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ABSTRACT 

This chapter introduces a novel Levenberg-Marquardt like second-order algorithm for tuning the Parzen 
window σ in a Radial Basis Function (Gaussian) kernel. In this case each attribute has its own sigma 
parameter associated with it. The values of the optimized σ are then used as a gauge for variable selection. 
In this study Kernel Partial Least Squares (K-PLS) model is applied to several benchmark data sets in 
order to estimate the effectiveness of the second-order sigma tuning procedure for an RBF kernel. The 
variable subset selection method based on these sigma values is then compared with different feature 
selection procedures such as random forests and sensitivity analysis. The sigma-tuned RBF kernel model 
outperforms K-PLS and SVM models with a single sigma value. K-PLS models also compare favorably 
with Least Squares Support Vector Machines (LS-SVM), epsilon-insensitive Support Vector Regression 
and traditional PLS. The sigma tuning and variable selection procedure introduced in this paper is applied 
to industrial magnetocardiogram data for the detection of ischemic heart disease from measurement of the 
magnetic field around the heart. 
 
BACKGROUND OF SIGMA TUNING 

This chapter introduces a novel tuning mechanism for Gaussian or Radial Basis Function (RBF) kernels 
where each attribute (or feature) is characterized by its own Parzen window sigma. The kernel trick is 
frequently used in machine learning to transform the input domain into a feature domain where linear 
methods are then used to find an optimal solution to a regression or classification problem. Support 
Vector Machines (SVM), Kernel Principal Component Regression (K-PCR), Kernel Ridge Regression 
(K-RR), Kernel Partial Least Squares (K-PLS) are examples of techniques that apply kernels for machine 
learning and data mining. There are many different possible kernels, but the RBF (Gaussian) kernel is one 
of the most popular ones. Equation (1) represents a single element in the RBF kernel, 
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where xi and xj denote two sample data. Traditionally, most machine learning approaches use a single 
value σ in the RBF kernel (as indicated in the equation above), which then needs to be tuned on a 
validation or tuning data set. In this paper each attribute is associated with a different σ value which is 
then tuned based on a validation data set with the aim to achieve a prediction performance that is an 
improvement over the one achieved by the RBF kernels with a single σ. The expression for a single RBF 
kernel entry becomes,  
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where m is the number of attributes in the sample data. There are several advantages of using an 
automated tuning algorithm for a vector of σ rather than selecting a single scalar variable: 

� Manual tuning for multiple σ-values is a tedious procedure; 
� The same automated procedure applies to most machine learning methods that use an RBF 

kernel; 
� The values of the optimized σ can be used as a gauge for variable selection (Specht, 1990). 

 
LITERATURE OVERVIEW 

Automated tuning of the kernel parameters is an important problem, it could be used in all different 
scientific applications: such as image classification (Guo, 2008; Claude, 2010) and time series data 
forecasting (He, 2008; Rubio, 2010), etc. A number of researchers have proposed algorithms for solving 
it, especially in the context of SVMs. Related work includes Grandvalet et al. (Grandvalet, 2002), which 
introduced an algorithm for automatic relevance determination of input variables in SVMs. Relevance is 
measured by scale factors defining the input space metric. The metric is automatically tuned by the 
minimization of the standard SVM empirical risk, where scale factors are added to the usual set of 
parameters defining the classifier. Cristianini et al.(Cristianini, 1998) applied an iterative optimization 
scheme to estimate a single kernel width hyper-parameter in SVM classifiers. In its procedure, model 
selection and learning are not separate, but kernels are dynamically adjusted during the learning process 
to find the kernel parameter which provides the best possible upper bound on the generalization error. 
Chapelle et al.(Chapelle, 2002) extend the single kernel width hyper-parameter to multiple-sigma 
parameters for solving the same problem in SVMs in order to perform adaptive scaling and variable 
selection. An example of this method is extended to Gaussian Automatic Relevance Determination kernel 
via optimization of kernel polarization (Wang, 2010). A further extension includes a multi-Class feature 
selection in the application of text classification (Chapelle, 2008). Chapelle et al's method has the 
advantage that the gradients are computed analytically as opposed to the empirical approximation used in 
this paper. The algorithm proposed in this paper is very similar to the one proposed by Chapelle et al. 
However, the approach in this study is different in the sense that we use a Levenberg-Marquardt-like 
optimization approach, which uses a λ parameter that gradually changes the algorithm from a first-order 
to a second-order.  In addition, we use a Q2 error metric which shows more robustness on unbalanced data 
sets and a leave-several-out validation option for improved computing time, and, finally, we apply the 
algorithm to K-PLS rather than SVMs. 
 
KERNEL PARTIAL LEAST SQUARES 

Partial Least Squares (PLS) (H.Wold, 1966) was introduced by a Swedish statistician Herman Wold for 
econometrics modeling of multi-variate time series. Currently PLS has become one of the most popular 
and powerful tools in chemometrics and drug design after it was applied to chemometrics in the early 
eighties (S.Wold, 2001). PLS can be viewed as a “better” Principal Components Analysis (PCA) 
regression method, where the data are first transformed into a different and non-orthogonal basis and only 
the most important PLS components (or latent variables) are considered for building a regression model 
(similar to PCA). The difference between PLS and PCA is that the new set of basis vectors in PLS is not a 
set of successive orthogonal directions that explain the largest variance in the data, but are actually a set 
of conjugant gradient vectors to the correlation matrix that form a Krylov space (Ilse, 1998), a widely 
used iterative method for successfully solving large system of linear equations in order to avoid matrix-
matrix operations, currently available in numerical linear algebra. PLS regression is one of the most 
powerful data mining tools for large data sets with many variables with high collinearity. The NIPALS 
implementation of PLS (H.Wold, 1975) is elegant and fast. 
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Linear Kernel Partial Least Squares (K-PLS) was first described in (Lindgren, 1993) and applied to 
spectral analysis in the late nineties of twentieth century (Liu, 1999). Instead of linear K-PLS, Rosipal 
introduced K-PLS in 2001 (Rosipal, 2001) as a nonlinear extension to the PLS. This nonlinear extension 
of PLS makes K-PLS a powerful machine learning tool for classification as well as regression. K-PLS can 
also be formulated as a paradigm closely related (and almost identical) to Support Vector Machines 
(SVM) (Vapnik, 1998; Boser, 1992; Bennett, 2003). In addition, the statistical consistency of K-PLS is 
recently proved from theoretical perspective (Blanchard, 2010). 
 
APPLICATIONS OF KERNEL PARTIAL LEAST SQUARES 

Since K-PLS was introduced in 2001, researchers in chemometrics has gradually switched from PLS to 
K-PLS as a standard tool for the data mining (Embrechts, 2007; Tian, 2009). Meanwhile, K-PLS has been 
attracted by other researchers for different industrial applications such as face recognition (Štruc, 2009) 
and financial forecasting (Huang, 2010). In the specific domain (electrocardiogram, echocardiogram, and 
angiogram, etc) where signal is retrieved through sensor, machine learning has become a crucial tool for 
the signal analysis. PLS combining with different signal preprocess techniques are applied in different 
research projects. Partial least squares logistic regression was used for electroencephalograms for early 
detection of patients with probable Alzheimer’s disease (Lehmann, 2007).  Chen et al. (Chen, 2009) 
conducted partial least squares with Fourier transform in the near infrared reflectance spectroscopy to 
analyze the main catechins contents in green tea. In this paper, a sigma tuning of Gaussian kernel is 
applied on the magnetocardiogram for the diagnosis of ischemia heart disease. The sigma tuning 
procedure is implemented for a K-PLS model. The justification here for using K-PLS is that there is 
generally no significant difference in performance between K-PLS and other kernel-based learning 
methods such as SVMs (Han, 2006). 
 
PERFORMANCE METRICS 

A common way to measure error in regression modeling is via the Least Mean Square Error (LMSE), 
which is defined as the average value of the squared error between predictions for responses and target 
values according to: 

2

1
ˆ( )

n

i ii
y y

LMSE
n

=
−

=
∑

                                                            (3) 

where iy  is the response value, ˆ
iy  is its corresponding prediction value, and n is the number of samples. 

However, the LMSE is dependent on how the response variable is scaled. In order to overcome the 

scaling effect, two additional metrics are introduced here: 2r  and 2R . The first metric, 2r , is the square of 
coefficient of correlation between predicted and target values. 
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Where ŷ  and y are mean value for predictions, ŷ , and target values, y , respectively. 2r  is used for 

assessing the general quality of the trained model. Usually, a higher value for 2r  corresponds to a better 

trained model. An obvious drawback of 2r as an error metric is that 2r  only measures a linear correlation, 
indicating how well the predictions, ŷ , follow a line if they are plotted as a function of y . While one 

might expect a nearly perfect model when 2r  is close to unity, this is not necessarily the case. For that 

reason, a second and more powerful error metric will be used: the so-called “Press 2R squared”, or 2R , 

which is commonly used in chemometric modeling. 2R is defined as (Embrechts, 2004; Golbraikh, 2002): 
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The 2R metric is usually very close to the 2r  metric, but is considered a more meaningful error metric 

than 2r  because it accounts for the residual error as well. The higher the value of 2R is, the better is the 

model. However, it should be noted that in certain cases, the 2R  metric can actually become negative. 
For similar purposes, two related metrics are introduced to assess the performance of validation data or 

test data: 2q and 2Q . They are defined as 21 r−  and 21 R− , respectively. They are only used in validation 
and tuning, and only on test data (never on training data). 
In addition to the above error metrics, the area under the Receiver Operating Characteristic (ROC) Curve 
(Swets, 2000; Fawcett, 2001; Fawcett, 2003), AUC (Bradley, 1997), will be used for binary classification 
problems. The same algorithm will also be applied to regression data for comparative purposes, even 
though a physical interpretation of the AUC in that case is not obvious. For binary classification problems 
the balanced error (BE) will also be reported. The balanced error is defined as the average of the correct 
classification rate between the positive cases and the negative cases. 

 
Figure 1.Process flow for sigma tuning 

 
SIGMA TUNING ALGORITHM 

In this part, the sigma tuning algorithm will first be explained. Metric 2Q  is chosen as an error metric, 

denoted as ( )E σ , which depends on the vectorσ . Leave-One-Out (LOO) K-PLS is used to obtain an 

initial 2
0Q  value based on an initial starting guess for the sigma-vector denoted as 0σ . A second-order 

gradient descent method is utilized to minimize the objective function ( )E σ and find the optimal choice 

forσ . The search process starts from the initial point 2
0 0E( ) Qσ = . The value of σ  is updated based on 

the minimization of the leave-one-out (or alternatively, leave several out) tuning (or validation) error, 
rather than directly minimizing the training error (Figure 1). According to Newton's rule for finding a 
minimum in a multi-dimensional space, the relation between ( )E σ  and σ  at the minimum can be 

written as: 
1

0 0( )Eσ σ σ−= − ∇H �                                                                                             (6) 

where H is the Hessian matrix. 0( )E σ∇ is a vertical vector, as expressed by: 
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After rearranging, the equation can be reorganized as 

0( )Eσ σ∆ = −∇H�                                                                                                  (8) 

where 0σ σ σ∆ = − . In order to efficiently proceed towards a converged solution, a Levenberg-

Marquardt approach will be utilized. This is achieved by adding a small scalarλ  to the diagonal elements 
in the HessianH , as expressed by: 

0( ) ( )Eλ σ σ+ ∆ = −∇H I �                                                                                       (9) 

In this approach, the algorithm starts out as a first-order approach and gradually proceeds towards the 
second-order approach outlined below. We will solve equation (9) for σ∆ . 

Note that each element 
0
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in the right side of equation (7) will be computed by numerical 

perturbation as shown below: 
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where ε  is a small perturbation value acting on the thi component in σ . ( )iE σ is the performance metric 
2Q  obtained from the change in the thi component of σ only. 

A second approximation will be introduced before solving the above equations. Because the elements of 
the Hessian are expensive to evaluate, we will introduce a fast and efficient approximation for the Hessian 
matrix. Each element in the Hessian matrix is originally defined by: 
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In principal, the second partial derivatives can be numerically calculated. However, in order to speed up 
the calculation process, the second-order partial derivatives are approximated by: 
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This approximation is similar to an approach that is commonly used in the neural network literature 
(Masters, 1995; Ham, 2001). σ∆ is then solved numerically from equation (9) with a fast conjugate 
gradient based equation solver in order to avoid calculating the inverse of the Hessian matrix, 
H (Suykens, 2003). Because of the approximate evaluation of the Hessian, a heuristic coefficient α  will 
be introduced in the iterative updating procedure for the elements of σ  leading to: 

0σ α σ σ= ∆ +  

The value of α  is set to 0.5 which turns out to be a robust choice based on hundreds of experiments with 
this algorithm on different data sets. A more detailed description for the implementation of the algorithm 
is shown in Figure 1 and the sigma tuning algorithm is illustrated in the following: 

1. Start with an initial guess 0σ  and calculate the initial 2Q  error metric from a leave-one-out K-PLS 

model and estimate 0( )E σ . Start with 1λ = . 

2. E∆ Calculation: For each scalar iσ  calculate the corresponding element in E∆ by perturbation. 
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3. σ∆ Calculation: Solve equation (9) for σ∆ by using a fast conjugate gradient-based equation solver. 

4. λ Adjustment: If the 2Q  error gets smaller, update σ and decrease 0.93λ λ= ; otherwise, make no 

change forσ and increase 3.5λ λ= . If 1λ > , cap λ to unity. 
5. Iterate the process: Use the new solution as a new starting point and go to step 2. If the error can not 

be improved or the process reaches the iteration number limit, halt the procedure. 
Note that both coefficients 0.93 and 3.5 are empirical values based on many experiments on different data 
sets. 
 
VARIABLE SELECTION 

Dimensionality reduction is a challenging problem for supervised and unsupervised machine learning for 
classification, regression, and time series prediction. In this section we focus on variable selection for 
supervised classification and regression models. The taxonomy of variable selection has two branches: 
variable ranking and subset selection (Blum, 1997; Guyon, 2003). Variable subset selection can be further 
divided into (i) wrappers, (ii) filters, and (iii) embedded methods. The pros and cons of different variable 
selection methods vary depending on the specific domain problem, computational expense, complexity, 
and Robustness (Guyon, 2003). In this study, a natural ranking of input variables is proposed based on the 
values of tuned Parzen window parameters, σ. 
The original variables are ranked corresponding to the sigma ranking (from low to high σ  values). 
Bottom-ranked variables, i.e., variables corresponding to a higher σ value correspond to features that do 
not contribute much to the calculation of the RBF kernel entry and are therefore less important. Some of 
the bottom-ranked variables can therefore be eliminated. The elimination phase can (i) proceed iteratively, 
where a few variables are dropped at a time, or (ii) proceed in a single-step greedy fashion. A random 
gauge variable (Embrechts, 2005; Bi, 2003) can be introduced to avoid discarding possibly significant 
variables. This random variable can either be uniform or Gaussian. Only features that rank below the 
random gauge variable will be eliminated (during a single step). 
After the variable selection stage, a new K-PLS learning model is built based on different bootstraps with 
bagging in order to evaluate the performance of the sigma tuning based feature selection. Two benchmark 
data sets illustrate this procedure on a regression and a classification problem. Furthermore, the final 
predictive models are compared with alternate variable selection procedures based on (i) Random Forests 
(Han, 2006). Random Forests variable selection with PLS was introduced in (Han, 2006). For each 
variable subset, a PLS or K-PLS model is used for training and validation. For each variable, a score is 

based on the 2Q  metric for the model in which this variable participated. Finally, variables are ranked 
according to the average score of each feature. (ii) Sensitivity Analysis (Embrechts, 2005). The 
hypothesis of Sensitivity Analysis is that variables that change the output more when tweaked are more 
sensitive and therefore more important. Sensitivity Analysis can easily be implemented as follows: once a 
model is built, all features are frozen at their average values, and then, one-by-one, the features are 
tweaked within their allowable range. The features for which the predictions do not vary a lot when they 
are tweaked are considered less important, and they are slowly pruned out from the input data in a set of 
successive iterations between model building and feature selection (Embrechts, 2005). (iii) A simple 
linear kernel PLS model with Z-scores. Z-scores are a linear statistical method for selecting the important 
variables in a regression or classification problem (Hastie, 2003). 
 
EXPERIMENTAL RESULTS 

Benchmark Data 

Sigma tuning based variable selection with K-PLS was benchmarked with two data sets: South African 
Heart Data (SAheart) and the Boston housing market data. The SAheart is a subset from a larger data set 
(Rousseauw, 1983) which defines an almost linear classification problem. It describes a retrospective 
sample of males in a high-risk heart-disease region of the Western Cape in South Africa. There are 
roughly two controls per case of Coronary Heart Disease (CHD). It consists of one response and nine 
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variables: systolic blood pressure (sbp), cumulative tobacco consumption (tobacco), low density 
lipoprotein cholesterol level (ldl), adiposity, family history of heart disease (famhist), type-A behavior 
(typea), obesity, alcohol, and age. A total of 462 samples are included in this data set. 
The Boston housing data is a standard benchmark regression data set from the UCI data Repository for 
Machine Learning (Merz, 1998). This benchmark data set has 506 samples with 12 continuous and one 
binary variable: per capita crime rate (CRIM), proportion of residential land zoned (ZN), proportion of 
non-retail business acres (INDUS), Charles River dummy variable (CHAS), nitric oxides concentration 
(NOX), average number of rooms (RM), proportion of owner-occupied units (AGE), weighted distances 
(DIS), index of accessibility (RAD), full-value property-tax rate (TAX), pupil-teacher ratio (PTRATIO), 
B value (B) and a percentage of population with low status(LSTAT) and one response variable: median 
value of owner-occupied homes (MEDV) in $1000 and capped at $50,000. 
 
Table 1. Experimental results with all variables 

 
 
For each data set, 350 instances are randomly selected for training data, the remaining data are used as 
test data. We use normalization scaling to pre-process the data for both data sets. 
During the sigma tuning stage, a leave-several-out K-PLS model with (tuned) 5 Latent Variables (LVs) 

was evaluated to calculate a 2Q -error metric from the training data. For both benchmark data sets, 70 
data instances were randomly selected for a single leave-several-out validation case. 200 sigma tuning 
iterations were sufficient for a stable set of σ values. The starting value for 0σ  for the Boston Housing 

data is initialized to 2, a relatively low value. For the South Africa Heart, the initial value for σ  is set to 
30, because this data set is known to lead to linear machine learning models. 
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Table 2. Experimental results with reduced set of variables 

 
 
Before comparing different variable selection methods on the benchmark data, the results of a sigma-
tuned K-PLS model are compared with those obtained from other machine learning methods include (i) 
Least Squares Support Vector Machines (LS-SVM), (ii) ε -insensitive Support Vector Regression (Chang, 
2004) (ε -SVR), and (iii) PLS. The prediction results shown in Table 2 indicate that sigma-tuned K-PLS 
outperforms K-PLS with a single sigma value. The K-PLS results also outperform or are close to the 
other machine learning models. For the metrics presented in this table, the models were built by bagging 
all the models obtained from a leave-one-out training procedure. 
For the variable selection based on sigma tuning, two criteria are used. One criterion is based on rejecting 
variables that correspond to largerσ ; the second criterion aims to retain at least a similar performance 
metric between models with all the variables and models with a reduced set of variables. Based on the 
relative variable importance metric for the SAheart data, the variables “alcohol” and “obesity” were 
dropped from these data. Likewise, two variables, “CRIM” and “CHAS”, are discarded from the original 
variables in the Boston housing data. Furthermore, when we continue to dropping the third variable, “ZN”, 
the model with the remaining variables still maintains a similar prediction performance (Table 2). Note 
that for both data sets only a few features are eliminated in order to maintain a prediction performance 
similar to the models without variable selection. 
The results of variable reduction for both benchmark data sets are shown in Table 2. Notice that the σ -
tuning based feature selection results are better than the results obtained from the other two feature 
selection methods. Note also that by using leave-one-out modeling, the performance metrics have a low 
variance. 
 
CLASSIFICATION OF MAGNETOCARDIOGRAMS 

The aim of Magnetocardiogram (MCG) based cardiology is to rapidly identify and localize the onset of 
heart disease from measuring the magnetic field of the heart. In this application we are interested in 
detecting myocardial ischemia, i.e., a cardiac condition in which there is a restriction in blood supply to 
the heart. Figure 3 illustrates an MCG system (Model CMI-2049, CardioMag Imaging, Inc., Schenectady, 
NY) which collects cardiac magnetic field data at 36 points spread over the torso in four sequential 
measurements in mutually adjacent positions. Data acquisition at 1 kHz for 90 seconds per position 
results in 36 individual time series of 90,000 samples each. These data are filtered and averaged to 
produce average cardiac cycles at each of the 36 measurement points. Additional post-processing of the 
T-wave portion the average cardiac cycles yield a set of 74 variables. The 74 variables are related to delay 
behaviors of the individual signal traces in the T3-T4 region. 325 patients sample data were collected for 
the automated detection of ischemic heart disease. There are two response classes: negative and positive. 
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Figure 2. Left: the Magnetocardiograph, installed in a hospital room, without magnetic shielding. The 
figure shows the operator adjusting the subject's position and sensor head level above the torso. Right: 
Relative positions of the heart and the nine sensors (small circles) inside the cryostat housing at four 
consecutive positions over the body surface. 

 
Figure 3. Left: Filtered and averaged temporal MCG Trace for one cardiac cycle in 36 channels (the 6x6 
grid). Right Upper: Spatial map of the cardiac magnetic field generated at an instant within the ST 
interval. Right Lower: T3-T4 sub-cycle in one MCG signal trace. 
 
The MCG data are normalized and 241 instances are randomly selected as training data; the remaining 84 
samples are used as test data. 
For MCG data, five Latent Variables (LVs) were used. Deleted variables are listed in the last column of 
Table 4. Table 4 shows that Random Forests results outperform Z-scores ranking and they are close to 
those obtained from Sensitivity Analysis. 
In this study, two experiments were conducted for these data that utilize the sigma tuning algorithm 
introduced in this study. In one case, three sets of variables are associated with three different Parzen 
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window σ ’s, because each variable in one of these three sets has a very similar physical meaning. In the 
other case, each of the 74 variables is characterized by a different Parzen windowσ . The sigma tuning 
procedure is carried with 5 latent variables out in a leave-several-out model, where 50 data are left out 
from 241 with 120 iterations. The starting value for 0σ  is initialized to 2 as well. 

 
Table 3. Experimental results for MCG data with all variables 

 
 
Table 4. Experimental results for MCG data with reduced set of variables 

 
 
For the experiment with three group σ ’s, the results illustrate a stable convergence of the sigma tuning 
algorithm. The last two features (#73 and #74) can be discarded from the model because of their large σ  
value. After discarding these two features, we still obtain undiminished prediction performance. 200 
iterations are used for the second case experiment. Experimental results indicate that the variable ranking 
is relatively robust over the number of iterations. In the final model, as shown in Table 4, the seven 

variables with the highest σ  values are discarded, maintaining a similar 2Q and 2q  performance as for 
the original 74 variable model. The final predictions for the test data are shown in Figure 4. Two 
probability density functions are generated based on the prediction results for each class. Note that the 
balance error depends on the setting of threshold. The threshold value for the results shown in Figure 4 is 
set at zero. The corresponding confusion matrix is also illustrated in Figure 4. 
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Figure 4. Prediction results for the MCG data set with relative probability densities for the positive and 
negative classes. 
 

CONCLUSION 

We introduced a novel Levenberg-Marquardt like second-order algorithm for tuning the Parzen window 
sigmas in a RBF kernel. The effectiveness of this algorithm was demonstrated with K-PLS. After tuning 
the sigmas, we then introduced a novel variable selection procedure by (iteratively) discarding variables 
with larger associated sigmas. Benchmark comparisons showed the effectiveness of the tuning procedure 
and the sigma tuning based variable selection method. 
 
FUTURE RESEARCH DIRECTION 

The sigma tuning procedure outlined in this chapter could only proceed in a timely matter by introducing 
a heuristic approximation for the second-order derivatives in the Hessian matrix. Further research will 
compare this approach with a more accurate way of calculating the second-order derivatives based on a 
numerical perturbation approach.  Further research is also needed to assess whether the Mercer condition 
(Cristianini, 2000) is satisfied with the sigma-tuned kernels used in this chapter. Of course, we can always 
consider the revised kernel function as a data transformation technique similar to DK-PLS (Bennett, 2003) 
and then still apply K-PLS. In extension to the current implementation of single response, a multiple 
response sigma tuning algorithm can be investigated for the future work.  
In the application of the MCG data analysis, we realized the bias in the samples, where the number of 
patients having positive is less than the number of patients having negative. Using the current objective 
function in the K-PLS will put less weight on negative samples and lead to bias in the model calibration. 
It would be better to use a different loss function rather than quadratic loss to catch the bias in the samples. 
A further research is to generalize K-PLS so that it can be applied to all different loss functions, including 
entropy loss function for the biased samples.  
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KEY TERMS & DEFINITIONS 

Keyword:  Kernel Partial Least Squares, Gaussian Kernel, Variable Selection, Ischemic Heart Disease, 
Levenberg-Marquardt Algorithm 
 

Kernel Partial Least Squares: A kernel function to replace the linear kernel matrices TXX  in the PLS 
methods. PLS can be viewed as a “better” Principal Components Analysis (PCA) regression method, 
where the data are first transformed into a different and non-orthogonal basis and only the most important 
PLS components (or latent variables) are considered for building a regression model. 
 
Gaussian Kernel: or Radial Basic Function (RBF) kernel, is most widely used. Each kernel entry is a 
dissimilarity measure through using the square of Euclidean distance between two data points in a 
negative exponential. Theσparameter contained in the entry is the Parzen window width for RBF kernel. 
 
Variable Selection: or feature selection, is a technique in the machine learning or statistics to select a 
subset of relevant features for building a robust learning model. 
 
Ischemic Heart Disease: mayocardial ischaemia, is a disease caused by reduced blood supply to the heart 
muscle. It is more common in men and those whose close relatives have ischaemic heart disease.  
 
Levenberg-Marquardt Algorithm: is an algorithm in mathematics and computing to minimize a function 
by providing a numerical solution. It is a popular alternative to the Gauss-Newton method. 




