synchronous) graph algorithms
follow a tri-nested loop structure

Optimize for this general algorithmic template
Transform structure for more parallelism



Abstracting graph algorithms
for large sparse graph analysis

Observation: most (synchronous) graph algorithms
follow a tri-nested loop structure

Optimize for this general algorithmic template
Transform structure for more parallelism



Optimizations for Manycore Processors
Parallelization strategies

Baseline parallelization

Hierarchical expansion (e.g., Hong et al., PPoPP 2011)

‘Manhattan collapse - local’ (e.g.m Merrill et al., PPoPP 2012)

‘Manhattan collapse - global’ (e.g., Davidson et al., IPDPS 2014)
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Optimizations for Manycore Processors
Locality and SIMD Parallelism using Kokkos

Memory access

Explicit shared memory utilization on GPU
Coalescing memory access (locality)
Minimize access to global/higher-level memory

Collective operations

Warp and team-based operations (team scan, team
reduce)
Minimize global atomics (team-based atomics)



Graph computations
Implemented algorithms

Breadth-first search

Color propagation

Trimming

The Multistep algorithm (Slota et al., IPDPS 2014) for
Strongly Connected Components (SCC) decomposition



Graph computations
Breadth-first search

Useful subroutine in other graph computations
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Graph computations
Color propagation

Basic algorithm for connectivity

General approach applies to other algorithms (e.g., label
propagation)
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Graph computations
Trimming

Routine for accelerating connectivity decomposition
Iteratively trim 0-degree vertices



Graph computations
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Iteratively trim 0-degree vertices



Graph computations
Multistep SCC decomposition (Slota et al., IPDPS 2014)

Combination of trimming, BFS, and color propagation

1: T ← Trim(G)
2: V ← V \ T
3: Select v ∈ V for which din(v) ∗ dout(v) is maximal
4: D ← BFS(G(V,E(V )), v)
5: S ← D ∩ BFS(G(D,E ′(D)), v)
6: V ← V \ S
7: while NumVerts(V ) > 0 do
8: C ← ColorProp(G(V,E(V )))
9: V ← V \ C



Experimental Setup

Test systems: One node of Shannon and Compton at Sandia, Blue

Waters at NCSA

Intel Xeon E5-2670 (Sandy Bridge), dual-socket, 16 cores,
64-128 GB memory
NVIDIA Tesla K40M GPU, 2880 cores, 12 GB memory
NVIDIA Tesla K20X GPU, 2688 cores, 6 GB memory
Intel Xeon Phi (KNC, ∼3120A), 228 cores, 6 GB memory

Test graphs:

Various real and synthetic small-world graphs, 5.1 M to
936 M edges
Social networks, circuit, mesh, RDF graph, web crawls,
R-MAT and G(n, p), Wikipedia article links



Results
BFS and Coloring versus loop strategies

Performance in GTEPS (109 trav. edges per second) for
BFS (left) and color propagation (right) on Tesla K40M.

H: Hierarchical, ML: Local collapse, MG: Global collapse,
gray bar: Baseline
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Results
BFS performance and cumulative impact of optimizations, Tesla K40M

M: local collapse, C: coalescing memory access, S: shared
memory use, L: local team-based primitives
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Results
SCC cross-platform performance comparison

B: Baseline, MG: Manhattan Global, ML: Manhattan
Local, OMP: Optimized OpenMP code
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Conclusions

We express several graph computations in the Kokkos
programming model using an algorithm design
abstraction that allows portability across both multicore
platforms and accelerators.

The SCC code on GPUs (using the Local Manhattan
Collapse strategy) demonstrates up to a 3.25× speedup
relative to a state-of-the-art parallel CPU implementation
running on a dual-socket compute node.

Future work: Expressing other computations using this
framework; Heterogeneous CPU-GPU processing; Newer
architectures.

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation
(awards OCI-0725070, ACI-1238993, and ACI-1444747) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at
Urbana-Champaign and its National Center for Supercomputing Applications. This work is also supported by NSF grants ACI-1253881,
CCF-1439057, and the DOE Office of Science through the FASTMath SciDAC Institute. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.



Today: In class work

I Develop Manhattan Collapse method for manycore
parallelism

I Implement BFS using Manhattan Collapse

I Implement PageRank using Manhattan Collapse

Blank code and data available on website
(Lecture 23)

www.cs.rpi.edu/∼slotag/classes/FA16/index.html
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