
Trust Management in Delay Tolerant Networks
Utilizing Erasure Coding

Thomas A. Babbitt
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, New York 12180
Email: babbit@rpi.edu

Boleslaw K. Szymanski
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, New York 12180
Email: szymab@rpi.edu

Abstract—There is a need for robust networks in all envi-
ronments including austere ones. The prime example is Delay
Tolerant Networks (DTN) that are subject to a growing body
of research. These networks support applications used by the
military and first responders, especially in emergency situations.
Securing a DTN is not a trivial undertaking due to node mobility
and the ADHOC method in which nodes communicate. Here, we
propose a distributed trust management scheme to secure this
class of networks with many of the underlying principles appli-
cable to the larger class of Mobile ADHOC Networks (MANET).
The scheme employs erasure coding not only to increase delivery
rate in a DTN but also to infer the trustworthiness of the nodes
along all paths that deliver a message segments to the destination.
The proposed approach enables us to decide when the destination
node should stop waiting for additional segments and instead
request message retransmission. Moreover, even after the message
is recreated successfully, additional segments received enable the
destination to collect precious trust information about the nodes
involved in delivery of these segments. We show how distributing
this trust information identifies compromised nodes.

I. INTRODUCTION

There is a large and growing need for reliable and secure
delay tolerant networks (DTN). These networks are important
in a number of situations where well established networks
either do not exist or are not functioning properly. The military
preparing to deploy into hostile environments with austere
communication infrastructure and emergency responsers called
upon to provide assistance in an area with potentially unreli-
able communication infrastructures are examples in which use
of a DTN is indispensable. DTN architecture and protocols
allow for data transfer between communication systems and
individuals in a mobile ad hoc fashion ideally suited for the
chaotic environment of disaster relief and the battlefield.

There are numerous architectures and routing protocols
proposed for use in a DTN [1]–[3]. They rightfully focus on
the challenges associated with establishing and maintaining
communication in a mobile ad hoc network where individual
nodes cannot effectively maintain end-to-end routing. As nodes
move through the network, a routing protocol attempts to
quickly establish communication with those within broadcast

This work was supported in part by the Army Research Laboratory under
Cooperative Agreement Numbers W911NF-06-3-0001 and W911NF-09-2-
0053. The views and conclusions contained in this paper are those of the
authors and should not be interpreted as representing the official policies
either expressed or implied of the Army Research Laboratory or the U.S.
Government.

range and transfer data packets in a manner that moves data
through the network from source to destination. Ideally this
would also provide some level of information assurance (IA).

Because of DTN constraints, security protocols are lacking
for this type of network. The constraints include bandwidth,
memory size, battery life, processing power, and a lack of
end-to-end routing tables. These constraints limit the utility of
IA schemes and protocols used in traditional packet-switched
networks. There are a number of different definitions and
models for information assurance that involve a multitude
of different attributes. One such IA model [4] highlights
the key concepts of authentication, integrity, confidentiality,
availability, and nonrepudiation. Key management and the
ability to provide signatures is usually managed centrally in
traditional networks. Being able to verify certificate revocation
status allows for trust management of systems and users. It
includes the ability to establish, update, and revoke trust. Due
to topology changes over time and the constraint in a DTN, this
process has limited use and predicates the need for a distributed
trust management process. Trust decisions, in a DTN, are
made by observed actions of other nodes and the aggregation
of trust shared by interacting with other trusted nodes. Trust
management in DTNs must take into account multiple trust
properties including the fact that information propagation in a
DTN is dynamic, subjective, context dependent, asymmetric,
and not necessarily transitive [5].

There are numerous DTN attack vectors including eaves-
dropping, packet dropping, packet manipulation, denial of ser-
vice, and node isolation. There are multiple adversarial models
that a distributed trust management scheme must combat. For
this paper the trust management scheme is meant to combat
a threat that either permanently or intermittently modifies the
payload of a message in an attempt to corrupt or manipulate
a message between source and destination.

This paper proposes a trust management scheme for use
in DTN that utilizes erasure coding and checksums not only
to increase delivery ratio of packets to destination but also
to establish, update, and revoke trust. Section II describes
the proposed trust management scheme and shows mathe-
matical bounds on its performance. Section III shows initial
experimental results. Section IV proposes future work and
conclusions.

Proc. IEEE International Conference on Communication, ICC, London, UK, June 8-12, 2015, pp. 7959-65.

II. ERASURE CODING TRUST MANAGEMENT SCHEME

The proposed trust management scheme uses erasure cod-
ing (see section II-A) and a checksum to determine the
trustworthiness of neighbor nodes. If all message segments
successfully arrive to recreate a complete message then the
trustworthiness of those neighbors increases. If one or more
of the segments are corrupt, maliciously or not, then by
analyzing additionally received segments, bad actors can be
determined. This is done by having the source node append
a checksum onto every message sent prior to using erasure
coding to segment the message and send it onto the network.
The destination is then in a position to validate each message
and make trust decisions. The scheme steps are listed below.

1) Node x sends a message M to node y.
2) Segment message M , with added checksum, using

erasure coding such that k segments recreate M .
3) When k unique segments arrive at node y, attempt to

recreate M .
4) If M has a valid checksum, y increases the trust for

all nodes sending a valid segment and skips to 6,
otherwise it continues to 5.

5) Node y waits for each additional segment m until
recreating M produces a valid checksum or based on
cost it is better to request resending the message (see
section II-B). If segment m successfully recreates M ,
then nodes sending valid segments receive a trust
increase and all others a trust decrease; move to 6.

6) The receiving node waits for time T and accepts any
addition segments for M , validity of each is checked
against k − 1 known good segments and trust along
the relevant path is accordingly changed.

A. Erasure Coding Background

Erasure coding, as a network protocol, has been studied
for use in a DTN [6], [7]. It works by breaking a message
into a set of message segments. When a sufficiently large
subset of message segments are received the original message
can be reconstructed. Specifically, erasure coding starts with
a message of size M and the the total size of information
I = M(1 + ε) needed for message recreation. ε is a small
constant that depends on the exact encoding algorithm used.
Then, the minimum number of segments, k is selected, such
that I is divided evenly by k. Finally, the total number of
segments, s > k, is chosen and the encoded message is broken
into that many segments. The value r = (1 + ε)s/k > 1
is called a replication factor as it defines how much more
information is sent to transfer M bytes of a message. For
the purposes of this paper the exact encoding algorithm is not
important.

When using erasure coding, the key aspect is the replication
factor r. To recreate a message only s/r of the message
segments must arrive at the destination. In order to transmit the
message segments over multiple different paths, an algorithm
similar to srep [7] can be used. In that variation of erasure
coding, the generated message segments are split between
s = kr/(1 + ε) relays. For example if r = 5, then in order to
send a message of M bytes, 5×M bytes of data is transmitted,
and if ε = 0.25 and k = 3 then the number of nodes that
receive segments are s = kr/(1 + ε) = 12. Furthermore,

to reconstruct the original message, k segments must arrive
at the destination. A lower replication factor or multiplier k
reduce the number of separate message segments that must be
transmitted through the network.

B. Utility of Waiting For One More Segment

If the first k message segments are intact then all additional
segments m can be used to determine if the sending node of
the (k + m)th segment is truthful, see step 6 in section II
above. This requires one message creation operation using k−1
known good segments and the unknown (k + m)th segment.
If the recreated message is good then the sending nodes trust
is increased, otherwise it is decreased. The issue is when the
first k segments do not recreate the original message.

1) Approximate Path Probabilities: The scheme described
above is distributed and each node maintains a table with a
trust value for all other nodes in the network. The probability
pnx is the average trust value of all other nodes in the network
at a given point in time for node x. Let pnx denote the
percentage of good nodes in the network and p represent the
likelihood that the next segment to arrive at the destination is
good. Probability p is required to calculate the cost of waiting
for an additional segment and is equal to the probability along
all likely paths from source to destination. The rest of this
section discusses how we approximate p using the following
equation

p =

n−1∑
h=1

f
(n)
h × (pnx)h (1)

where n is the number of nodes in the given DTN and f (n)h is
the fraction of paths with h hops from the source to destination
a segment likely will take. The essential for p value of f (n)h
is routing protocol dependent; however, using a simplified and
restrictive routing protocol allows for a reasonable approxi-
mation for p. In this simple protocol, each node maintains
a value, ta,b from 0.0 to 1.0 that equates to the frequency
of inter-meetings between nodes a and b. We assume that
ta,b = tb,a. Without loss of generality, we assume below that
the source is node 1 and the destination node n. The node
currently holding the message segment, c will pass it to met
node d only if d is the destination (d = n) or if td,n > tc,n. We
also assume that our network is fully connected, and if node d
does not meet the destination then td,n = 0, so it will never be
selected as an intermediate node. This protocol approximates
well also the number of hops expected in epidemic routing
as it trades number of hops for time of delivery. The fastest
packet reaching the destination in epidemic routing is likely
to traverse the route that segments in our protocol travel.

Let edge (d, n), where 1 ≤ d < n has weight 0 ≤ xd ≤ 1.
According to the routing protocol, an intermediate node 1 <
d < n is eligible for passing a message segment (in short,
eligible), if xd > xc, where c is the node currently holding the
message segment. Below outlines our approximation method
for determining the probability of a path having the given hop
count and the number of intermediate nodes n − 2 using the
simple routing protocol above. This is used to determine f (n)h
in equation 1.

Let p(n)h denote the probability that after making h−1 hops,
the message segment will be delivered to the destination in h-th

hop. Of course, 0 < h < n and p(n)n−1 = 1 because no message
segment is passed to the same node twice. Hence, we need to
consider only n > 2. It is easy to show by induction that the
value of interest, f (n)h is defined by the relevant probabilities
as

f
(n)
h = p

(n)
h

h−1∏
j=1

(1 − p
(n)
j) = p

(n)
h (1 −

h−1∑
j=1

f
(n)
j) (2)

Consequently, once p(n)h ≈ 1 the fraction of paths longer than
h is negligible.

Exact solution for h = 1: We have n − 2 interme-
diate nodes each with an edge to the destination with the
weight randomly distributed with the same probability distri-
bution. Hence, probability that we have j eligible nodes is∑n−2
j=0

(
n−2
j

)
(1 − x1)jxn−2−j1 and probability that the desti-

nation will be chosen with this number of eligible nodes is
x

x+
∑k

i=1
yi

where yi denotes the weight of edge from i-th

eligible node to the source. Hence, the following n−1 integrals
is the solution:

p
(n)
1 =

∫ 1

0

. . .

∫ 1

0

n−2∑
j=0

(
n− 2

j

)
(1− x1)

jxn−1−j
1

x1 +
∑j

i=1
yi

dx1 . . . dyn−2.

(3)
Algebraic solution for n = 3, 4 is simple, and yields:

p
(3)
1 =

∫ 1

0

∫ 1

0

(1− x1)x1

x1 + y1
dy1 + x1dx1 ≈ 0.7046 (4)

p
(4)
1 =

∫ 1

0

∫ 1

0

∫ 1

0

(1− x1)
2x1

x1 + y1 + y2
dy2 +

2(1− x1)x
2
1

x1 + y1
dy1

+ x2
1dx1 ≈ 0.5763 (5)

For larger n’s the numerical integration can be used to get
values for validating simulation results.

Approximation for general case of 0 < h < n− 1: After
h−1 hops, there is n−h−1 intermediate nodes left and each
has probability 1 − xh to be eligible, where xh denotes the
edge weight of the current segment holder to the destination.
The expected number of eligible nodes is (1−xh)(n−h− 1)
each with the average edge weight to the source being 1/2.
Since each hop on average hits the middle of the previous
range, the size of the h range, for weights of eligible nodes,
is (1−x1)/2h−1 so the value of xh is (x1 + 2h−1− 1)/2h−1.
To get a good approximation, we will compute the expected
value over each half of this range which yields the result:

p
(n)
h = − 2

(n− h− 3)
+

2h(n− h− 1)

(n− h− 3)2
(6)

× ln

[(
1 +

1.5(n− h− 3)

2h

) 1
3
(
1 +

0.5(n− h− 3)

2h

)]
≈ 2h ∗ (n− h− 1)

(n− h− 3)2
ln(1 +

n− h− 3

2h
)− 2

(n− h− 3)

The critical value for this function is hc = log2(n). For h >
hc, we have ln(1 + (n− h− 3)/2h) ≈ (n− h− 3)/2h so the
result is nearly 1. For example, it is greater than 15/16 for
h > hc + 1. For h = hc − h′ < hc an approximate value is
1/2h

′ ∗ h′ ∗ ln(2) − 2/n close to 0. For example this value is
less than 0.1 for h′ > 5.

Fig. 1: Probability of using a Path with h Hops

It is easy to check that the peak of fraction of paths happens
around log2(n)−3 and these fractions are significant only for
h’s from hc − 5 to hc + 1. Approximating again, we can use
hc−3 as the value for the most common path length and then
we get the following from equation 6.

p ≈ plog2(n)−3
nx ≈ 1 − (log2(n) − 3) ∗ (1 − pnx) (7)

The final approximation holds only for pnx > 0.8 and
moderate 9 < n < 256. In summary, the average path length
grows and the the probability p decays slower than log2(n).

Simulation Results: We simulated the behavior of the
simple routing protocol by creating a complete graph with n
nodes. Each edge has a random weight selected uniformly from
[0.0,1.0] range. We then determined all possible paths and the
probability each would be used to ultimately determine the
probability of using a path of h hops in order to confirm our
approximations from equations 3, 6 and 7. Each simulation was
run 50,000 times for each value from n = 3 to n = 27 and the
results were averaged. Figure 1 shows how the probability of
using a path with h hops changes as the number of nodes in the
network increases. Once n > 9, there is a higher probability
of using a path with two hops than with one. Three hops paths
occur more often than one hop ones when n > 17.

Equation 4 gives our expected value for p(3)1 = 0.7046

the simulation results are p
(3)
1 = 0.7045. Equation 5 gives

our expected value for p(4)1 = 0.5763 the simulation results
are p(4)1 = 0.5755. This confirms our intuition about how the
protocol reacts, but as stated above it is not a practical approach
for larger n. Figure 2a shows the approximation for h = 1 and
figure 2b shows the approximation for h = 2 using equation 6.
While the approximation is not exact, it gives a tight lower
bound as n increases.

The previous section outlined a process for determining the
probability across all paths given a trust level in the network.
Below we outline what happens when k segments arrive and
one or more segments are corrupt. It is the added benefit of
waiting for (k +m)th segment.

Fig. 2: Approximation Fit for One and Two Hops

(a) Simulation and Approximation Results p
(n)
1 = f

(n)
1 (b) Simulation and Approximation Results p

(n)
2

2) Cost and Benefit: The total probability of being able to
assemble the message from k +m segments is as follows:

Pk+m =

m∑
i=0

pk+i (8)

For m > 0, the change in probability from k+m−1 to k+m
can be expresses as:

∆Pk+m = pk+m =
(k +m− 1)!pk(1 − p)m

(k − 1)!m!
(9)

The justification is simple. Since k+m−1 segments were not
enough to recreate the message but k+m are, the (k+m)th

segment has to be correct and the k+m−1 segments received
previously must contain exactly k− 1 correct segments. Thus,
pk defines probability of having k correct segments, while (1−
p)m is the probability of having m corrupt segments and the
rest of the expression defines the number of ways k−1 correct
segments can be chosen from k+m− 1 segments previously
received.

The cost of being able to assemble the message from k+m
segments is as follows:

Ck+m = α
m∑
i=0

ck+i (10)

where α defines the ratio of the cost of computation to
the value of increased probability of being able to recreate
the message from additional segments. When the (k + m)th

segment arrives it is compared to all k−1 subsets of k+m−1
segments already received but not sufficient to recreate the
message, hence, for all m > 0 the change in cost from k+m−1
to k +m can be expressed as follows

∆Ck+m = α
(k +m− 1)!

(k − 1)!m!
(11)

3) Utility Functions: There are two options after receiving
k+m−1 segments. The first is to wait for the k+m segment.
The second is to request sending the message again. To make
this decision, we can use one of the two criteria listed below.

1) The first criterion is to compare the expected gain in
probability as expressed in equation 9 with the cost
of equation 11.

2) In the second criterion, the price of receiving the next
segment versus the price of resending the message
that is the expected gain of receiving the message is
Pk = pk = pk at the cost of n ∗ r + α which is the
cost of resending nr plus the cost of unpacking the
segments α.

Using the first criterion, we wait for the next segment if the
gain in probability to recreate the message is greater than the
cost. The second is to receive the best price per increase in
probability. The former is a simplified function while the later
is more comprehensive since it takes into account the cost of
resending the message.

The first utility function is Gk+m = pk+m − αck+m. It
is beneficial to wait for the k + m segment if Gk+m > 0.
Substituting the values from equation 9 and equation 11, the
following holds:

pk(1 − p)m > α (12)

Equation 12 has its merits; however, it it based solely on the
increase in probability of being able to recreate a message
with an additional segment being greater than the cost of
this segment processing. The increase in probability shrinks
very quickly limiting the number of segments for which the
destination waits before requesting a message be resent, which
intuitively makes sense.

The second more complicated utility function takes into
account the cost of having to resend the message a second time.
Ultimately it compares the price increase between waiting
for another segment versus that of resending the message.
This gives the inequality of α ck+m

pk+m
<

(k
r +α)

pk
. Since ck+m

pk+m
=

1
pk(1−p)m , the inequality can be reduced to α

(1−p)m < k
r + α.

The cost of k
r � α so the inequality can be rewritten as

αr
k < (1 − p)m. Taking the natural log of both sides gives

the final inequality as follows.

m <
ln
(
αr
k

)
ln(1 − p)

(13)

In this inequality, α represent technology factors, as the
node processing becomes faster and faster at the same price
due to the chip technology, α becomes smaller and smaller.

Fig. 3: Ranking of All Nodes According to Their Trustworthiness

(a) 90% Path Trustworthiness (b) 60% Path Trustworthiness

Yet, the value of m grows only logarithmically with this
gain. The erasure coding algorithm parameters r and k change
relatively little for different applications, so their impact on m
can be ignored. Finally, 1 − p, measuring how “pollute” and
to lesser degree how large (see equation 7) the network is has
a large impact; the higher the pollution level the larger m the
destination should wait before requesting resend. This again
is intuitively clear, as the resent message will face the same
treacherous journey to destination as the original message did.

III. EC TRUST MANAGEMENT SIMULATIONS

In order to test the proposed trust management scheme, a
number of simulations were executed using NS3. This paper
uses the work done by Lakkokorpi et al. in [8]. The available
DTN module for NS3 implements the DTN bundle layer first
proposed by the Delay Tolerant Networking Research Group
(DTNRG) and codified in a number of DTNRG request for
comments [9], [10]. The bundle layer protocol manages appli-
cation to application transportation with each bundle usually
being larger than a normal IP packet. Each bundle has a timer
and if it is not delivered within a specified time it is deleted
from a nodes buffer. The point to point connections between
nodes can be managed by UDP or TCP. There are numerous
routing protocols proposed for use in DTNs. While most were
not written to use the bundle layer, almost all can be modified
to do so.

The latest available DTN module for NS3 is compatible
with version 3.18 and includes the implementation of two DTN
routing protocols: endemic [11] and stray and wait [12]. For
each protocol a number of duplicate bundles are sent from
source to destination to increase the probability that one will
arrive. In the former protocol, a bundle is send to any node
that does not yet have a copy in its buffer. This has been
shown to significantly clog the network and use unnecessary
resources. The later is a more refined approach and sends a
smaller number of copies and then waits to see if the bundle
arrives. It only increases the number of nodes it forwards to
if it does not receive an acknowledgement packet from the
destination in a specified time.

The proposed trust management scheme is built using the
concept of erasure coding to determine which nodes, if any,
modify a segment of the data transmission between the source

and destination. The authors in [8] give a good breakdown of
the code they created. This includes the main DTN module
dtn.cc and the bundle layer encapsulation headers mypacket.cc
and mypacket.h. The necessary modification to simulate EC
and the proposed trust management scheme are broken down
into two main categories: simulate erasure coding and simulate
trust management at the node level. Section III-A gives an
overview of the modifications to allow for erasure coding.
Section III-B give an overview of the changes to replicate node
trust management. Section III-C explains the simulations run
and Section III-D presents results.

A. Erasure Coding Simulation for DTN Module in NS3

In order to simulate Erasure Coding some modifications
to the existing routing protocols in the DTN module were
required. Erasure coding as described above multiplies a mes-
sage payload by a replication factor r, this modified message
is divided and each segment is sent from source to destination.
Each message segment is sent as a bundle with its own
individual bundle ID. For a given message, there is a single
message ID designated the PID. When k unique unmodified
bundles arrive at the destination with the same PID the message
is recreated.

The user provides k, ε (that for simplicity we assumed to
be 0 in the current simulation) and s (which defines r) as initial
input to the simulation setup to allow for the segmentation of
messages into kr/(1 + ε) bundles. Based on the values for k
and r, each bundle is scheduled for transmission. For the first
hop from the source a node can only accept one bundle with
a particular PID. This forces multiple paths from source to
destination.

While currently erasure coding is implemented in an aus-
tere manner and utilizes the already implemented endemic
routing protocol to move the bundles, it is useful for showing
preliminary result using EC for trust management. Although
we are using epidemic routing, the approximate metrics found
in section II apply to our simulation results as explained in
that section.

Fig. 4: Trace of a Given Untrustworthy Node over Time

(a) Trace of Node 38, 90% Path Trustworthiness (b) Trace of Node 10, 60% Path Trustworthiness

B. Trust Management Object in NS3 for use in the DTN
Module

Like in many distributed trust management schemes, each
node maintains a structure that includes the trust level for each
node it interacts with. Additionally, many schemes aggregate
trust levels with neighbors through periodic comparison of
stored trust values. To simulate such a scheme in NS3, a
trust management object was added. This was created for use
with each NS3 DtnApp outlined in [8]. The DtnTrust object
initializes all nodes in the network to a trust level tnode = 0.5,
0.0 ≤ tnode ≤ 1.0. This DtnTrust object tracks the bundles
that arrive and once k unmodified unique bundles with the
same PID arrive recreates the original message.

After the successful message recreation, each node that
sent an unmodified segment has its trust level increased to
tnode = tnode + .05. For each node that sent a malicious
segments the nodes trust is decremented to tnode = tnode−.05.
Generally this only occurs at the destination; however, certain
paths might contain a single node that forwards many bun-
dles that are part of a given message and such nodes may
also compute trust for their neighbors. The node, where the
successful message recreation occurred, continues to receive
and check validity of addition received segments for time T
updating trust accordingly.

Currently the trust level is not used to deter sending a
bundle to a node; however, there are functions to allow a node
to check the current trust of all other nodes. An extension is
to phase out nodes that do no behave properly. Those nodes
would no longer be allowed to send or receive bundles.

C. Simulation Overview

The NS3 simulator modified with DTN extensions, is
used to conduct the simulations presented. The threat model
against which this scheme is attempting to protect includes an
adversary who either hijacks, reprograms, or adds malicious
nodes to the DTN that modify all packets that arrive prior
to sending them on as per the routing protocol. There are
more sophisticated models where the attacker intermittently
modifies packets or where nodes collude. While it is likely
this scheme with full use of the Bundle layers security module
[10] would provide useful results, such extensions are left

for future endeavors. This adversarial model is simulated in
NS3 by making x% of the nodes always act maliciously by
modifying all bundles they receive prior to forwarding. The
malicious node does not modify bundles when it is the source
or destination.

The NS3 simulation tool provides the user with of a number
of traffic and mobility models. Similar to [8], a simple traffic
model is used in our simulation. Each node sends a number
of variable sized messages, which are broken into a set of
bundles defined by k and r, at a random time within each 200
second interval of simulation run time to another random node.
For node to node transmission, the segments are fragmented
into 1500-byte data-grams using UDP, with retransmission, to
provide reliability.

The mobility model used is the random way point (RWP)
model, which is conveniently built into the NS3 simulator.
For each simulation, a total of 40 nodes move in a 2500m
x 2500m grid. These nodes are evenly distributed and select
direction and speed at random (uniformly distributed) times.
The maximum speed is 20m/s with a 2 second pause. All nodes
pause between each movement. The simulation is run 10 times
each with a different seed and all simulations are run for 1000
seconds.

D. Simulation Results

The results show that over time the average probability
across all nodes increase for good nodes and decrease for bad
ones. There is a large contrast in result when the percentage of
good nodes drops from 90% to 60%. This make sense because
with a higher number of untrustworthy nodes, the likelihood
that they would corrupt a message from source to destination
and negatively impact trust for a good node increases.

1) 90% Path Trustworthiness: Figure 3a shows the average
trust level for each of the 40 nodes sorted in the decreasing
order of their trustworthiness. While the decrease is not steep,
the four untrustworthy nodes that modified all forwarded
bundles have the lowest average trustworthiness among all
nodes (those are nodes 35-39 and colored red). The error bars
show the largest and smallest individual run. This gives an idea
of the range of values.

Figure 4a illustrates one malicious node trust evolution
over a complete simulation. This figure shows the change in
average trust of node 38 from time 0.0 seconds to time 1000
seconds. The trend is down as expected. At approximately 90
seconds there is an increase in trust. It appears when node
38 is the source of a message and sends it directly to the
destination. In that case, the trust is increased by the receiving
node because in the threat model all messages start without
modification, which make sense because even if the message
payload contains malicious content, the checksum is being
generated at the source and it would be correct.

2) 60% Path Trustworthiness: Figure 3b shows the average
trust level for each of the 40 nodes sorted by their trustworthi-
ness. Due to the number of malicious nodes, 16 in this case,
there is no steep slope, however, the majority of the malicious
nodes, colored red, have the lowest average trust and only three
have trust higher than a good node colored green.

Figure 4b illustrates the change of a trustworthy node over
time. Its average trust goes generally up, but lowers and then
spikes around 550 seconds due to passing on a tainted message
segment and then sending a number of trustworthy segments.

IV. FUTURE WORKS AND CONCLUSIONS

Based on the results of the simulation, discussed in the
previous section, a number of additional improvements are
merited as part of future work. They include the expansion
of the threat model to include a larger array of adversaries,
sliding trust windows, implementation and simulation of node
exclusion based on changing trust, integration of a trust shar-
ing extension, implementation and experimentation with the
bundle security module, ability to add and delete nodes from
the network, and analysis of the effects of false positives and
false negatives on the network. Additionally, a more thorough
comparison to other trust management schemes [13]–[15] is
merited upon completion of further research.

This paper proposes a novel trust management scheme
that uses traits inherent with erasure coding and checksums
to modify trust in a distributed manner. This scheme is ideally
suited for use in delay tolerant networks. In erasure coding, a
message is broken into a number of segments. Each segment
is sent through the network from source to destination. In a
DTN, segments will take multiple different paths. Once enough
segments arrive at the destination, the message is recreated. By
adding a checksum to the message prior to sending it to the
destination faulty segments can be identified. If all segments
are good then the message is recreated. If not, the destination
continues to wait for an additional segment until the message
is recreated or the cost of waiting for an additional segment
is higher than resending the message. Once the message is
recreated, all additional segments are used to modify the trust
of the sender.

This paper approximates the probability that a good seg-
ment arrives, bounds the cost of waiting for an additional
segment and proposes two utility functions to use in making
the decision to request resending a message. The first is based
on the change in probability that the next segment will recreate
the message versus the cost of processing one more segment.
The change in probability shrink exponentially and the cost
increases linearly. This limits the usefulness of that particular

utility function. The second utility function is used to minimize
the price of increasing the probability of receiving a correct
packet. This takes into account the cost of resending the
message and is the utility function used to determine for how
many additional segments to wait prior to requesting that a
message be resent.

Based on the simulation results, the scheme shows promise
and merits further research. A number of potential future re-
search topics are listed above. With modifications this scheme
can assist in filling the gap in information assurance in delay
tolerant networks.

REFERENCES

[1] Y. Zhu, B. Xu, X. Shi, and Y. Wang, “A survey of social-based
routing in delay tolerant networks: Positive and negative social effects,”
Communications Surveys Tutorials, IEEE, vol. 15, no. 1, pp. 387–401,
2013.

[2] K. Fall, “A delay-tolerant network architecture for challenged internets,”
in Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, ser. SIG-
COMM ’03. New York, NY, USA: ACM, 2003, pp. 27–34.

[3] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R.Durst, K. Scott,
K. Fall, and H. Weiss, “Delay-tolerant networking architecture,”
Internet Research Task Force (IRTF), RFC 4838, April 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4838.txt.pdf

[4] W. V. Maconachy, C. D. Schou, D. Ragsdale, and D. Welch, “A model
for information assurance and integrated approach,” in Proceeding of
IEEE Workshop on Information Assurance and Security, June 2001, pp.
306–310.

[5] J.-H. Cho, A. Swami, and I.-R. Chen, “A Survey on Trust Management
for Mobile Ad Hoc Networks,” Communications Surveys & Tutorials,
IEEE, vol. 13, no. 4, pp. 562–583, 2011.

[6] E. Bulut, Z. Wang, and B. Szymanski, “Cost efficient erasure coding
based routing in delay tolerant networks,” in Communications (ICC),
2010 IEEE International Conference on, 2010, pp. 1–5.

[7] Y. Wang, S. Jain, M. Martonosi, and K. Fall, “Erasure-coding based
routing for opportunistic networks,” in Proceedings of the 2005 ACM
SIGCOMM workshop on Delay-tolerant networking, ser. WDTN ’05.
New York, NY, USA: ACM, 2005, pp. 229–236.

[8] J. Lakkakorpi and P. Ginzboorg, “ns-3 module for routing and con-
gestion control studies in mobile opportunistic dtns,” in Performance
Evaluation of Computer and Telecommunication Systems (SPECTS),
2013 International Symposium on, July 2013, pp. 46–50.

[9] K. Scott and S. Burleigh, “Bundle protocol specification,” Internet
Research Task Force (IRTF), RFC 5050, November 2007. [Online].
Available: http://www.ietf.org/rfc/rfc5050.txt.pdf

[10] S. Symington and S. Farrell, “Bundle security protocol specification,”
Internet Research Task Force (IRTF), RFC 6257, May 2011. [Online].
Available: http://www.ietf.org/rfc/rfc6257.txt.pdf

[11] A. Vahdat and D. Becker, “Epidemic routing for partially-connected ad
hoc networks,” Tech. Rep., 2000.

[12] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an
efficient routing scheme for intermittently connected mobile networks,”
in Proceedings of the 2005 ACM SIGCOMM workshop on Delay-
tolerant networking, ser. WDTN ’05. New York, NY, USA: ACM,
2005, pp. 252–259.

[13] M. K. Denko, T. Sun, and I. Woungang, “Trust management in ubiq-
uitous computing: A Bayesian approach,” Computer Communications,
vol. 34, no. 3, pp. 398–406, Mar. 2011.

[14] E. Ayday and F. Fekri, “An iterative algorithm for trust management and
adversary detection for delay-tolerant networks,” Mobile Computing,
IEEE Transactions on, vol. 11, no. 9, pp. 1514–1531, Sept 2012.

[15] I.-R. Chen, F. Bao, M. Chang, and J.-H. Cho, “Dynamic trust manage-
ment for delay tolerant networks and its application to secure routing,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 25, no. 5,
pp. 1200–1210, May 2014.

