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Abstract—We collected friendship information and location
data from a social media website called Gowalla to analyze the
relationship between geographical space and friendship. First, we
analyzed how geographic proximity shapes the structure of the
social network by limiting joined activities among distant users.
Second, we incorporated information about geographic locations
that users visited into three selected community detection al-
gorithms (Clique Percolation Method, Inference Algorithm, and
GANXiS) to detect friendship communities where members are
on average separated by one friendship link and also likely to be
close to each other geographically. Third, we proposed a tech-
nique to generate covers of fixed sizes by using a combination of
social and geographic information for the purpose of comparing
them to communities detected by the selected algorithms. Finally,
we used community quality measurements based on friendship
link connectivity and geographic locations visited by users to
examine detected communities.

I. INTRODUCTION

Contrary to the belief in the death of distance barrier to
forming social ties [1], we find that the creation of friendship
between two people in Gowalla is more likely to occur when
they are geographically closer, and the likelihood of users
being friends rapidly decreases as the geographic distance
between them increases. Such geographic effects may help
in designing spatially-aware community detection algorithms
where on average every two people in a community are
separated by a few hops and also likely to be within spatial
proximity.

A common approach in community detection is to divide
a network into multiple partitions by maximizing the number
of edges within each partition and minimizing the number
of edges between them. The often used quality measurement
for the partitions is modularity that compares the difference
between the fraction of edges inside and fraction of edges
across a partition and such expected difference if edges in
the network were randomly distributed [2]. Greedy approaches
like hierarchical clustering [3] and spectral approaches such as
minimum cuts [4] divide a network into disjoint partitions by
combining or separating clusters of nodes so that modularity
is maximized at every step. As studied by authors in [5][6],
a problem with this modularity maximization approach is
that it inclines to merge two separated communities together,
increasing the value of modularity, but creating the merger that
does not reflect the ground truth.

Another approach to community detection is to divide
a network into multiple partitions so that the majority of
members within each partition shares a common attribute [7].
A proposed attribute is based on friendship similarity defined
as the density of common friends between pairs of nodes [7].
A problem with this proposed attribute is that it allows for
a community consisting of people who have a lot of friends
in common but are not friends of each other. However, this
imperfect definition works well in practice because people
who have a lot of friends in common are likely to be friends
themselves. Since community detection is an active area of
research, our goal in this paper is not to provide another
technique that detect communities (many have been proposed)
but to incorporate the spatial information of nodes into existing
algorithms for analyzing Gowalla and propose a null model
(generating covers) to benchmark the detected communities.

In this paper, we combine these two approaches in com-
munity detection by incorporating the location information
of users and geographic distances between them into three
selected algorithms taken from the literature. First, we want
to minimize the number of edges between communities and
maximize the number of edges within them. Second, we want
members inside a community to be within spatial proximity
by giving geographically correlated friends more weight than
distant friends during the detection process. This combined
approach applies a natural interpretation of a friendship com-
munity where members are well connected and also likely to
be geographically close.

Our goal is to extract information about friendship in
communities and measure their physical interactions in a
large-scale social network called Gowalla. Applications that
we foresee might benefit from such spatial effects include
recommendation systems and link prediction by designing sys-
tems based on the knowledge of users’ geographical locations,
their social connections, and the structure of their friendship
communities. For instance, recommendation systems could be
enriched by incorporating geographical information of users,
their friends and location-based ratings to increase the quality
of the recommended item [8]. An example of this is to
personalize the ranking of information on the web for mobile
phones where users get information relevant to their current
location, friends and/or followers, and the structure of their
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communities [9]. Link prediction could be enriched by using
pairs of users that are geographically close and belong to
the same community to predict how likely they will become
friends or connected in the future [10].

The rest of this paper is organized as follows. In section
II, we described the data analysis and provided details of
the information that we collected from Gowalla for analyzing
the relationship between space and friendship. In section
III, we incorporated geographic information of users into
three selected community detection algorithms consisting of
a modified version of Clique Percolation Method (CPM) [11],
Inference Algorithm (IA) [2][3], and GANXiS [12] to detect
disjoint communities of friends in Gowalla. In section IV, we
designed an experiment in which we generated different types
of covers by using a combination of social and geographic
information. In section V, we used quality metrics based
on the link connectivity, geographic proximity, and physical
interactions among members to examine detected communities
as a function of their sizes and used covers as a baseline for
examining communities. Before concluding in section VII with
a summary of the results, we presented a literature review
of community detection and location-based social networks
focusing on the spatial aspects of friendship and their appli-
cations in section VI.

II. PRELIMINARIES

We collected data from a location-based social networking
provider called Gowalla that allowed people to use their
internet-enabled and sensing-capable mobile phones to record
and share their current location with their friends. Additional
details of the collected dataset are given in [13]. As of now,
Gowalla is no longer operated by itself since it has been
integrated into Facebook. Foursquare is another location-based
social media that provides the same functionality as Gowalla
and is still active. However, Foursquare has a stricter privacy
policy that limits the API from providing checkins, even
though the information is available on web browsers. As the
result, the data collected from Gowalla allows us to measure
physical interactions of friends and their hidden communities.

Given a set of users U , let u ∈ U be a particular user,
Lu be a set of its shared locations known as checkins, and
Fu be a set of its friends. A shared location l ∈ Lu of the
user u is a tuple of three elements denoted as l1, l2, and
l3 corresponding to the latitude, longitude, and timestamp of
the location l, respectively. The friendship network denoted
as F = (U,EU ) is an undirected and non-weighted graph
where an edge represents reciprocal friendship; that is, e =
(u, u′) ∈ EU means u′ ∈ Fu and u ∈ Fu′ . The geographic
distance d(u, u′) between two users u and u′ is estimated by
averaging the locations in Lu and Lu′ and using the haversine
formula to calculate arch distances.

The level of physical interaction between user u and u′

denoted as I(u, u′) is calculated from their shared locations
as follows. Two locations l ∈ Lu and l′ ∈ Lu′ are equivalent
if they are within geographic proximity d(l, l′) < dε and
occurred within a time interval |l3 − l′3| < tε. Have such

two equivalent locations lu and lu′ means we infer u and u′

have gone to the place l together since the purpose of Gowalla
was to help friends meet at different places.

The maximum pair-wise equivalence between Lu and Lu′

is defined as the longest sequence of equivalent location
pairs ((l1, l

′
1), . . . , (lk, l

′
k)), such that for each 1 ≤ i ≤ k,

li ∈ Lu, l
′
i ∈ Lu′ and li is equivalent to l′i. The level of

physical interaction I(u, u′) is defined as the length k of the
maximum pairwise equivalence divided by the size of the
smallest locations set (i.e., k / min(|Lu|, |Lu′ |)). Finding the
maximum pairwise equivalence can be reduced to a network
flow problem where polynomial running time algorithms such
as Ford-Fulkerson can be used to calculate the maximum
number of matches.

A. Data Analysis

In Fig. 1(a,b), we plotted the density of friends (hop=1),
friends-of-friends (hop=2), and pairs of users up to six degrees
of separation as a function of the average geographic distance
between two users in km. For each level 1 ≤ k ≤ 6 of
indirection (measured in the number of hops), we randomly
selected 5,000 non-cyclic paths of length k and created from
the ends of these paths 5,000 pairs from the Gowalla dataset,
each pair with k indirection of friendship. We analyzed pairs
that were within 4,000 km distance from each other. In Fig.
1(a), the density of direct friends (4,317 total) reaches the
highest value of 0.35 (in other words, 1511 pairs) at the lowest
geographic separation in the range from 0 to 160 km (each
point at distance x represent users with distances from x-
160km to x+160 km) and continues to decrease as the distance
between them increases. At the second level of indirection, the
density of friends-of-friends (3,464 total) achieves the highest
value 0.19 in the range from 0 to 160 km and continues to
decrease as the geographic distance between them increases.
Geographic proximity has an effect where friends (hop=1) and
friends-of-friends (hop=2) are more likely but not necessary
required to be within proximity. For instance, 61% of friends
are within 480 km and 47% of friends-of-friends are within
640 km.

Another way of looking at the results is that people who
are separated by three or more hops are unlikely to be within
geographic proximity. In Fig. 1(b), we plotted pairs of users
who are separated by four, five, and six hops. We noticed that
they are not likely to be within geographic proximity. The
density of those pairs reaches the highest value 0.07 at the
160 km range centered at 1,200 km and continues to decrease
regardless of their degrees of separation.

In Fig. 1(c), we plotted the average amount of physical
interactions I(u, u′) of friends (hop=1) and friends-of-friends
(hop=2) as a function of their geographic distance in km. The
larger the geographic distance between friends, the less likely
they physically interact by going to the same places together.
The highest peak (0.027) is at the lowest geographic separation
from 0 to 266 km and continue to gradually decrease (with
some small fluctuations) as the distance between them in-
creases. For friends-of-friends, the physical interactions reflect
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Fig. 1: Measuring Density of Pairs (a,b) and Level of Interaction (c)

the probability that they happened to be together.
We like to mention that it is possible the locations of some

users are irrelevant to their distant friends. This may be a
source of potential bias where the geographic proximity of
friends may be enlarged by a friendship selection process
in Gowalla in which users subjectively add friends who are
within their geographic proximity. However, we noticed that
38% of friends are geographically separated by more than 520
km. Also, the Gowalla data and other social media indicate that
distant friends are selected, perhaps for the purpose of keeping
in contact [14].

III. COMMUNITY DETECTION ALGORITHMS

We selected three community detection algorithms based
on their popularity (CPM subsection III-A), promising ex-
perimental results (IA subsection III-B), and ability to scale
to millions of nodes and edges (GANXiS TTL subsection
III-C) for the purpose of capturing and measuring the inter-
actions of users inside a community. Below we summarize
the selected algorithms and describe how we incorporated
geographic information of users into the process of detecting
friendship communities in Gowalla (since level of interactions
is correlated with distance as seen in Fig. 1(c)).

A. Clique Percolation Method

The CPM algorithm was proposed in [11] to detect over-
lapping communities by combining cliques or fully connected
subgraphs. Given an undirected graph F = (U,EU ), let Hm

denotes the set of all cliques in F of the size m. The clique-
graph G = (Hm, E) consists of cliques in Hm represented
as nodes, and edges between pairs of cliques if they have
m−1 overlapping members. Each connected component of the
graph G is a community consisting of many fully connected
subgraphs of F .

A problem of the CPM algorithm is its lack of scalability
because the number of cliques explodes as m increases for
large networks. Unfortunately, the problem of finding the
clique with the largest size in a given graph is NP-hard [15]
preventing the algorithm from using cliques with the near
largest size.

We modified CPM to incorporate geographic information
of nodes and made the algorithm scalable as follows. Instead
of finding cliques of large sizes, we find triangles (m = 3)
since they can be efficiently identified in parallel using map-
reduce. To limit the number of triangles, we select a subset
of disjoint triangles from all possible triangles by using
geographic distances between pairs of nodes as follows. The
average geographic distance of a triangle t is defined as
(1/3)

∑
d(u, u′) for u 6= u′ ∈ t. We take a triangle one at

a time from a sorted list of triangles until all possible disjoint
triangles have been taken. If a user is not part of any disjoint
triangle, we assign it to a triangle that maximizes the number
of edges between this user and the triangle and use geographic
distances to break ties by assigning a user to the geographically
closest triangle.

The clique-graph G′ is defined as G′ = (T,ET ) where T is
the set of modified triangles and ET is the set of edges between
triangles that are assigned as follows. For each triangle, we
create a single clique edge from this triangle to the one that
maximizes the number of friendship edges between them, and
use geographic distances to break ties if necessary. Like in the
original CPM algorithm, each connected component of G′ is
a community consisting of geographically correlated and well
connected subgraphs of F .

B. Modularity Maximization

Modularity maximization is a popular technique used to find
communities proposed in [2][3]. Given a graph F = (U,EU )
and a set P containing disjoint partitions or subsets of U , the
modularity Q of the partitions in P is defined as:

Q =
∑
pi∈P

eii − a2i (1)

where eij is the fraction of edges between nodes in the
partitions pi and pj , and ai =

∑
j eij is the fraction of edges

leaving the partition pi [2]. A positive value of Q correlates
with the difference between densities of edges inside and edges
leaving the partitions compared to a null model.

To maximize modularity, a greedy approach based on hier-
archical clustering were proposed in [3][16]. Initially, every



node in U belongs to its own community. Then the pair
of communities with the highest increase in modularity is
merged together. The process of merging repeats n− 1 times
where n = |U |. The clusters with the highest overall value of
modularity at each iteration are taken as a set of communities.

For weighted networks, Newman proposed a simple tech-
nique to map weights of integer values to multigraphs [17].
For every edge of the weight wij , there will be wij − 1
additional unweighed edges added between node i and j, and
the weight wij is set to 1. The definition of modularity remains
the same, since the fraction of edges eij between partition pi
and pj can simply incorporate multiple edges between nodes.
We incorporated geographic information about users into the
Inference Algorithm by assigning weights to edges based on
spontaneousness and typical means of travel: walking up to
1.6km, biking/using public transportation up to 25km, short
car/train ride up to 100km, long car/train ride up to 500km,
and plane flight above 500km. Friends who are within walking
distance (1.6 km) get the highest weight of 24. Friends who are
within biking distance (25 km) get the second highest weight
of 23. Friends who are within driving distance get a weight of
22, and so on.

C. GANXiS

GANXiS was proposed in [12] based on a probabilistic
propagation process that spread labels between speakers and
listeners. Given a graph F = (U,EU ), each node ui ∈ U
initially carries a unique label i in its pocket pi = {i}. When
a node u is randomly selected to speak, it requests all members
of its neighborhood, nodes that are adjacent to u to randomly
send a label in their pocket to u. The probability of a label
being chosen by u′ in its pocket pu′ is proportional to number
of times the label was added; the more times a label was
added, the more likely it will be chosen. The probability of
a speaker ui choosing a label from a listener uj is based on
the weight wij/wi where wi is the sum of all weighted edges
coming out of ui. For unweighted networks, wij = 1.

The algorithm repeats until the maximum number of iter-
ations is completed where in each iteration everyone gets to
speak exactly once in a random order. At the end, labels that
have a probability of being chosen to send to a speaker less
than a threshold r are deleted. Finally, the labels that a node
carries determine the communities that to which it belongs.
For instance, nodes that carry a label i will belong to the
community ci. Time to live (TTL) has been recently proposed
to limit the number of labels that nodes propagate. TTL defines
the number of times a label can be sent (so it reaches limited
number of nodes within TTL hop distance).

The advantage of GANXiS is that it scales linearly with the
number of edges, but the disadvantage is that the relationship
between convergence and the number of iterations is yet
unknown. GANXiS is capable of discovering overlapping
communities, but we selected its running parameters in such
a way that the results included only disjoint communities to
make them compatible with the results of other algorithms. We
incorporated geographic information of users into GANXiS

TABLE I: Six Techniques for Generating Covers

Algorithm Abbreviation Spatial Info.? Social Info.?
Completely Random CR no no

Random Walk RW no yes
Closest Friend First CFF yes yes
Farthest Friend First FFF yes yes

Closest to All CTA yes yes
Farthest to All FTA yes yes

by assigning weights equal to the reciprocal of geographic
distances between friends. This is an extension of the inter-
pretation of speaker-listener propagation algorithm where a
listener is more likely to be able to hear a speaker if they are
within spatial proximity (close to each other).

IV. A NULL MODEL

We proposed to integrate spatial and friendship information
of nodes into a process of generating covers. The purpose
of the covers is to serve as a baseline for analyzing the
performance of various community detection algorithms under
a quality measurement. In subsection IV-A, we described how
we generated six covers by using a combination of spatial and
friendship information in traversing the network. In subsection
IV-B, we selected a few quality measurements for examining
covers and detected communities. In subsection IV-C, we
examined the covers using the selected quality measurements.

A. Generating Covers

Given a graph F = (U,EU ), a cover C ⊂ U of size k is
a subgraph of F with k nodes selected in a specific way. A
completely random cover CR is one where each user u ∈ U
has the same probability of being added during the selection.
In a random walk cover RW , we first randomly add a seed
into the cover, then randomly select a friend of the most
recently added user, and continue selecting friends until the
cover reaches the size k. The closest-friend-first cover CFF is
similar to RW but instead of adding a random friend, we add
the spatially closest friend not in the cover of the last added
user. If all of that user’s friends have already been added into
the cover, we go back one step to the previously last added
user and branch out from there. We call this the roll-back
mechanism. The farthest-friend-first cover FFF is similar to
CFF except that we take the spatially farthest friend instead
of taking the closest one. The closest-to-all cover CTA is
similar to CFF but instead of adding the spatially closest
friend to the last added user, we add the spatially closest friend
with respect to all members already in the cover. Finally, the
farthest-to-all cover FTA is one where we take the spatially
farthest friend with respect to all members already in the
cover. Cover generation algorithms such as CTA and FTA
are described in Fig. 2 without the roll back mechanism for
simplicity. We listed the covers and their details in Table I.

B. Measuring Covers

We use three types of quality measurements based on the
link connectivity and location of members to measure covers
and communities.



1: procedure COVERGENERATION(k)
2: F = (U,EU )
3: seed = rand(1, |U |), cover = [seed]
4: while len(cover) < k do
5: distances = [ ], m = len(cover)
6: for u in Fseed do
7: // Calc. haversine distance from u to cover[i].
8: du = 1

m

∑m
i=1 d(cover[i], u)

9: distances.append((u, du))
10: end for
11: // sort du from least to greatest or vice-versa
12: distances = sort(distances, key = x: x[1])
13: for u, du in distances do
14: if u /∈ cover then
15: cover.append(u)
16: seed = u
17: end if
18: end for
19: end while
20: return cover
21: end procedure

Fig. 2: Generating CTA & FTA Covers

The first type of measurements is based on the intra-edge
count IEC defined as the number of edges whose both ends
are inside the cover. The contraction CONT of a cover is
computed by dividing intra-edge count by the size of the cover.
The intra-density IND of a cover is calculated by dividing
intra-edge count by the intra-edge count of a completely
connected cover of the same size. For these three measures
(IEC, CONT , IND), higher the value, better formed is the
community.

The second type of measurements is based on the boundary-
edge count BEC defined as the number of edges whose one
end is inside the cover while the other is outside. This metric is
useful for taking into account the effect of adding high degree
users into covers of large sizes since such users are likely to
increase both the intra- and boundary-edge counts. The expan-
sion EXP of a cover is computed by dividing the boundary-
edge count by the size of the cover. The conductance COND
of a cover is defined as COND(C) = BEC(C)

2IEC(C)+BEC(C) . For
these three measures (BEC, EXP , COND), lower the value,
better formed is the community.

The third type of measurements is based on pair-similarity
that measures a given metric such as friendship similarity
among pairs of nodes. This is applicable to the definition of
a community of which members have a lot of commonality
[7]. We replace friendship similarity ratio with three additional
measurements based on the geographic proximity and location
of nodes. The first one is the geographic diameter of a cover
GDI defined as the geographic distance between the two
farthest nodes. The second one is the average geographic
distance AGD among pairs of nodes. Here, lower the measure
(GDI and AGD), better formed is the community. The third
one is the sum of the levels of physical interactions SLI

TABLE II: Measurements for Cover C of the size k

Measurement Definition
IEC [18] |{(vi, vj) ∈ E | vi ∈ C ∧ vj ∈ C}|
BEC [19] |{(vi, vj) ∈ E | vi ∈ C ∨ vj ∈ C}| - IEC

CONT IEC/k
EXP [20] BEC/k
IND [18] IEC/(0.5k(k − 1))

COND [20][19] BEC/(2IEC +BEC)
GDI max d(u, u′) ∀u, u′ ∈ C
AGD

∑
u6=u′∈C d(u, u′)/(0.5k(k − 1))

SLI
∑
u6=u′∈C I(u, u′)

among pairs of nodes for which higher the measure, better
formed is the community.

C. Measuring Covers

For each technique, we generated covers of fixed sizes from
5 to 100 with an increment of 1. For each cover size, we gen-
erated 100 covers and calculated the average intra-edge count,
boundary-edge count, geographic distance, and geographic
diameter. We then derived the remaining measurements.

In Fig. 3(a), we noticed that FFF outgrows the other
techniques in terms of intra-edge count as the cover size
increases. In Fig. 3(b), we noticed that FFF and FTA
outgrow the other techniques in terms of boundary-edge count
by a great margin suggesting that they strategically add users
with very large degrees. While RW is decent at generating
covers with high intra-edge counts as seen in Fig. 3(a), it is
also biased since users with high degrees are more likely to
be added, which increases the intra-edge count as the cover
continues to grow. However, FFF and FTA are even more
biased than RW and FFF outgrows the other five techniques
because the radius of the farthest friend would cover everyone
including common friends in between. On the other hand, we
noticed that CFF and CTA are most effective out of the six
techniques at increasing the intra-edge count while minimizing
the boundary-edge count at the same time.

In Fig. 3(c), we measure the geographic diameter of a cover
as a function of its size. As expected from how covers are gen-
erated, FFF and FTA are most effective at maximizing the
geographic diameter while CFF and CTA are most effective
at minimizing this measurement. The geographic diameter of
FFF and FTA reaches the limit within 20 iterations, while
the diameter for CTA and CFF slowly continues to grow.
A similar trend is seen in Fig. 4(c) which shows the average
geographic distance in contrast to the growth rate of intra- and
boundary-edge counts seen in Fig. 4(a).

Last but not least, conductance is a measurement used to
determine the quality of a community by considering both
the intra- and boundary-edge counts. As seen in Fig. 4(b),
CFF is the most effective out of the six covers at minimizing
conductance since it preserves some geographic structure of
the social network by traversing the edges based on who is
the geographically closest friend, and adding friends who are
likely to be friends with the members already in the cover.
CTA is not as effective as CFF because geographic distances
get diluted as the size of the cover increases. FFF and FTA
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Fig. 3: Three Measurements of Covers (Intra-edge Count, Boundary-Edge Count, and Geographic Diameter)
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Fig. 4: Measurements of Covers

are worse than RW at minimizing conductance. We later use
the physical interactions of users to compare and contrast the
results generated by the CFF cover to results detected by the
community detection algorithms.

V. EXAMINING DETECTED COMMUNITIES

We first examined the results by looking at the total number
of communities detected and the number of members in
each one. The modified CPM algorithm1 with geographic
information detected 2.6K communities whose average size
was 60 with the size of the largest one being 69K. IA without
geographic information detected 1.2K communities with the
average size of 134 and the size of the largest one being 52K.
IA with geographic information detected 349 communities
with the average size of 442 and the size of the largest one
being 45K. GANXiS without geographic information detected
7.2K communities with the average size of 21 and the size of
the largest one being 3K. Finally, GANXiS with geographic
information detected 16K communities with the average size
of 10 and the size of the largest one being 455. Additional
information relating to community sizes is listed in Table III.

We used the network community profile (NCP) proposed in
[19] to examine detected communities as a function of its size.
The authors proposed to take the best partition defined by a

1We did not run the original CPM algorithm because of the long execution
time required to generate the clique graph.

TABLE III: Detected Communities and their Sizes

Community Size
Algorithms Avg. Std. Smallest Largest Total

CPM 60 1,356 6 68,671 2,572
IA 134 1,935 2 52,315 1,151

IA w (w for weighted) 442 2,954 2 45,242 349
GANXiS TTL 21 87 3 3,139 7,236

GANXiS TTL w 10 16 3 455 15,796

quality feature of a given community size because it represents
the potential of a partition in a community detection algorithm.
We measured the community quality by taking the highest
value of intra-density and the lowest value of conductance of
the best partition (if any) of a given community size. For intra-
density and conductance without geographic information, we
consider the number of all possible intra- and boundary-edge
counts. For intra-density and conductance with geographic
information, we only consider the number of edges that are
within geographic proximity (160 km) or roughly 2 hours of
driving.

The potential issues resulting from using this approach are
discussed below. First, in many situations, taking the average
value of a community quality gives a more representative
picture and probably is less sensitive in cases containing
outliers. Second, the number of communities for a given size
might vary from a large number of small communities to very
few for large communities. Last but not least, there might be no



communities of a particular size, and taking the average quality
might give a smooth function that is easier to extrapolate at
the missing points as seen with the covers. Fig. 5-7 present the
results for communities detected by CPM, IA, and GANXiS
respectively.

First, intra-density rapidly decreases as the size of the
cover increases because adding another member into a large
community requires everyone already in it to be connected
with this new member, as seen in Fig. 5-7(a). Unlike intra-
density, conductance is not correlated with the community
size because there are some small and large communities of
varying values, as seen in Fig. 5-7(b). Third, GANXiS and IA
are a little better than CPM at maximizing intra-edges that are
within geographic proximity, as seen in Fig. 5-7(c). IA is the
best at minimizing boundary-edges that are within geographic
proximity, as seen in Fig. 6(d). Last but not least, GANXiS and
IA benefited from incorporating the geographic information of
users, as seen in Fig. 6-7(d), where geographically correlated
friends are captured in the community detection process.

TABLE IV: Measuring Spatial Conductance

Algorithm # Spatial Cond. of 0 Total Ratio
CPM 21 175 0.12

IA 20 78 0.26
IA w (w for weighted) 19 84 0.23

GANXiS TTL 48 126 0.38
GANXiS TTL w 618 5977 0.10

Comparing Fig. 5-7(d) to Fig. 5-7(b), we noticed that some
detected communities had a conductance value of 0. This
means that every potential node within geographic proximity
of a community has already been included in it. For the IA
without geographic information, out of the 78 community
sizes, 20 of them have geographic conductance of 0, yielding
20/78 ≈ 0.26 ratio. For the IA with geographic information,
out of the 84 communities, 19 of them have a geographic
conductance of 0, yielding 19/84 ≈ 0.23 ratio. The remaining
values are listed in Table IV.

We examined small-size communities because humans have
limited resources and cognitive abilities to keep and maintain
social relationships resulting in a bounded number of active
friendships known as Dunbar’s number [21]. We measured and
then plotted in Fig. 8 the NCP level of physical interactions
in communities and covers by summing the level of physical
interactions among pairs. From the plots, we observed that
CPM have small communities where members are statistically
more likely than members in covers to physically interact with
each other by going to the same places together. In Fig. 8(a),
out of 95 communities detected by CPM of the size up to
100, 84 of them have higher amount of physical interaction
among members than a proposed null model, CFF . In Fig.
8(b), out of 41 communities detected by IA under the size of
100, 38 of them have higher amount of physical interaction
among members than CFF . The remaining values are listed
in Table V.

While CPM is the most effective at detecting communities
that are intrinsically small (95 total) and where the physical

interaction among member is likely to be higher than CFF
(88%), IA is the most effective at detecting communities where
93% of them have higher amount of physical interaction than
null model, as seen in Table V. GANXiS with geographic
information detected more smaller communities (87 vs. 30),
but some of the members do not physical interact much
compare to a null model (0.80 vs. 0.93).

TABLE V: Measuring Physical Interaction

Algorithm Count Total Ratio
CPM 84 95 0.88

IA 38 41 0.93
IA w (w for weighted) 28 30 0.93

GANXiS TTL 60 87 0.69
GANXiS TTL w 70 87 0.80

VI. RELATED WORK

While a lot of effort has been put into detecting com-
munities of generic networks mentioned in surveys such as
[18][22][23], little work has included the geographic proximity
of friends or nodes into designing algorithms that detect
spatially correlated communities. Recent work in location-
based social networks [24] has shed insights on spatial-social
relationships mentioned in [13][25] and confirmed that friends
are geographically correlated because distance matters [26].
Yet, less empirical work has been done on mining the data to
capture the geographic effect of friends and their communities.

In [27], authors provided network properties (distance
strength, social triads, etc.) of online location-based social
networks (Gowalla, FourSquare, Brightkite) and they noticed
that friendship connections are distributed across a wide range
of geographic distances. In [28], authors proposed a new
definition of modularity to uncover communities without the
effect of geographic distance. However, we argue that in
the case of a friendship network, capturing the spatial effect
where a community consisting of friends who are within
geographic proximity is valuable for analyzing social networks
and has applications in link prediction; for instance, using non-
friendship pairs in a geographically correlated community to
predict whether they will be likely to become friends in the
future.

Our work here is similar to the combination of [26] and [19].
In [26], authors defined geographic clustering coefficients and
concluded that users with few friends are likely to have friends
nearby. In [19], authors proposed network community plot
(NCP) to examine detected communities as a function of size
and quality features based on link connectivity and network
properties of detected communities. Therefore, our work was
motivated by a combination of theirs in using community
detection algorithms to extract geographically correlated com-
munities of friends. The main differences are that we also
proposed and studied the behavior of generating covers as
a baseline, and used location and geographic information of
users in addition to their link connectivity to benchmark the
selected community detection algorithms.
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Fig. 5: Modified CPM
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Fig. 6: Inference Algorithm
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Fig. 7: GANXiS r = 0.50
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VII. CONCLUSION

First, our data analysis of Gowalla friendship network
reveals two degrees of geographically correlated separation
where friends and friends-of-friends are more likely to be
within geographic proximity. Conversely, pairs of users who
are separated by three or more hops of friendship relation
are unlikely to be within geographic proximity. Also, friends
who are within geographic proximity are more likely to
physically interact by going to the same places together than
distant friends. Yet, the likelihood of physical interactions
among friends-of-friends is minuscule even though they are
geographically correlated.

Second, we showed that covers can serve as a null model
for examining community structures. For most quality metrics,
small communities are more likely to outperform large ones
because it is much easier to find a small group to maximize a
particular metric. Therefore, comparing detected communities
to covers tell us how much better the algorithm is performing
than a proposed null model for a given size of the community.

Finally, we used the results from the covers and compared
them to the communities detected by modified CPM, un-
weighted and weighted IA, and GANXiS. By incorporating
spatial information into CPM to make the algorithm scalable,
it detected meaningful communities of a large online social
network where members are more likely to physically interact
than a null model. From the NCP plots, we noticed the
importance of small-size communities in large social networks
in which it is much harder to find a large community because
humans have limited resources to create and maintain rela-
tionships. We used the level of physical interactions among
members in a community as the final quality measure to
compare and validate the performance of the community
detection algorithms to the closest-friend-first cover.
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