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ABSTRACT

An emergence of a new generation of data intensive universal co-operation and

collaborative applications has led to increased demand for highly efficient and cost-

effective resource sharing and problem solving. Data Grids provide an environment

and a framework that supports and coordinates the access of widely distributed

storage and compute resources to large numbers of users. In Data Grids data and

data management utilities are treated as first class citizens. The main focus of Data

Grids is providing users with an infrastructure that enables and facilitates reliable

access and sharing of data, access to storage resources, and data transfer services

that can scale across widely distributed locations. Yet, providing efficient access to

huge and widely distributed data is still a considerable challenge.

Most existing and deployed Grid systems and platforms are centrally man-

aged and are quite difficult to set up and maintain. Proper access to software and

hardware resources requires meticulous installation, configuration, and testing of dif-

ferent components across all the participating Grid nodes. In such systems, control

of the resources is centralized and usually handled by system administrators. Such

configurations hinder dynamic and scalable expansion of the Grid infrastructure

and resources. The tremendous growth in data requirements for both scientific and

commercial applications in the last few years stresses the need for new data place-

ment algorithms and access tools that can break administrative and geographical

barriers. This new generation of universal co-operation and collaborative applica-

tions require new approaches to ensure efficient access and distribution of data and

resources based on real time users’ and applications’ demand.

In this thesis we propose new lightweight distributed, adaptive, and scalable

middleware that provides transparent, fast, and reliable access to data and storage

resources in distributed resource sharing environments such as Data Grids. Strate-

gically placing data near the user and her application offers considerable benefits

and is key to our solution. At the core of our approach are dynamic data place-

ment and replica location techniques that adapt replica creation and location to the

ix



continuously changing network connectivity and users behavior. The correspond-

ing framework is fully distributed, self configuring, scalable to the large numbers of

users, and supportive of dynamic growth of the underlying infrastructure.

We evaluate the benefit and applicability of our proposed solution via ana-

lytical models, simulations, and emulation. Results from the simulation and the

deployment of our middleware prototype using widely observed and popular data

access patterns show that our solution provides better data access performance with

lower resource consumption rates than the static approaches.
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CHAPTER 1

Introduction

In this chapter we present the motivation and inspiration behind computational and

Data Grids, present an overview of existing Data Grid technologies, and highlight

the need for a replication management middleware.

1.1 Motivation for Data Grids

The motivation for Grids was initially driven by large-scale, resource inten-

sive applications that require more resources than available in a single comput-

ing unit, be it a workstation, a supercomputer, or even a cluster within a sin-

gle administrative domain. The emerging trend in scientific applications in many

areas such as high energy physics, data mining, and large scale simulations sug-

gests and shows that these applications process and produce large amounts of

data [17, 16, 15, 14, 28, 27, 46, 37, 75]. The resulting output data needs in turn to

be stored for further analysis and shared with collaborating researchers within the

scientific community who are spread around the world. Facilitating collaborative re-

search requires a new computing paradigm that can break administrative domains

and organizational barriers in order to enable multi organizational co-operations

and collaborations that benefit scientific research and the community at large. Grid

Computing is a computing paradigm that enables the aggregation of large scale

computing, storage, and networking resources. A Grid provides an environment

where a widely distributed scientific community shares its resources, across differ-

ent administrative and organizational domains, to solve large-scale compute- and

data-intensive applications and collaborate on a wide variety of disciplines. A Grid,

therefore, enables the creation of a virtual environment encompassing a pool of

physical resources across different administrative domains; these resources are then

abstracted into computing or storage units that can be transparently accessed and

shared by large numbers of remote users.

The concepts used in Grid computing are not new. The invention of net-

1
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working and the introduction of distributed operating systems enabled the access of

resources in geographically distributed locations [30]. More technological advances

brought up by parallel processing and distributed computing allowed not only the

remote access of resources but also the simultaneous access and sharing of these

distributed resources by different remote users [30]. Parallel processing enabled dif-

ferent tasks to be run simultaneously on different computers, usually homogeneous

computers, and to compete for access to computational resources. In distributed

computing, users are able to access and use widely distributed heterogeneous com-

puters to run jobs that require more resources than available in local networks and

laboratories. The emerging need for using more resources and collaborative problem

solving in cost efficient ways led to the development of middleware solutions that

transparently provide access to distributed resources and route data from back-end

sources to end-user applications in a seamless scalable manner; this became known

as meta-computing and later computing on the Grid [39]. Similar to the electrical

power Grid, the underlying infrastructure of computational Grids aims to provide

reliable, pervasive, and easy-to-use access to resources in widely distributed envi-

ronments. The Grid offers an integrated architecture that enables and coordinates

resource sharing for large numbers of users and applications with dynamic behav-

iors and continuously changing access patterns [39]. Peer-to-Peer (P2P) systems

provide another resource sharing environment that benefits from these technologi-

cal advances as well. These systems however have a different objective, to facilitate

access to widely distributed autonomous resources that are intermittently unavail-

able and unreliable [6, 74, 80]. These systems have grown tremendously in their user

base, forming communities of millions of participants across the world. However, the

Grid and P2P target different communities with different service requirements and

security guarantees. In contrast to P2P, current Grid participants are well known

scientific organizations and institutes and well established scientists in their com-

munities and share high levels of trust and accountability. Resources in the Grid are

mostly dedicated to scientific research with high rates of availability. But the scale

and success of P2P systems can help the scientific community to apply and adapt

tested and proven approaches to design a more flexible and dynamic large resource
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sharing platform.

In many areas such as genomics [16], drug discovery [15], high energy physics [46],

astrophysics [75], and climate change modeling [17, 37], the amount of data required

to simulate natural phenomena and conduct experiments is very large. These exper-

iments in turn generate large data sets that need to be collected and appropriately

stored in geographically distributed designated data centers to be accessed for fur-

ther processing at different additional sites [14, 23, 28, 27, 46, 48, 84]. With increas-

ingly growing levels of global collaborations and cooperations between researchers,

data storage and collection centers are fast spreading around the world. Conducting

scientific experiments requires, in most cases, extensive computations and access to

sophisticated instruments, which are in turn located in remotely distributed labo-

ratories. Experiments in high energy particle physics such as those running at the

European Center for Nuclear Research (CERN) the Compact Muon Selenoid (CMS)

detector and ATLAS [46, 4, 7, 79] designed to study particle physics produce and

collect massive amounts of data and involve thousands of researchers from all around

the world. The goal of these experiments is to find rare events that are produced

from the decay of massive new particles. In Astronomy the Sloan Digital Sky Survey

(SDSS) is the most ambitious experiment in this field with a goal of producing a

detailed image of a quarter of the sky and determining the positions and brightness

of more than 100 million celestial objects [7]. These experiments and scenarios em-

phasize the challenges introduced by combining the management of large amounts

of data and computing resources in Grid environments. Massive amounts of data

are currently being produced by the aforementioned research for scientific analysis;

some experiments indeed produce over a petabyte of data in one year. To effectively

and efficiently address these challenges, a framework that enables the transparent

access and sharing of widely distributed large data sets and computing resources is

needed. A general design framework has been proposed as the Data Grid architec-

ture and was introduced by Foster et al in [39]. The Data Grid is a Grid where data

and data management utilities and resources are treated as first class citizens. A

Data Grid is mainly focused on providing users with an infrastructure that enables

and facilitates reliable access and sharing of data management resources, and data
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access and transfer services that can scale across widely distributed locations and

reach across wide area networks and break administrative and geographical barri-

ers. This new generation of universal co-operation and collaborative applications

requires new approaches to ensure efficient access and distribution of data resources

based on real time users’ and applications’ demands. Thus, intelligent resource al-

location and scheduling are needed to enable users to take maximum advantage of

the Data Grid infrastructure.

This thesis aims to introduce a new data management middleware that en-

ables the aggregation of widely distributed storage resources to facilitate resource

sharing on the scale of P2P systems while maintaining the reliability and levels of

service offered by a Grid. Our solution is inspired by P2P approaches but draws its

specificity from the requirements and needs of a large scientific community that is

geared towards large-scale data and compute intensive collaborative applications.

1.2 Data Management Architecture in Data Grids

A Data Grid connects a collection of hundreds of geographically distributed

computers and storage resources to facilitate sharing of data, storage resources, and

computational power [17]. Collaborating scientists can form a Virtual Organiza-

tion (VO) [40], which enables them to access different resources over Wide Area

Networks (WANs) without regard to their own organizational and administrative

domains. The size of the data that needs to be accessed in these VOs is on the

order of petabytes today and is fast growing [46, 7]. In addition to accessing large

amounts of data, most collaborative applications running across VOs in grid envi-

ronments require simultaneous and coordinated access to extensive computational

power to process and analyze this data. Ensuring efficient and reliable access to

such huge and widely distributed data is a major challenge to network and Grid

designers. The major barrier to fast data access in a Grid is the high latency of

communication in WANs, which impacts scalability and fault tolerance of applica-

tions running on the Grid. To address these problems and enhance performance,

replication has been widely used to place copies of data sets across different domains

within the Grid. The users, however, still need to discover the closest replica lo-
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cations to optimize the use of network resources and improve access performance.

Current technologies and initiatives to address data grid issues include among oth-

ers: The Globus project [38], the European DataGrid initiative [4], the GriPhyN

(Grid Physics Network) project [7], and PPDG (Particle Physics Data Grid) [7].

The Globus toolkit [38] enables the deployment of a metacomputing infrastructure,

which provides basic capabilities and interfaces to facilitate communication, resource

location, resource scheduling, authentication, and data access. Figure 1.1 gives an

overview of the Grid infrastructure and the services it provides and how they in-

teract. We will describe and provide further details about the existing Globus data

management architecture in Chapter 2. The Data Grid architecture in Globus [28]

addresses some of these issues by providing some data management services. The

main components of that architecture are a file transport protocol, GridFTP, and

a replica location service. The current implementation, however, uses only static

or user-driven replication services to manually replicate data files using GridFTP.

Globus services do not provide any support for automatic replica creation or man-

agement.

In most high energy physics applications, data distribution follows a tier hi-

erarchy. In the CMS and ATLAS experiments the Data Grid system spans over

worldwide distributed locations, and is organized in “Tiers”. Tier 0 represents the

main site located at CERN, Tier 1 encompasses national centers, Tier 2 represents

regional centers that cover one region of a large country such as a state in the US or

a smaller country, Tier 3 represents workgroup servers, and Tier 4 the (thousands

of) researchers workstations and desktops. In this scenario all data is collected at

CERN, the European Center for Nuclear Research located in Geneva Switzerland.

It is preprocessed online and stored in the CERN computer center, also known as

Tier 0 in the data grid hierarchy. Subsets of that data are then replicated at national

centers in France, Germany, Italy and the US, in particular at the Fermi Laboratory.

Meanwhile, smaller subsets of the data are replicated at individual institutions such

as Caltech. Existing systems such as the Globus Replica Location Service (RLS) [27]

enable users to locate replicas of a given data file based on its assigned logical file-

name. A physicist working at Caltech can use the RLS to find the location of data
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Figure 1.1: Overview Of Grid Architecture And Services.

originally collected at the experiment site. It is possible that the data is located on

a storage server at Caltech, in which case access to the data is fast, but if the data

is located only at CERN, network latencies are likely to result in slow data access.

Clearly a good replication strategy is needed to anticipate and/or analyze the users’

requests for data and to place subsets of the data and replicas at strategic locations.

Given the size of the data sets, it is impossible for a human to make decisions

about where the data needs to be placed. An automated system is needed that can

take into account the data access patterns across multiple users and applications,

guided by a cost model for data replication. Not all experiments fit the high-energy

physics data model. In some cases, data can be collected at multiple sites, replicated

to other locations, and then shared among collaborators. This type of replication

scenario can be found, for example, in the gravitational wave community, where
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there are multiple detectors (two in the US and two in Europe) [7]. These different

replication schemes can be classified into hierarchical and peer-to-peer–like patterns,

and in order to achieve good performance in a replication system these patterns need

to be reflected in the replica management system.

In this thesis, we propose to improve the Grid’s data management infrastruc-

ture by employing highly distributed intelligent replication and caching of objects

at strategic sites. Experience from distributed system design shows that replication

offers many advantages over non-replicated data systems. Those advantages include

high data availability, low bandwidth consumption, increased fault tolerance, and

improved scalability of the system. The performance of replication-based systems

depends on a variety of factors, such as the data placement policy. To address

the data placement policy we use a cost model to evaluate the gains and losses of

replicating data objects before deciding when and where to create and place new

replicas. The cost model is formulated as an optimization problem where differ-

ent performance metrics are evaluated against the different optimization goals and

quality of service requirements. To support replica consistency, the data distrib-

ution graphs used to connect Grid nodes enable scalable replica distribution and

propagation under user-specific guidelines. Update propagations are only instanti-

ated by direct user-defined directives. Our approach provides a more general and

robust architecture based on the deployment of dynamic replication using a set of

data management middleware services. These services enable the automatic and

dynamic replication of data when needed by dynamically adapting to changes in

user request access patterns and network behavior. An important aspect of replica-

tion management is the replica placement policy. Different system parameters such

as network and user behavior, compute and storage resource availability should be

taken into consideration before deciding when and where to place new replicas. It is

expected that data updates will be infrequent in the physics applications. However,

it is necessary to guarantee that the updates will be eventually propagated and that

the users will have access to consistent copies of the data.

The data management middleware we introduce in this thesis offers transpar-

ent data replication based on a runtime system that evaluates the access cost and
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performance gains of replication before moving or copying any data. The access cost

of the replication scheme is calculated based on the most important factors, such

as accumulated read/write statistics, network latency, response time, bandwidth,

replica size, and storage availability and capacity. Our replication cost model is for-

mulated as an optimization problem that minimizes the total sum of the data access

and replica maintenance cost on a given node in the Grid. The replica maintenance

costs include among others the cost of memory or disk space occupied by replicas.

To accommodate the wide-ranging requirements of replication for applications such

as those described above, our system supports a combination of hierarchical and

P2P replication models. These models are used as an overlay structure to virtu-

ally connect participating nodes in the data grid. Our approach exploits different

structures to decrease data access time and to lower bandwidth consumption. In

the early stages of our research, we developed a Grid simulator, GridNet [57, 56]

in order evaluate the performance and scalability of our approach. GridNet pro-

vides a generic and modular simulation framework through which we can model

different Data Grid configurations and resource specifications. As an initial study,

we have implemented replication scenarios to evaluate our approach and reported

results in [57, 56]. The results of the simulation are very promising, and show that

dynamic replication outperforms the static approach. The core of the simulator

is based on a decentralized and distributed replication model, which dynamically

adapts to both user and network behavior while improving the performance of the

overall system. This same model forms the basis of our approach to developing

middleware that enables the creation of small to medium scale Data Grids and

the formation of virtual organizations. This middleware can foster and encourage

collaborative problem solving between multiple individual researchers or research

organizations without the added overhead of centralized management.

1.2.1 Data Grid Design Requirements

In the previous sections we outlined some of the aspects of the replication man-

agement system we will address. An important aspect of replication-based systems

is the protocol used to maintain consistency among object replicas. The main issue
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in such systems is maintaining scalability with large numbers of replicas distributed

over wide area networks while maintaining the same view of all replicas. This issue

has been addressed in previous distributed file systems, databases, content distri-

bution networks, and web applications by the use of optimistic consistency proto-

cols [13, 42, 43, 70, 69, 76]. However the consistency issues have not been addressed

on the scale of the Grid environment, across multiple organizational domains. Ad-

ditionally, some of the requirements for the above systems are different from those

of the applications targeted in this work. The sizes of the data stored in the Grid

are much bigger than those supported by existing distributed file systems, and the

replica granularity is much higher. Moreover, in the Grid environment we assume

that updates to the data are infrequent and that the consistency can be more re-

laxed than in high-performance commercial databases. Given these requirements we

have used an approach that achieves greater scalability and reaches over wide area

networks while making modest compromises in terms of update propagation and

replica synchronization. Replica synchronization is initiated by direct user-defined

semantics. In the next chapter we will explain in further detail the advantages of us-

ing optimistic replication protocols vs. strong or conservative protocols, and present

a short survey of the different computing areas where such protocols are used.

1.2.2 Data Grid Applications

To address this massive data challenge, efficient schedulers are needed to ap-

propriately allocate resources by coordinating computations with data access re-

quests. The resource management and scheduling services need to continuously

adapt to changes in the availability of resources. A number of Grid implementa-

tions, such as Globus [50, 38], have addressed many of these issues with the exception

of providing dynamic replica management services. Moreover, the emerging need to

solve larger-scale computational problems creates the associated need and challenge

to efficiently store and locate the data needed for these computations.

We have surveyed a large number of projects to gather real trace data and

data access patterns for large scientific applications running on Data Grids. Such

projects include GriPhyN (Grid Physics Network) [7], an NSF-funded project, which
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Figure 1.2: Hierarchical Data Distribution And Organization

is developing the concept of a Virtual Data Grid [33, 34, 35], where users can re-

quest data without needing to know whether it is available on some storage server or

whether it needs to be computed. Another such project is PPDG (Particle Physics

Data Grid), a DOE-sponsored project, which is designing Grid-enabled tools for the

data-intensive requirements of particle and nuclear physics. Applications involved

in these projects are the high-energy physics experiments CMS and Atlas, and the

gravitational-wave physics experiment Laser Interferometer Gravitational Observa-

tory LIGO and astronomy surveys such as Sloan Digital Sky Survey SDDS, which

deal with large amounts of data. In particular, we used the requirements defined by

these applications to guide our design decisions. These applications share the need

to access huge amounts of data distributed over WANs, yet they have different data

access patterns. In high-energy physics experiments, data is collected at a single
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Figure 1.3: Data Sharing Model in a Federation Organization

location, where the detector is located, for example CERN, and then shared by col-

laborators in Europe and the US [46]. This model fits a hierarchical data distribution

and organization model as described in Figure 1.2. In LIGO, data is collected at

two locations, at the instrument sites in Washington State and Louisiana, and then

replicated at two other sites, Caltech and University of Wisconsin Milwaukee [35].

The data distribution and organization patterns of this application fit the pattern

and model displayed in Figure 1.3.

1.3 Thesis Roadmap

The main focus of this thesis is the design and development of a fully decentral-

ized data management solution to support large scale data and compute intensive

applications running on the Data Grid. Our proposed solution uses concepts that
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are inspired by P2P networks and shaped to fit the demands and needs of a more

complex and larger scientific community. At the core of our solution is the use of

autonomous replica and resource management components running at each partic-

ipating Grid node. Our proposed framework can be easily integrated with existing

low level Grid services and adheres to established standards in Grid computing.

Most existing and deployed grid systems and platforms are centrally man-

aged [14, 23, 27], and are quite difficult to set up and maintain. Enabling dynamic

node addition and deletion would provide efficient access to resources on the data

grid but presents considerable challenges to system designers. A number of studies

and surveys have shown that most existing Grid systems and toolkits do not yet

provide sufficient support to a large community of users as originally intended by

the designers and developers of these systems [32]. To alleviate and address some of

these issues a more adaptive and scalable lightweight data management framework

that enables users to dynamically join and leave the grid is needed. In this thesis

we show that our proposed middleware can be efficiently deployed in a data grid

and can provide efficient, transparent, fast, and reliable access to data and storage

resources on the Grid. Our approach is inspired by P2P techniques that require

no centralized management and advocate self organization. The P2P approach has

many attractive features that make it very suitable for grid computing. The sim-

plicity of the approach makes it easy to deploy on large numbers of nodes. Actions

taken by nodes in a P2P system are based on local information, an important feature

that enables P2P systems to scale well.

This thesis is organized as follows:

Chapter 2: Data Management And Replication in Data-Centric Net-

works. In this chapter we survey standard and currently used Data Grid architec-

tures and discuss their infrastructure and the services they offer. We also compare

and contrast the use of replication in Data Grids vs. distributed data-centric envi-

ronments and networks.

Chapter 3: Distributed Data And Replica Management Framework. We

present the motivations and goals of our proposed work. We describe our solution

and approaches to addressing the replica management issues. We then present and
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describe the main components of the proposed system and its design.

Chapter 4: Distributed Replica Management Middleware Architecture

and Development. We provide more details about low level and architectural

design decisions, as well as a thorough description of key components and their

implementation.

Chapter5: Data Grid Simulation Study. We present the results we obtained

through simulations of our proposed middleware. In order to evaluate our approach,

we developed a Data Grid simulator GridNet. This simulator provides a modular

simulation framework through which we can model different Data Grid configura-

tions and resource specifications. We present the simulator and the algorithms and

mechanisms we used to model and simulate real Data Grid environments.

Chapter 6: Performance Study. We present the different scenarios we used to

conduct our simulations, the testbed we used to conduct the experiments, and the

models we used to represent realistic Data Grid environments. We also study the

different replication models and give a comparative overview of the results.

Chapter7: Conclusion. We conclude with a discussion of the benefits and ad-

vantages of our proposed solution and middleware, present the contributions of our

work, and discuss future work.



CHAPTER 2

Data Management and Replication

in Data-Centric Networks

Replication is an important tool that has been widely used and supported by dif-

ferent data centric systems and networks to improve data accessibility and overall

system performance. In this chapter we survey standard and currently used Data

Grid architectures and discuss their infrastructure and the services they offer. We

also compare and contrast the use of replication in Data Grids vs. distributed data-

centric environments and networks. Such environments include distributed systems,

databases, and web applications. We then discuss existing replication management

solutions for Data Grids and overview some of the problems and issues that we will

address in this thesis.

2.1 Data Grid Architecture

Many initiatives to build computational and data grids were undertaken by

different groups of researchers from different institutions and universities in the late

nineties. A leading effort in that area was undertaken by the Globus team [38, 39,

40, 36]. The Globus project provides a framework for building Grids based on a

service-oriented architecture. The services the framework offers are: Security, Infor-

mation Services, Resource Management, and Data Management [38, 39, 40]. The

toolkit relies on a Grid Security Infrastructure (GSI), which provides a set of security

features to allow users to authenticate their communication and use single sign-ons

to access grid resources and services. The Information Services provide information

about the status of Grid resources using a notification approach where resources

publish their status and subscribers receive updates about specific instruments, ma-

chines, or storage components they want to access. This allows the monitoring as

well as the discovery of resources. The Resource Management component uses input

from the Information Services to enable users to access available resources and to

allow the system to schedule resource allocations. The Data Management or the

14
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Data Grid provides the ability to access and manage data and data resources on

the grid [14, 28]. The Globus toolkit provides several components to move, copy,

and locate data. The major components are: GridFTP, RFT, and RLS [14, 40, 36].

GridFTP provides tools for fast, secure, and parallel data transfers in the Grid.

It is a data transfer protocol that extends the FTP protocol and provides secure,

parallel, and reliable mechanisms to move data on the Grid. RFT, the Replica

File Transfer service provides reliable management of multiple GridFTP transfers.

RLS, the Replica Location Service, maintains and provides access to information

about the location of data available within the Data Grid [14, 28, 27]. The RLS

uses Replica Catalogs to register, index, and locate data. The Replica Catalog is a

registry in which users maintain records for all the shared files and objects in the

Grid. Each record contains the locations of all the object replicas, and provides a

mapping between object names and its replicas. The aforementioned components of

the Data Grid can be organized in a layered architecture as shown in Figure 2.1 re-

produced from descriptions in [15, 28]. This architecture is derived from definitions

and proposals introduced in [15, 14, 28, 40].

The layers outlined in Figure 2.1 represent the different components that make

up the Data Grid infrastructure. Components at the same level can co-operate to

offer certain services, and components at higher levels use services and components

offered at lower levels and build on top of them. The Grid Fabric consists of com-

puting resources such as workstations and supercomputers, storage resources such

as disks and tapes, as well as scientific instruments. Most of these resources are

widely distributed and are in turn connected by high bandwidth and wide area net-

works. These computing, storage and networking resources represent the physical

layer of the Data Grid. The operating systems and software that manage these

heterogeneous resources represent the basic software layer of the Data Grid. The

Connectivity layer consists of data transfer protocols to copy data from resources

in the Grid Fabric layer. The data transfer protocols are are based on TCP/IP

communication protocol and authentication protocols to verify users identity and

ensure security and data integrity. The Data Grid Services layer consists of core

services such as replication and resource monitoring that provide transparent dis-
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Figure 2.1: Overview of Grid Architecture.

covery, location, and access to data and compute resources. These services can

be used to contribute resources to the Grid and define access policies of these re-

sources. The monitoring service is equivalent to the Information Services in the

Globus architecture and implementation [40]. The next components of the Services

layer provide higher level services that use the lower level services to enable efficient

management and allocation of replicas and data resources on the Data Grid. The

collective set of services provided at this layer represents the Data Grid middleware.

The middleware abstracts hides the complexity of managing access to resources and

provides API’s for users and applications to transparently take full advantage of the

utilities available in the Data Grid. The Applications layer provides services and

access interfaces that are specific to a community or Virtual Organization.
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2.2 Replication in Data-Centric Environments

Replication has been studied extensively and different distributed replica man-

agement strategies have been proposed in the literature [30, 42, 43, 60, 61, 62, 70,

76, 81, 83]. Replication has traditionally been used to improve system performance

by increasing its reliability and fault tolerance. In the context of Grids, data repli-

cation is used to reduce access latency and bandwidth consumption. In this thesis,

replication will also be used to improve data availability, data autonomy, host and

network traffic load balancing, and data access performance.

2.2.1 Replication in Databases

As a means to improve scalability, improve data availability and provide fault

tolerance, replication has also been an area of interest to databases. In [93], the

authors survey the concepts and solutions developed for managing data in distrib-

uted environments versus database systems. While there are many similarities in

the solutions and services provided in both communities for enabling remote and

scalable access, there are many differences in the requirements and properties of the

problem spaces [93]. A fundamental difference is the nature of the protocols used

in both communities [93, 92, 91]. While databases use blocking protocols, distrib-

uted systems usually use non-blocking protocols. Databases protocol specifications

put more emphasis on ensuring safety, rather than keeping the application live or

running [91]. Examples of these specifications are seen through the implementation

of transactions. Transactions are defined as a set of instructions that are treated

as a single execution unit. The transaction’s results are accepted and committed

only after ensuring that each single instruction in the transaction has processed and

completed successfully. To ensure the correctness of transaction processing a set

of rules collectively called ACID are enforced. ACID stands for Atomicity, Consis-

tency, Isolation, and Durability [91]. Those rules respectively ensure that all the

transaction instructions have completed successfully (otherwise the whole transac-

tion is aborted), enforce the correctness of the transaction execution, ensure the

consistency of parallel transaction executions, and finally ensure that transaction

results are saved and would be retrieved even in the event of failures. The main
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replication techniques used in databases are: Update Everywhere and Primary Site.

To guarantee consistency and enforce the ACID rules, these techniques use differ-

ent voting algorithms depending on the application requirements and design. Using

distributed voting schemes, however, degrades the performance of replication. To

remedy to that, optimistic and weak consistency protocols have been introduced.

These protocols rely heavily on the use of broadcasting techniques that ensure the

correctness of the order of execution of distributed transactions [45, 51, 73, 91].

2.2.2 Replication in Content Distribution Networks

Content Distribution Networks (CDN’s) are targeted for speeding up the de-

livery of normal Web content and reduce the load on the origin servers as well as

the network. CDN’s, such as Akamai [1] or Digital Island [3], distribute content by

placing it on content servers, which are located near the users. A content provider

can sign up for the service and have its content placed on the content servers. The

content is replicated either on-demand when users request it, or it can be replicated

beforehand, by pushing the content on the content servers [52]. Another form of

content distribution is peer-to-peer content distribution. This form is mainly used to

share individual files between users. In peer-to-peer networks, such as Napster [8],

or Gnutella [6], individual users decide to share files with others. With the help of a

directory service, users can determine where different files can be downloaded from.

CDN’s effectively reduce the client-perceived latency and balance the load on the

servers and the network by distributing and providing content from sites closer to

clients. One of the foremost problems in CDN’s is to decide where to place site con-

tents in the CDN infrastructure. This problem has been proven to be NP-Complete,

and several caching and replica placement algorithms have been used and proposed

in the literature based on heuristic and relaxation algorithms [52, 53, 54]. However,

most existing algorithms do not scale well for larger systems. For optimal perfor-

mance, as in Data Grids, decentralized approaches need to be considered as well

as optimization and heuristic approaches to maximize the use of network resources

and meet the users’ quality of service requirements.
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2.2.3 Replication in Web Applications

Data replication is also a basis for Web caching, which is used to store copies

of frequently requested documents at nearby servers. It reduces network and server

loads and decreases latency of Web responses. However, Web caching may return

stale pages to clients. Different cooperative Web caching approaches have been stud-

ied to improve hit rates and response times [20, 78]. In hierarchical caching, caches

are located at different network levels. Such a caching scheme is used by Netscape

and MS Explorer and implemented by Squid [9]. In distributed caching, caches co-

operate to serve client requests. A popular mechanism used to share documents is

based on broadcast probes using the Inter Cache Protocol [90]. In [62] a set of op-

timistic replication techniques for Web documents have been proposed, where weak

consistency algorithms are used. However, data accesses in the Web and in Grids

have different patterns. In the Web, updates are very frequent and requested data

(documents) are small compared to Data Grids and their access patterns. Hence,

these two environments require different validation mechanisms. However, a decen-

tralized optimization model for a general approach to replica management might be

useful in improving the performance of replication techniques on the Web.

2.2.4 Replication in Distributed Systems

Different replication systems have come out of the research community, such

as the replication file systems Coda [77], Ficus [42], Rumor [43], and Roam [70];

the Bayou storage system [82]; and the Locus operating system [63] among many

others. An important aspect of replication-based systems is the protocol used to

maintain consistency among object replicas. The main issue in such systems is

maintaining scalability with large numbers of replicas distributed over wide area

networks. This issue has been addressed in previous distributed file systems both

for standard networks and mobile computers by the use of optimistic consistency

protocols [13, 42, 43, 70, 77]. However the consistency issues have not been addressed

on the scale of the Grid environment, across multiple organizational domains. Ad-

ditionally, the requirements for the above systems are different from those of the

applications targeted in this thesis. The sizes of the data stored in the Grid are
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much bigger than those supported by existing distributed file systems, and the

replica granularity is much higher. Moreover, in the Grid environment we assume

that updates to the data are infrequent and that the consistency can be more re-

laxed than in high-performance commercial databases such as Oracle. Given these

requirements, we have designed a system that can achieve greater scalability and

reach over the wide area networks.

2.2.5 Replication in Data Grids

The existing components and services in Data Grid implementations do not

provide any automated replica placement support. The data and replica manage-

ment services do not implement full replica management functionality and do not

enforce any replication semantics. The existing systems only provide the users with

tools to replicate data at different locations under user-specific definitions without

enforcing the user’s assertions [15].

With the massively increasing challenge of managing larger and larger amounts

of data, there has been an equivalent rise in interest in modeling Data Grid require-

ments and simulating different data replication techniques [79]. Different studies

were conducted to model scientific experiments settings and configurations, such as

the CMS and ATLAS experiments [7, 79]. Many projects, such as the GriPhyN [7]

and the EU Data Grid [4], are developing Data Grids. Other projects have focused

more on simulations. In [65, 64, 66] the authors have studied the performance of job

scheduling algorithms and their combination with data placement algorithms. The

simulations show that optimal results were obtained by using loosely coupled repli-

cation decisions and scheduling policies. The replication decisions were predicted

based on local data access patterns. In [67] the authors present a P2P replication

approach where data is replicated based on global data access patterns to guaran-

tee global data availability. Another simulator is presented in [22] OptorSim, which

provides a framework for studying the combination of data access optimization algo-

rithms and job execution. The authors use an economic model to evaluate the data

access costs using a P2P auction approach. Data replication decisions are predicted

based on past access patterns.
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To satisfy the growing need to provide more storage allocation and manage-

ment services within the Grid community, many storage systems were developed.

Examples of such systems are the Distributed Parallel Storage System DPSS [83]

and the High Performance Storage System (HPSS) [89]. These systems provide

high performance data transport tools by supporting parallel data transfers. This

is achieved by aggregating the use of multiple TCP streams and by partitioning

data across multiple servers and supporting striped data transfers. In the Microsoft

Distributed File System (DFS) collections of files located in different servers and are

linked through a DFS root share [9]. The DFS roots are in turn replicated to pro-

vide fault tolerance, and files are also replicated in different servers to provide faster

access. Another example of distributed storage systems is the Storage Resource

Broker (SRB) [21]. SRB is a client server system that provides access to differ-

ent types of data storage across distributed heterogeneous platforms and maintains

metadata about each stored object. Access to data is provided through a Meta-

data Catalog (MCAT) that uses metadata attributes rather than physical names to

query the servers and locate files. The Google file System (GFS) [41] is a distrib-

uted file system for large distributed data-intensive applications using commodity

hardware. GFS uses replication to provide fault tolerance and support large-scale

data processing workloads. The GFS architecture is based on a single master node

within a cluster which still requires and relies on global cluster knowledge to make

data placement decisions.

In this thesis, we develop a distributed replication system that is highly de-

centralized and capable of performing automatic and optimal data replication based

on the user and application demands. We demonstrate that this replica manage-

ment system performs better than static replication approaches thanks to its highly

dynamic replica placement and creation strategies and scalability.

In the next section, we overview the existing replication protocols and models

and discuss their advantages and disadvantages.
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2.3 Replication Models

An important challenge in replication systems is how to handle updates to

multiple copies simultaneously and how to maintain the same view of all replicas all

the time. Conservative update replication systems prevent all concurrent updates

and require locks and votes from other replicas before committing any changes to a

data item. Thus, they consume network bandwidth to check consistency at every

update. On the other hand, optimistic replication systems allow any machine stor-

ing a replica to perform an update locally. Consistency checks are only performed if

inconsistencies are discovered or if requested by the user, thus reducing the amount

of data exchanged and the bandwidth used to update replicas. But given the type of

data stored on data grids, conflicts are rare. Most of the time, updates on the data

stored on the Data Grid affect the application and replica metadata. Application

metadata is a high level description of a file that also contains attributes of the data

stored such as keywords describing the nature of the data and the description of

the origin of the data and its production. Replica metadata provides a mapping

between a file name and one or more physical locations of the file replicas. Thus, it

is necessary to guarantee that the updates will be eventually propagated and that

the users will have access to consistent copies of the data. The replication system

must be able to maintain a desired level of consistency in the Data Grid environ-

ment. But given the number of replicas anticipated on the Data Grid and their

geographical distribution, scalability is an important issue. We implement scalable

replica consistency algorithms to support user-defined semantics, and mainly use a

relaxed consistency approach. The consistency algorithms will use scalable replica

distribution and propagation graphs for efficient replica synchronization. There are

three replication models that have been utilized in practically all replication systems:

master-slave, client-server, and peer-to-peer models. In the following subsections we

survey these most commonly used models and describe them in terms of their replica

communication and synchronization characteristics.
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2.3.1 Master-slave

The master-slave model labels one replica master ; all other replicas are slaves.

The replication paradigm is that slaves should always be identical to the master.

The model is very simple, yielding a simple implementation, and has been used in

many replication packages such as Laplink [59] and RDIST [29]. However, with the

simple model comes limited functionality: the slave is essentially read-only. Most

master-slave services ignore all updates or modifications performed at the slave

and “undo” the update during synchronization making the slave identical to the

master. While some provide crude abilities for some notion of update generation at

the slave, all limit the set of operations that can be performed. For instance, object

removal cannot be performed at the slave in Laplink, as the object will be reinstated

by the replication service as part of making the slave identical to the master. In

general, modifications can only be reliably performed at the master, and slaves must

synchronize directly with the master.

2.3.2 Client-server

The client-server model is similar to the master-slave in that it designates

one server, which serves multiple clients. However, the functionality of the clients is

greatly improved, and multiple inter-communicating servers are permitted. All types

of data modifications and updates can be generated at the client. The client-server

model has been successfully implemented in replication systems such as Coda [77]

and Little Work [47]. Clients however cannot intercommunicate or synchronize with

each other, limiting their functionality. They must rather communicate with a

server. Scaling is not typically a problem in the model; in proposed solutions mul-

tiple servers can be recursively combined in a client server arrangement. However,

doing so increases the system’s overall dependence on the servers at the upper levels

of the hierarchy. The failure of a server can isolate all clients served by it, which

impacts the reliability of the overall system.
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2.3.3 Peer-to-Peer

The peer-to-peer model takes a very different approach from both the master-

slave and the client-server models. The peer model is not class based: all replicas

are equals, or peers. Any replica can synchronize with any other replica, and any

file system modification or update can be applied at any accessible replica. The peer

model has been implemented in systems such as Locus [63] Bayou [82], Ficus [42,

71], Rumor [43], and Roam [70] and more generally been used in other distributed

environments such as xFS [18]. The peer model provides a robust communication

framework. However, it has typically suffered from scaling problems. Peer models

have traditionally been implemented by storing all necessary replication knowledge

at every site; each replica thereby has full knowledge about everyone else, and

synchronization and communication is permissible between any two hosts. Such an

approach results in exceedingly large replicated data structures, leading to potential

scaling problems. A recent study in [13] shows that updating replicas with greater

access requests first, in a peer-to-peer model, improves the performance of weak

and relaxed consistency without incurring the additional costs of strict and strong

consistency.

In the client server approach, maintaining replica consistency is simpler that

in the peer-to-peer approach. In the former model, there is one central location to

which all updates must be posted. This solution substantially simplifies replication

consistency maintenance. However, the full benefit of this solution is only achieved

when there is a single replica server. Such a solution has poor reliability, because a

failure of the server makes it impossible for any other replicas to receive new updates

or disseminate their own updates to others.

2.4 Synchronization

Another important aspect of maintaining replica consistency is the replica

synchronization process and the frequency of consistency checks. In both weak and

strong consistency models, updates to any replica should be made known to the

replicas. These changes are either immediately propagated to all replicas or later

reconciled with updates at other locations. Update propagation-based replication



25

attempts to propagate updates made at one replica to the other replicas imme-

diately, either directly or through some propagation graph spanning the overall

set of replicas that minimizes communication costs. An alternative is an update

reconciliation-based replication, in which no attempt is made to propagate updates

automatically. Instead, all changes made to the replicated data are batched together

and periodically sent to other sites storing replicas. These batched changes can be

sent during periods of high bandwidth availability.

In Grid environments, latency might be very high given the sizes of the data

items stored on a Data Grid. In some cases, propagating the updates to all replicas

is unnecessary. The main challenge though is scalability. Applications running on

the Grid require access to Terabytes or even Petabytes of data in wide-area, dis-

tributed computing environments. Propagating data updates of this magnitude to a

large number of replicas every time a data item replica is modified greatly affects the

performance of the entire system. Update reconciliation is better suited for this envi-

ronment. Used with relaxed consistency requirements, this approach allows replicas

to initiate synchronization and reconciliation sessions with other replicas and only

propagate updates when changes do occur. The replica communication patterns

and the physical location of the replicas affect the performance of the reconciliation

process. In our approach, we rely on user-defined replication semantics without

enforcing any particular replication or synchronization approach. The replica con-

sistency algorithm when initiated will use a high level overlay network to use the

least number of exchanged messages among replicas and the least amount of time to

reach consistency. This approach is decentralized and does not require the system

to keep any global information or view about replica locations. This approach has

been shown to scale very well in distributed environments [13, 42, 43, 44, 70, 76, 89].
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Distributed Data And Replica Management Framework

In this Chapter we present the motivations and goals of our proposed work and

argue its benefits. We describe our solution and approaches to addressing the replica

management issues. To that end, we present the design of the middleware, provide

a general framework and description of the main components, and give an overview

of the high level algorithms and services provided.

3.1 Data And Replica Management Concepts And Require-

ments

Data Grids provide a platform for the scientific community to share, access,

transfer, and process large collections of data distributed worldwide. This platform

enables the aggregation and provisioning of high performance computing resources,

high performance networking and large scale storage resources and management

technologies. The rise in popularity of Data Grids has led to the introduction of

several Data Grid solutions. These solutions aim to enable users to take full ad-

vantage of the Data Grid infrastructure. As mentioned in the previous Chapter,

we have surveyed different mechanisms that provide similar support for distributed

data intensive platforms. These mechanisms include: Content Delivery Networks,

P2P systems, and Distributed Database systems. These data-centric networks have

developed various solutions that have matured over the years and which could be

applied to address outstanding issues in Data Grids. These solutions could be ei-

ther wholly adopted by the Grid community or modified and adapted to fit the

specific needs and requirements of Data Grids. Our approach adopts some concepts

from these existing systems to take advantage of their proved successes and better

improve the quality of services and tools available in the Data Grid. However the

needs of the Data Grid community make it unique and quite different from existing

data-intensive networks and systems. One of the major properties of the Data Grid

which makes it unique is the aggregation of a diverse set of resources. This set of

26
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resources includes not only storage resources but also specialized instruments and

hardware that produce and generate the needed data, as well as high performance

computational resources and software that are equally needed to manage, process,

analyze, and store large amounts of data. On the one hand, the sharing of these re-

sources through the Data Grid platform enables more users to access them and take

advantage of their utilities. On the other hand, the intensive demand for processing,

transfer, and storage might give rise to situations where multiple users are compet-

ing for access to few available resources. Resource allocation and scheduling is thus

a very necessary mechanism to ensure efficient and fair access to the users. In [40]

Foster et al. proposed a Grid architecture that is based on the concept of Virtual

Organizations (VOs). The VOs are set up and formed by a group of entities or

organizations willing to share their resources in order to work and collaborate on

problems and applications with common interest to all participating parties. The

VO defines the resources donated for sharing by each participating organization, as

well as the rules dictating the use of these resources. In order to overcome variations

and incompatibilities in infrastructures used at each organization, common middle-

ware running across these different infrastructures is needed to ensure transparent

and reliable access to the shared resources, and to manage access and usage of these

resources according to the defined access rules. To ensure security, a VO should

use some sort of authentication mechanism to facilitate access to the different users

from different administrative domains. One major drawback to that proposed VO

management approach is the central management and decision making of such an

approach, which to a high degree hinders the growth and scalability of Data Grids.

With an emerging and growing interest in collaborative problem-solving across the

globe larger VOs are needed to reach larger numbers of collaborators and organi-

zations. Additionally, important components of commonly used and popular data

management middleware used by the Data Grid community, such as the Replica

Location Service (RLS), do not scale well across large numbers of sites [27]. The

RLS is used to register the physical names and locations of files and data sets stored

on the Data Grid. Using the same logical name space, each file is assigned a unique

logical file name. An entry for that logical name is created in the Replica Catalog,
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and the logical name is then mapped to all the physical locations of that data file.

This logical name is thus used to index, locate, and access that data file. The RLS

uses a hierarchically distributed system to catalog the available data within the Data

Grid and place Replica Location Indices at predetermined Grid nodes.

Most existing and deployed grid systems and platforms are centrally man-

aged [14, 23, 27] and are quite difficult to set up and maintain. Proper access to

software and hardware resources requires meticulous installation, configuration, and

testing of different components across all the participating Grid nodes. Enabling

dynamic node addition and deletion would provide efficient access to resources on

the Data Grid but presents considerable challenges to system designers. Many stud-

ies have revealed that commonly used Grid systems and toolkits do not provide yet

sufficient support to a large community of users as originally intended by the de-

signers and developers of these systems [32]. The Open Grid Service Architecture

(OGSA) [31] defines a Grid infrastructure that combines and integrates existing Grid

technologies [40, 38, 36] and Web services technologies to create a distributed Grid

computing framework based on the Open Grid Service Infrastructure (OGSI) [31]. In

this infrastructure “a Grid service instance is a (potentially transient) service that

conforms to a set of conventions, expressed as Web Service Definition Language

(WSDL) interfaces, extensions, and behaviors” [31]. A Grid service is thus a Web

service that maintains its state to match the requirements of large and complex dis-

tributed applications. The Simple Object Access Protocol (SOAP) and Web Service

Description Language (WSDL) are a protocol and an interface language that enable

distributed applications on the Web to communicate and exchange messages [32].

SOAP and WSDL are increasingly adopted as a means to support communication in

distributed environments [32, 31, 36]. Soap is an XML based protocol and most of

its existing implementations use HTTP, but it is not strong enough to support high

performance distributed applications. The inefficiency of SOAP is mostly caused by

the time spent in parsing and formatting the XML messages, as well as the complex-

ity of its system calls to deliver messages [32]. This constitutes a major drawback to

achieving expected performance levels by Grid implementations that adopted this

Grid service oriented architecture and computing paradigm, such as Globus [36].
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In this thesis we attempt to address some of these issues. To that end, we

introduce new highly distributed and decentralized data management middleware

for Data Grids. We develop an adaptive and scalable lightweight data management

framework that enables users to dynamically join and leave the grid. Our solution

provides replication management services that intelligently and transparently place

data in strategic locations in order to improve the overall data access performance.

In our proposed system, we advocate a local and autonomous approach to replica

management at each participating node in the Grid. At the core of our system lies

an analytical model that enables each participating node to decide when and what

resources to contribute. The middleware enables each node to monitor and control

its local storage space and capacity, access to locally stored files, use of network

resources, as well as any other available local resources. Providing such lightweight

middleware to support research and scientific collaborations enables the creation

of larger communities with less overhead. This leads to supporting the creation of

small to medium scale Data Grids with large numbers of users taking advantage of

larger numbers of under-utilized resources.

Our approach is inspired by the P2P techniques that require no centralized

management and advocate self organizing. The P2P approach has many attractive

features that make it very suitable for grid computing. The simplicity of the ap-

proach makes it easy to deploy on large numbers of nodes. Actions taken by nodes

in a P2P system are based on local information, which is an important feature that

enables P2P networks to scale well. In order for that management to be efficient,

however, it has to be based on information and intelligence collected at each location

about the availability of resources and how much of its resources it can contribute to

the overall system. We achieve this by evaluating replica creation and placement by

evaluating data access costs as well as data popularity and its spatial and temporal

locality based on user demands.

3.2 Data Organization And Replication Models

Data on the Grid needs to be easily accessible to users regardless of location.

Data access models are formed by community-oriented social organizations and are
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affected by the direction of data flow and users’ access patterns. The location and

number of data sources as well as data size play an important role in shaping the

map of the community sharing access to that data. A thorough study and survey

of data flow and organization in Data Grids presented in [87] showed that there

are four common models that are currently being used in Data Grids:Hierarchical,

Federation, Bottom-Up and Hybrid.

Hierarchical: This model is used in an environment where there is a single

source of data, and that data has then to be distributed and copied to multiple

locations to be shared by a large community of collaborators. This model is shown

in Figure 3.1, reproduced from [87]. It shows the data distribution model in the

CERN experiments where data is first generated and stored in CERN, and later

copied to different distribution and regional centers. From these centers the data is

then distributed to different labs worldwide to give access to scientists from around

the world.

Figure 3.1: Hierarchical Data Model

Federation: This model is formed by organizations and institutions who share

their resources to collaborate and co-operate on research projects forming a special-

ized P2P network. Each institution allows users from the participating institutions

to access its locally stored data. This model is shown in Figure 3.2.
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Figure 3.2: Federation Data Model

Bottom-up: This model is used in scenarios where multiple data collection

points, such as sensors, are distributed in different locations. The data is collected

in a bottom-up fashion and stored at a central location or database where it can be

accessed by more users. This model is shown in Figure 3.3.

Hybrid: This model is used when both the Hierarchical and Federation models

are combined. It is shown in Figure 3.4.

The scope of this thesis covers scientific Data Grids, where a number of re-

searchers from different institutes share their resources to collaborate on solving

scientific problems. The most prevalent data model used in these settings is the

hierarchical model. To some extent a P2P model has also been adopted as a model

to form collaborations between smaller entities. Our middleware supports the hi-

erarchical, P2P, and hybrid models. Each model requires a different replication

strategy. In the next subsection we will highlight these strategies and the basis of

our approach.

3.2.1 Data Access And Location

Replication is a necessary requirement for Data Grids to ensure all users have

access to the required data, to maintain scalability across multiple locations and
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Figure 3.3: Bottom-Up Data Model

domains, and to optimize the use and consumption of network resources. The repli-

cation mechanism creates copies of popular data sets and manages the number and

locations of these copies at multiple locations providing better access to users. The

replication mechanism is guided by cost/benefit estimation strategies that take into

account current demand for the data sets, locality of requests, network resources

availability, and storage capacity to create copies of the data. The two major strate-

gies for managing replicas are Centralized and Decentralized. In a centralized model

all replicas are copied from a central location where the data is originally collected

or generated, and then propagated following the data flow and demands using a

cascading model. This model inherently creates a hierarchical topology that maps

Grid nodes where data and replicas are located onto a graph creating a tree struc-

ture (see Figure 3.1 and Figure 3.3). In a decentralized or P2P model data can be

originally generated at different locations and then shared between a set of equal

and peer nodes participating in the Data Grid (see Figure 3.2). The organization

and distribution of data locations in this model creates a mesh topology. However,

to ensure efficient access to data a less complex structure is needed to navigate

through the different data locations and locate requested data. Such a structure is

the ring topology. This topology can be created when nodes establish connections
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Figure 3.4: Hybrid Data Model

with at most two of their neighbors and peers. Using this structure would avoid the

complexity of data location algorithms that are used in some P2P networks. Ad-

ditionally, extensive surveys of Data Grid models that we have covered in this and

previous Chapters suggest that such a model is not commonly used. Most scientific

applications and collaborative research enterprises running on or requiring the use

of Data Grids fit a hybrid model (see Figure 3.4). A hybrid model is a combination

of a hierarchy and a federation.

Topology means and represents the connectivity graph formed by the overlay

network. The overlay network consists of the application-level (not physical level)

connections between the nodes, as each node in this network has connections to

a number of other nodes also called neighbors. Using structured overlay networks

forms the basis of our approach to building scalable replica management middle-

ware. These graphs or networks define the communication paths that can be used

to navigate through the network and locate data. To transfer data, however, the

physical network takes care of properly routing data. The middleware’s responsibil-

ity is limited to locating data sources and the end points of the transfer. In the next

sections we will discuss in further detail the key architectural and design concepts

of our proposed middleware.
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3.2.2 Replica Management And Consistency Support

In many existing replication systems and contexts, data replication is associ-

ated with semantics that define the replica consistency as maintaining replicas as

exact copies of the original files and data sets. This approach requires the use of

distributed locking mechanisms to ensure replica consistency at all times similar to

the mechanisms used in databases [91]. Contrary to that approach, our replica man-

agement middleware does not enforce any replica semantics and does not guarantee

absolute replica consistency. The system does not keep track of original or source

locations. When a logical data collection is registered into the system, and sub-

sequent replicas of that entity are created, the system only maintains information

about the locations of all existing copies of that logical data collection. The system

does, however, provide support to user-defined and user-initiated replica semantics.

We support replica synchronization through a separate mechanism that is orthog-

onal and independent of replica creation and replica management services. Data

Grids mostly deal with read-only data, and enforcing consistency checks would only

bring down the performance of the replica management services.

3.3 Replica Management Framework

The major goal of our work is to promote a more decentralized and distributed

approach to managing Data Grids. Our attempt at creating a more dynamic and

versatile Data Grid Architecture is supported by the distribution and the delega-

tion of management and decision making to all participating Grid nodes. In our

approach each participating node is responsible for managing access to its local and

contributed resources, thus limiting centralized management and control over widely

distributed resources, contrary to currently and commonly used approaches in Data

Grids. To support this distributed and decentralized approach, we introduce and

deploy distributed middleware that can operate independently and make decisions

based on local knowledge and collected statistics at each Grid node.



35

3.3.1 Framework Overview

A participating Grid node can be any hardware/software that qualifies as a

computing unit such as a supercomputer, workstation or desktop computer. The

middleware consists of autonomous and distributed components that run at each

participating Grid node. Each agent is composed of:

Resource Monitoring Service This service is responsible for monitoring resource

availability at a given Grid node and responsible for collecting statistics about

resource usage and data access requests. Data collected by this service is fed

to the Replica Creation Service.

Replica Creation Service This service is responsible for creating local replicas

based on accumulated statistics about data popularity and an evaluation of

the incurred cost of creating a local replica. A cost function is used to eval-

uate the cost of creating a local replica vsṫhe cost of transferring data. This

cost/benefit analysis and calculation is based on the popularity of the data,

network resource availability, size of data, and storage space availability. These

statistics and information are provided by the Resource Monitoring Service.

Replica Location Service This service is responsible for managing the local replica

Catalog. Each node maintains a catalog to access locally stored data and pos-

sibly track remotely located data. Each newly created file is registered in the

catalog. In case the data is not available locally and the node has information

about different locations where that data is available, that information is also

stored in the catalog. That information is kept from previous data requests

initiated locally; i.e., the results of previous searches are thus kept and used to

speed up the data look-up process. This service is also responsible for locating

requested data that is not available locally. We will refer to the Replica Lo-

cation and Replica Creation services collectively as the Replica Management

Service.

Resource Allocation Service This service is responsible for allocating space for

newly created replicas and de-allocating space from the least frequently and

last accessed locally stored replicas.
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Routing/Connectivity Service Responsible for routing outgoing request mes-

sages and handling incoming messages, managing data transfers, as well as

monitoring a node’s connectivity to its neighbors, this service maintains a list

of neighbors to which the local node is connected.

The system architecture is shown in Figure 3.5. The monitoring service feeds the col-

lected statistics about resource availability and data/replica location to the decision-

making components at each node, the replica and storage managers. The replica

manager takes its input statistics from the monitoring service and uses a cost func-

tion to evaluate gains vs costs before deciding on whether to replicate the requested

data or not.

Resource
Allocation

Service

Replica
Management

Service

Resource
Monitoring

Service

Resource
Storage

Connectivity
Routing /

Service

Lowel level software
Operating System

Bandwidth Memory

Figure 3.5: Architecture and Design of the Data Management Middle-
ware

The distributed replication service determines the placement and location of

replicas in the system independently at each node. The cost function evaluates

at runtime the maintenance cost and access performance gains of creating a local

replica. The monitoring service feeds the collected statistics about resource availabil-

ity and data/replica locality to the decision-making component at each node. This

latter component takes into consideration data access frequency, data locations, la-

tency, and bandwidth availability before deciding whether or not to replicate the
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requested data or not.

3.3.2 Replica Synchronization

In many existing replication systems and contexts, data replication is associ-

ated with semantics that define the replica consistency where a replica has to be

maintained as an exact copy of the original file or data set. This approach requires

the use of distributed locking mechanisms to ensure replica consistency at all times

similar to databases [91]. Contrary to that approach and as stated in Section 2.3,

our replica management middleware does not enforce any replica semantics and does

not guarantee absolute replica consistency. The system does not keep track of origi-

nal or source locations. When a logical data collection is registered into the system,

and subsequent replicas of that entity are created, the system only maintains in-

formation about the locations of all existing copies of that logical data collection.

The system, however, does provide support to user-defined and user-initiated replica

semantics. We support replica synchronization through a separate service that is

independent of replica creation and replica management services. Data Grids mostly

deal with read-only data, and enforcing consistency checks would only bring down

the performance of the replica management services.

3.3.3 Replica Distribution Topology

Our approach is based on using application level overlay networks to enable

scalable growth of Data Grids and tolerate larger numbers of participants. The

overlay network is formed by the set of connections between the participating nodes

in the Data Grid. Topology means and represents the connectivity graph formed

by the overlay network. The overlay network consists of the application-level (not

physical level) connections between the nodes, as each node in this network has con-

nections to a number of other nodes also called neighbors. Using structured overlay

networks forms the basis of our approach to building scalable replica management

middleware. These graphs or networks define the communication paths that can be

used to navigate through the network and locate data. To transfer data, however,

the physical network takes care of properly routing data.
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3.3.4 Replica Creation And Replacement Algorithm

In addition to the cost analysis, determining whether to create a replica or

not needs to include more factors and system parameters. Such parameters that are

taken into consideration while creating and placing replicas are the storage capacity

and availability at a given Grid node, the frequency of cost estimation, and the

replica access patterns. The last parameter is estimated based on the history of the

data accesses requested at a given site.

The frequency of cost estimation depends on the load of the system as well

as the number of nodes in the Data Grid. Each time the replication cost function

is evoked, previously collected read and write count values are averaged out and

the actual read and write count values are annulled. The read and write count

averages represent the rate of read operations and write operations from the sum

of accumulated read and write counts. These values are used to predict future

tendencies in access patterns. Different prediction tools could be used to infer data

access patterns and to tune the system parameters, such as regression methods,

moving average, and exponential smoothing.

The storage cost is computed based on the state of the data objects, their

request frequencies, and their size. The state of data objects is defined as busy,

active, passive, or obsolete. The first state is assumed when the local data replica

is being accessed. The second state describes local replicas that have been accessed

recently within a predefined time-frame window. Replicas that have not been ac-

cessed within that time-frame window are categorized as passive. If a file is found

out of date following a consistency check, it is marked as obsolete. Each replica is

also assigned a weight index that indicates how much space it is occupying. This

index is relative to the total available storage space.

The storage cost is a linear combination of these parameters. Each factor in

the combination is assigned a weight depending on the application’s properties and

access patterns. When the replica management decides to create a local replica, it

first checks whether storage space is needed and available. If it is needed but not

available, then based on the ranking of locally stored replicas, the system decides

whether to delete some of the existing replicas to make space for a new one or to
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decline the creation of the new replica. To compare the cost of storage used by

existing replicas to the cost of storage needed by the new one, the system ranks the

latter as busy and uses the method used for evaluating costs of new replicas to assign

it a storage cost. If there are enough obsolete, passive or active replicas with lower

improvements in data access time than the new replica can provide (as evaluated

by the cost model), then these existing replicas are removed to make space for the

new replica. When a replica is created at a given node, that information is stored in

the local data catalog. Similar approaches have been used by operating systems to

manage memory caches. The most popular technique is based on access frequency:

Frequency Based Replacement using a Least Recently Used (LRU) list to replace

least used data [72].

3.3.5 Replica Location And Access

When access to a data set is needed, a request is issued. This request starts a

search process. This search is supposed to reach all the possible nodes that have a

copy of this data set. In case multiple locations are discovered the requester needs

to be provided with all the locations of the required data and choose the appropriate

source node. In existing Data Grid implementations, dedicated nodes store informa-

tion about the locations of possible sources [27]. In a more dynamic platform, new

nodes might join the grid and some nodes might leave. Thus the need for an adap-

tive, more dynamic approach to discover, locate, and access data. Similar attempts

were used to develop search protocols for peer-to-peer data sharing. Examples of

such protocols are the flooding algorithm used in Gnutella [6], the centralized algo-

rithm used in Napster [58], and the distributed hash-table based protocol used in

CAN, Pastry and Tapestry [68, 74, 80]. Many studies have shown that using a com-

bination of flat and hierarchical topologies gives the best performance for message

broadcasting [58, 55].

In our work we use a combination of spanning trees and rings to build the

overlay network to route access requests and locate data in a dynamic Grid plat-

form. These structures can be easily adapted to different topologies and changed

dynamically by adding new nodes and dropping unused connections. Ad hoc span-
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Figure 3.6: Replica/Data Search Process

ning trees have been tried and proven to perform and scale well in P2P systems [55].

To build the distributed overlay network two algorithms are needed. The first is an

algorithm for maintaining the tree and accounting for inclusion of new nodes joining

the tree and deletion of nodes leaving. The second is a search algorithm for locating

data. The use of tree and ring topologies yields a mostly hierarchical structure that

can be represented as a tree. Figure 3.6 shows three groups of clustered nodes.

The clustering is defined based on similar interests. Users interested in the same

data and aspects of research end up connected. The Figure also shows the creation

of new links and the removal of existing links, thus creating new groupings. This

adaptivity is based on the node’s interest and request response history. Each node

maintains a list of preferred neighbors. This list consists of node addresses from

which the local node has previously received responses to data requests. When a

given site in the list becomes the source of an increasing number of access responses,

a new connection to that site is created. In a parent-child connection the old con-

nection is deleted while the new connection is created as shown in Figure 3.6. In
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a peer connection, the new connection is added replacing a less used existing peer

connection. In the remainder of this subsection we describe the algorithms used to

add/remove new nodes to/from the overlay structure and locate data on the Grid.

Node Insertion The tree is constructed starting from a root node that stays

online. When joining the grid, a node is added through an existing grid node by

attaching to it as a child node or a sibling. Existing grid nodes are published in a

web page or could be accessed through a Web service. New nodes choose from the

list of available nodes using some metric such as proximity of a node to which the

new node needs to attach. For example a node can choose a parent or sibling node

which is in the same domain. This approach creates an inherent tree structure.

Node Removal When a node leaves the tree, it sends a notification message

to its parent, siblings, and children. The parent removes the departing node from

its children’s list as do its siblings. The children nodes contact the parent node

(their grandparent), and rejoin the tree as its children nodes. To avoid having a

disconnected tree in case a node fails and disconnects before sending any notification

messages, each node periodically checks if its parent is still alive. If it is not, then

the node tries to rejoin the tree by attaching itself to its grandparent node. To rejoin

the tree by choosing a new node to attach to from the list of published nodes would

take more time and would be costlier. Each node maintains a list of connections

to its parent, sibling, and child nodes, along with their physical network properties

such as bandwidth and latency. In addition to that, it also needs to keep track of

its grandparent node.

Data Search Searching for and locating data starts by a data access request

at a given node. The process is described in Figure 3.7. The search starts at the

local data catalog to check if the data is stored and available locally. If it is not,

then the node sends a request message to its parent, siblings, and children. Upon

receiving a request the node first checks the source of the request. If the request is

coming from a child node, then the search is continued up the tree, and the request

is forwarded to the current node’s parent. If the request was received from a parent

node, then the search goes down the tree, and the request is forwarded to the current

node’s children. At the sibling node the request is treated as being received from
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Figure 3.7: Replica/Data Search Process

a parent node and forwarded down the local subtree. When the request reaches a

node that contains the data, a notification message is sent to the initial requester

before initiating data transfer. The algorithm is also designed to include, within

the notification message, a list of different target locations where the requested data

could be retrieved. The system, in addition to replicating data, supports and enables

the replication of meta-data stored in the catalogs. This way nodes can publish the

list of data sets stored locally, and send that information to their parent node,

thereby, creating a global view of data stored within a subtree at the root of that

subtree and creating a global catalog at the root of the tree. After receiving a list

of possible locations, the local data management service uses network performance

tools to choose the source that would yield the best data transfer performance.

3.3.6 Resource Monitoring

The replication mechanism is guided by cost/benefit analysis that is based on

current demand for the data sets, locality of requests, network resources availabil-

ity, and storage capacity to create copies of the data. To get accurate estimates
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and measurement of resource availability and levels of consumption we use multiple

monitoring tools. To monitor storage space availability we use operating systems

tools to measure disk space availability. To measure data access frequency, the Re-

source Monitoring Service keeps track of accumulated access requests to the data.

To measure bandwidth availability, the middleware provides a mechanism that en-

ables each member of the Data Grid to estimate bandwidth availability to other

members.

To monitor network connectivity each node monitors its connections and links

to its immediate neighbors. Periodically each node probes its immediate neighbors

to check if they are online or if there have been any node failures. The periodicity

is based on estimated up-time of Grid participants. In our current implementation

the system performs the checks daily.

Each node uses a local database to collect statistics about outgoing access

requests and to monitor the origin of responses, as well as the path traveled by the

requests if desired. Keeping track of the path of the requests enables the nodes

to identify the list of preferred neighbors. As described earlier this list enables

each member node to adjust its connections depending on the data flow and users’

interests. Details about the database implementation are provided in Chapter 4.

3.3.7 Cost Model

In this section we outline the cost model we use to evaluate the costs and

benefits of replica creation and placement. The replication placement policy is

formulated as an optimization problem. Each node v in the overall system and a

data object i are associated with a nonnegative read rate λv,i and a nonnegative

write rate µv,i that represent the traffic generated within this node’s local domain

related to object i. Let Cw(i) be the write cost for a given object i and Cr(i) be the

read cost for the same object. Then, Cw(i)/Cr(i) = αi is the ratio of the write cost

to the read cost for node i. If there are no replicas for object i in the system, then

the total data transfer cost for this object at node v is

costv,i = (λv,i + αiµv,i)size(i)d(v, r) (3.1)
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where r is the node containing the object i and d(v, r) is the sum of the edge costs

along the path from v to r such that

d(v, r) =
1

bandwidth(v, r)

where bandwidth(v, r) is the total available bandwidth between nodes v, r.

Let N represent the set of all nodes in the system, Ri be the replica set of

object i, and c(v, Ri) denote the node of the replica of object i closest to node v. So,

if node v is to be added to Ri, c(v, Ri) would become v’s ancestor in the replica tree

of object i. Let Tv be the partition of nodes that would be serviced by v for future

access requests to object i, assuming that v is added to Ri. Let λt
v,i represent the

total read rate of all nodes at partition Tv, and µt
v,i represent the total write rate

of the partition. The incremental data transfer resulting from placing a replica at v

can be expressed by the following formula:

costi(N,Ri, v)

size(i)d(v, c(v, Ri))
= −λt

v,i + αi(µ
t
r,i − µt

v,i) (3.2)

Indeed, adding v to Ri decreases the read cost of each node in Tv by size(i)d(v, c(v,Ri))

and increases the write cost of each node in N − Tv by size(i)d(v, c(v, Ri)), but it

does not change other costs. Thus, the total cost of data transfer for object i with

replica set Ri is given by:

Cost(N,Ri) = cost(N, r) +
∑

v∈Ri−{r}
costi(N, Ri, v) (3.3)

where cost(N, r) represents the data transfer cost of object i from the root node

r. Given the structure of the data grid and the associated read/write patterns for

object i, the first term in Equation 3.3 is constant. Hence, we only need to consider

the problem of optimizing the following cost:

Cost′(N, Ri) =
∑

v∈Ri−{r}
costi(N, Ri, v) (3.4)

The above formula expresses the data transfer cost for object i improved thanks
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to the placement of a set of replicas Ri − {r}. The runtime system uses access cost

statistics to compare the replications gains to replication costs (update cost) and

then informs the replica management service whether to place a replica on node v

or not.



CHAPTER 4

Distributed Replica Management Middleware Architecture

and Development

In the previous chapters we laid down the motivation and rationale for our work, and

provided a high level overview and description of our design decisions and overall

approach. In this chapter we provide more details about low level and architectural

design decisions, as well as a thorough description of key components and their

implementation.

4.1 Replica Management Middleware Architecture

The main motivation behind our work is to provide a lightweight replica man-

agement middleware that can be easily deployed in large numbers of distributed

nodes and that requires the least amount possible of central control or management.

To that end we have designed and developed a fully distributed middleware that

takes advantage of existing infrastructure: large scale networks of distributed com-

puting and storage resources that are connected by reliable networks using widely

adopted communication protocols such as TCP/IP. Our middleware creates a vir-

tual machine at each participating Grid node, providing users with seamless access

to a larger pool of remote resources and hiding access and control complexities. We

have developed our prototype using Java 1.5 SDK.

The components of our middleware can be organized in a layered architecture

as shown in Figure 4.1. These layers are: a Resource Access and Control layer, a

Communication layer, and a Management layer. These layers provide the services

described in Section 3.3. Each layer builds on top of and uses the services offered

by the lower layers. We can describe the layers as follows:

• The Communication Layer consists of data transfer and authentication proto-

cols as data organization and overlay support. The transfer and authentication

protocols are used to ensure security, verify users identities, and maintain data

46
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Figure 4.1: Lightweight Replica Management Middleware Architecture

integrity during data transfers. In our implementation we use SSH (Secure

Shell) in combination with PKI (Public Key Infrastructure) to authenticate

users and control access to resources, and SFTP (SSH File Transfer Proto-

col) [11]. Only authenticated users are allowed access to data and resources

on the participating Grid nodes. This layer also provides support for the over-

lay network structure. The overlay structure enables nodes to keep lists of

direct neighbors. As we outlined in Section 3.2, our middleware implementa-

tion supports different overlay structures to manage communication and data

location in the Grid. Data access requests are routed in the Grid using the

overlay structure to take advantage of data organization and location on the

Grid.

• The Resource Access Layer consists of basic software and tools that provide

access to available resources and monitors their usage and availability. Each

resource present in a Grid node runs software such as a file system or database

to provide an access interface to users. Locally stored data at each node is

managed by the local file system. To monitor local storage space availability

and capacity the system relies on data provided through the tools provided
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by the local operating system. This layer also includes a Replica Catalog

component to support transparent access to data at each Grid node for local

and remote users. The Replica Catalog provides an indexing of available

data sets and a mapping between file names and their physical location. The

Catalog thus helps to locate locally stored data or route data access requests

to the appropriate Grid node. The Catalog is implemented using the Berkeley

Database which is available under the BSD license.

• The Resource Management Layer consists of services that support the man-

agement and transferring of data between Grid nodes and the creation of new

replicas. This layer’s components track users’ access patterns, monitor data

popularity, and use input from the lower layers to decide if local replica cre-

ation is needed or not. These services provide transparent and efficient access

to distributed data through simple and easy to use interfaces and APIs.

Each layer in the architecture provides a set of services that build on top of

and use services offered by the lower layers. In Section 3.2 we provided a general

framework of our Data Grid middleware. In that section we outline the major high

level services offered by the middleware and their functionalities. Each layer in our

architecture includes and supports some of these services. In the next subsections

we provide further details about each layer and its components and map the services

offered by the middleware to the different layers.

4.1.1 Data Transport And Communication

Data transport is an important component in the Data Grid middleware. In

addition to managing and controlling data movement between different Grid nodes

it also provides different security mechanisms to protect data integrity, ensure users

authenticity, and control access to Grid resources. The Communication layer in

our architecture can be further organized into three major components. The lowest

level component is the data transfer service that uses the Internet protocol TCP/IP

to transfer data between two physical locations. Most Data Grid implementation

rely on the use of FTP and GridFTP protocols [87]. In our implementation we

use the SSH File Transfer Protocol (SFTP) [11]. SFTP is a network protocol that
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provides secure file transfer over the Secure Shell (SSH) protocol. SFTP is platform

independent, provides reliable data manipulation over a secure stream, and acts as

a remote file system protocol. The SFTP protocol provides a range of operations on

remote files such as remote file deletion, directory listing and file transfer resumption.

We use SFTP over SSH-2 to provide reliability. To support a Java interface to the

SFTP protocol we use SSHTools [10]. SSHTools is a suite of Java SSH applications

that provide SSH Java libraries and APIs supporting SFTP Client among other

SSH based applications. SSHTools is available under a GNU General Public License

(GPL).

The next component in the Communication layer is the Overlay Network used

to route data access requests and locate data in the Grid. This service is used to

manage each node’s connectivity to its neighbors. As we mentioned in Section 3.2,

the overlay network consists of predefined application-level connections between

neighboring nodes. To structure these overlay networks we use two different topolo-

gies: tree and ring. The use of these topologies forms the basis of our approach

to building scalable replica management middleware. The graphs created by these

structures define the communication paths that can be used to navigate through

the network and locate data. To transfer data however, the physical network takes

care of properly routing data using the underlying data transfer protocol.

The third major component and functionality offered by the Communication

layer is security. It is imperative in a distributed environment such as the Grid

to guard against malicious attacks, ensure user authenticity, protect data integrity,

and user and application confidentiality. Security mainly supports two levels of

protections: user authenticity and data transfer protection or encryption. User au-

thenticity is provided through the use of Secure Shell (SSH) in combination with

Public Key Infrastructure (PKI). SSH is a network protocol that is used to con-

nect to remote computers and run commands over the network. SSH provides

“secure encrypted communications between two untrusted hosts over an insecure

network” [10]. To support user access control we use public key based authentica-

tion. A list of public keys corresponding to all users is distributed and replicated in

all participating Grid nodes to check each users access credentials. To support data
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transfer security, SSH is used in combination with SFTP. Access control is provided

through file permissions and limiting the number of files that can be accessed by

users. SFTP enables data transfers to be resumed starting from the last data byte

that was acknowledged. This feature provides added fault tolerance to the system

especially for large data transfers.

The Communication layer provides many low level services that support the

high level services we described in our general framework in Section 3.2. The one

service directly supported by this layer is the Routing and Connectivity service.

4.1.2 Replica Management

Data Grids provide a platform for the scientific community to share, access,

transfer, and process large collections of data distributed worldwide. Replication is

a key feature that is needed to provide efficient access to all participating Grid users,

ensure scalability of the Data Grid, and preserve bandwidth usage and consumption.

Replica creation is guided the user needs and data popularity as well as storage and

bandwidth availability. In our work we adopt a distributed approach to replica

management. Each member node of the Data Grid runs its own Replica Manager.

This manager controls the creation of new replicas to ensure access to popular data

to local users. The replica manager also manages local storage resources. Data is

only replicated if there is high demand for it locally, and storage space is available.

The replica manager uses the replica Catalog to keep track of replica locations.

Each Grid node has its own catalog to register available local data sets and newly

created replicas. Not all requested data at a given node is necessarily replicated;

data can sometimes be transferred for a lesser cost than creating a local replica.

High performance network resources available in Data Grids and the data transfer

protocols that are used contribute to the reduction of the cost of data transfer for

infrequently requested data sets. The replica catalog is a component in the Resource

Access layer, but it is mainly used by the replica management services.

In addition to keeping a record of locally available data, the catalog keeps

track of the locations of remote data collections that have been previously requested

from a given location. Keeping track of that data decreases data look up time
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and improves data access performance. In addition, data sets can be replicated

at multiple locations and multiple records are then registered for each of these

locations. The catalog is queried by users and applications to look up requested data

sets and discover their locations. To choose among multiple locations for a given

data access request or transfer, bandwidth availability helps determine the best

source node. Because of the distributed nature of our catalog implementation the

replication strategy and mechanisms used play an important role in the performance

of data access for the Data Grid. The overlay network structure supported by the

Communication layer provides a model and topology that guides data discovery and

that determines how the Grid nodes are organized and how they communicate.

Our replica management middleware supports two different levels of replica-

tion: data replication and catalog replication.

• Data Replication: Data is replicated in the Data Grid based on users’ demands

and storage availability. Replica creation is also based on replica maintenance

cost compared to data access benefits. As outlined in Chapter 3, the replica

management services uses a cost function to calculate costs associated with

creating a replica and evaluate the gains from preserving bandwidth usage

and placing popular data closer to users. The replica management services

are located on the Replica Management Layer of the architecture.

• Catalog Replication: Because of the distributed nature of the replica man-

agement middleware, the replica management service also supports catalog

replication. Each node in the Grid is mostly responsible for publishing and

keeping track of locally available data. However, to improve data discovery

and access performance, this data needs to be distributed and shared with

other nodes. We will discuss in further detail in the next section different

catalog replication mechanisms.

4.1.3 Resource Access

The Resource Access layer provides support for access to resources at each

member node of the Data Grid. The layer consists of basic software and tools that

provide API’s enabling users and applications to access available data sets and local
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storage resources. The layer also supports the monitoring of resource usage and

availability. Each resource present in a Grid node is managed by software such as a

file system or database to provide an access interface to users. The local file system

controls access to locally stored data, and access is granted based on predefined and

assigned permissions. On top of the file system a local data repository is used to

enable users to locate the data they request. The data registry is a catalog that

keeps track of data locations.

For the catalog implementation we use the Berkeley Database (DB) [2]. DB

is a high performance database library with Java bindings as well as for many

other languages. It has a simple architecture and provides simple data access and

management API’s but still supports many advanced database features including

management and control of large amounts of data up to 256 terabytes [2]. DB

supports multiple data items for each single key as well as different key/data formats

and types.

To keep track of data and replica locations, each data set or file name is mapped

to the physical locations where that file is stored. The location of a requested data

set is fetched from the catalog using its logical file name as key. If the data is

available at the local node, the search returns the path for the file, and if the local

node is aware of the remote locations where copies of the requested data are available

that information is also stored in the catalog. The remote node’s address is mapped

in the catalog to the file’s logical name. In the presence of multiple remote locations

for a requested data set, a performance metric is used to choose what remote node

would provide the most efficient and fastest access to that data. The performance

metric is based on bandwidth availability estimations.

To monitor resources availability the middleware uses tools provided by the un-

derlying Operating System to capture statistics about each resource usage. Through

Java interfaces the system can check storage space capacity, available storage space,

and access permissions and rights. Additionally, each node can monitor its connec-

tivity to its neighbors. The monitoring mechanisms are described in Section 3.3.6.
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4.2 Middleware Implementation

The middleware is organized in three layers as shown in Figure 4.1. As men-

tioned in previous chapters, the middleware consists of different components. Each

component provides a service that is either high level and used directly by the users,

or a low level service that is used by other services to access local resources. The

major classes implementing these components are illustrated in Figure 4.2. Each

class implements some or part of a service. Table 4.1 lists the major classes and

maps each class to the corresponding service.

Figure 4.2: Overview of Middleware Implementation

4.3 Communication

In this thesis we develop a distributed data management middleware where

components of the system run on distributed and networked participating comput-

ers. A communication mechanism is thus needed to support messaging, remote data

access, data discovery and search in such a distributed environment. Additionally,

each participating Grid node running the middleware needs to check its connectivity
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Classes Layer Interactions Services
Node Management Resource Access Main User Access Interface

connect-to/access the Grid
Peer Connection Resource Access Management Handling Remote Connections

Transport
Request Connect Transport Resource Access Handling Outgoing

Connection Requests
Accept Connect Transport Resource Access Handling Incoming

Connection Requests
Message Handler Transport Resource Access Processing Incoming

requests and generating
Outgoing responses/messages

Manage Incg Msgs Resource Access Transport Managing message queue
Dequeuing incoming messages

Manage Outg Msgs Resource Access Transport Managing outgoing queue
Queuing outgoing messages

File Transfer Transport Resource Access Managing data transfers
Public Key Con Resource Access Management Handling users authentication
Db Manager Resource Access Management Manages local data catalog

Stores local monitoring
statistics

Cost Function Management Resource Access Replica and storage
management

Table 4.1: Class Implementation and Organization Overview

to its neighbors to maintain and monitor its membership and participation in the

Data Grid. The middleware provides listeners at each Grid node that use uniform

communication interfaces to send, receive, and process messages.

To support reliable communication between the Grid nodes, we use TCP sock-

ets to provide end-to-end communication channels between the different Grid nodes.

The TCP communication establishes a channel between a server program and a

client program. Each one of these two programs binds a socket to its end of the

connection [12]. To communicate, the client and the server each reads from and

writes to the socket bound to the connection. The communication interface at each

node provides listeners which in turn implement a server socket to listen to and re-

ceive incoming messages. To communicate with a remote node, the communication

interface at each node uses a client socket to initiate a communication channel with
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a remote socket server and establish a connection with the remote node.

Our communication mechanisms support scalable expansion and deployment

of the middleware. New nodes can join the Grid and leave without disturbing the

underlying connectivity fabric of the overall Data Grid. This mechanism provides

fault tolerance support in the presence of node failures. Following the occurrence of

a node failure, the node’s neighbors detect the failure when their messages are no

longer accepted. This leads the neighbors to change their connectivity and update

their neighbors lists. We will address in further detail the algorithms used to support

runtime adaptivity and support to node failures. We should highlight however the

fact that very few steps are involved to detect a node’s failure using this communica-

tion mechanism. Since each message sent over the socket channel is acknowledged,

in the event a message is not acknowledged and connection is refused the node at the

opposite end is notified that the connection was closed. Before a given node drops

a possibly failed node from its list of neighbors, another communication attempt is

made and network monitoring tools are used to check if the suspected failed node

is still online. If these attempts reveal the suspected node is indeed offline then all

its neighbors drop it from their connectivity list. In addition to node failures, nodes

can dynamically leave and join the Grid in small scale collaborations. In case a node

needs to leave and cease its participation in the collaborative Grid environment, it

informs its immediate neighbors and notifies them. The neighbors in turn update

their connectivity lists by dropping the node from their routing list.

The TCP sockets provide an added security layer to support users’ authenticity

and security. The communication channels provided by the TCP sockets are reliable;

no messages exchanged over the channel are dropped, and all data sent arrives at

the receiving end in the same order. The Grid Join and Leave processes are thus

ensured to be reliable and provide support for verifying users credentials and access

rights.

4.3.1 Node Insertion And Removal Algorithms

The topologies used to overlay data on the Grid support dynamic node ad-

dition and deletion. When new nodes join or leave the collaborative environment
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the topologies are adapted to the changes and dynamically adjusted. The initial

topology is constructed starting from one node first. In the case of a Top down

hierarchical topology (see Figure 3.1), this node would represent a major storage

site. More sites joining the Grid are added as child nodes of the main storage site.

Depending on the number of organizational domains the Data Grid spans through,

more levels of the topology, i.e., tiers, and nodes are added the same way. Nodes

are added to the Grid by attaching to an existing Grid node as a child node, thus

creating a spanning tree.

Node Insertion. The tree is constructed starting from a root node. When

joining the grid, a node is added by attaching to an existing grid node as a child

or a sibling at any level of the exiting tree. Existing grid nodes are published in

a Web page or could be accessed through a Web service. Before joining the Grid,

each joining node needs to download the midldeware binaries. The binaries are

available through the same site publishing the existing members; the binaries are

also accessible at each existing member which can in turn publish them and make

them accessible to more future participants. New nodes choose from the list of

available nodes using some metric such as proximity of a node to which the new

node needs to attach. For example a node can choose a parent or sibling node

which is in the same domain. This approach creates an inherent tree structure.

Node Removal. When a node leaves the tree, it sends a notification message

to its parent, siblings, and children. The parent removes the departing node from

its children’s list as do its siblings. As described in Section 3.3.4 to avoid having a

disconnected tree in case a node fails and disconnects before sending any notification

messages, each node periodically checks if its immediate neighbors are still alive.

Each node maintains a list of connections to its parent, sibling, and child nodes,

along with their physical network properties such as bandwidth and latency. In

addition to that, it also needs to keep track of its grandparent and a grand child

node. However in the event of the failure of both the parent and grandparent

nodes, to reattach to the Grid a new parent node is selected from the list of existing

members.

In the case of a Bottom Up hierarchical topology (see Figure 3.3, the overlay
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is constructed starting from the data collection nodes which constitute the leaf

nodes of the hierarchy. Nodes interested in joining the collaboration by sharing and

distributing the data, attach to the data collection points as parents. The same way

depending on the number of organizational domains more levels are added to the

spanning tree. Similar to the Top Down hierarchy, each node keeps track of its parent

and child nodes. In the case of node failures or node detachments, connections are

adjusted to reconnect children of the failed or departing nodes.

In a hybrid model, the types of connections include in addition to parent-child

connections, sibling connections (see Figure 3.2). A node can connect to the Grid

by being added as a sibling or parent or child node. Each node keeps track of its

sibling, parent, and child connections. In case of a node failure of a sibling node,

the connection to the failing node is removed.

When a node leaves the Grid it informs its immediate neighbors by sending a

leave notification. The neighbors readjust their connections accordingly by removing

the link to the departing node from their contact list. Each node in the network

keeps track of its siblings, parent, and child connections. In case the departing

node is a parent node, its child nodes update their connection list and attach to

the grandparent node. In case the departing node has sibling connections, once

informed of the departure its immediate neighbors update their connection lists and

attach to the next sibling.

4.3.2 Messaging

The communication mechanisms outlined above provide the necessary tools

for sending, receiving, and processing messages. A messaging mechanism is still

needed to exchange messages between the Grid nodes and to request access to

services and resources. To support messaging and formulate the messages to be

used for communication between the Grid nodes we use XML (Extensible Markup

Language) [5]. XML has been established as a standard for representing text-based

structured data. Different types of information and data can be encapsulated in

an XML document. XML also provides support for describing different types of

data. In our implementation we use XML to describe different types of requests and



58

Message type Category Description
Hello System Message Initiating a connection

channel with a peer node
Bye System Message Closing the connection channel
FORWARD Data Search Forwarding a data

request for a data
set not found locally

DATA OFFER Data Search Response to data
request message from a node
where data was located

DATA ACCEPT Data Search Response to data offer
message to start data transfer

RESOURCE UPDATE Replication Message Catalog replication

Table 4.2: Messages Overview

responses exchanged between the Grid nodes. The major message categories are:

• System Messages: joining the Grid, leaving the Grid

• Data Search Messages: data access requests, forwarded requests

• Replication Messages: catalog replication and update propagation

• Data Location/Reception Responses: acknowledgement for data location, ac-

knowledgement for data reception

To formulate the different message types we created template XML documents

that describe different attributes and fields of the message. We use the attributes

to define the types of requests issued at each node. The fields of the message are

also used to track the path each message traverses from the source originating the

request to the end node where the requested data is located. Table 4.2 provides a

listing of the main message types used within the middleware. To process the XML

documents we use JDOM [49]. JDOM provides lightweight means for reading and

writing XML documents while inter-operating with existing standards and without

the complexity and cost of other solutions. JDOM provides API’s for accessing,

manipulating, and producing XML format data from Java code. It is a Java-based

document object model for XML that builds XML documents by using XML parsers
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and integrating with Document Object Model (DOM) and Simple API for XML

(SAX).



CHAPTER 5

Data Grid Simulation Study

In order to evaluate our approach, we developed a Data Grid simulator called Grid-

Net. This simulator provides a modular simulation framework through which we

can model different Data Grid configurations and resource specifications. In this

chapter we present the framework and design of our simulation, outline the data

models simulated, and the algorithms used to manage replica creation and location.

5.1 Background And Related Work

The steady increase of collaborative research and problem solving has led to

the rise of data production volumes and data sharing needs. Simulation presents

system designers with unique opportunities to study different approaches and im-

plementation paradigms as well as their performance before a costly deployment

on a real infrastructure. The simulation environment provides the users with the

ability to run multiple tests and an easy framework to change system parameters

and experiment scenarios with very small overhead. Redeploying a real middleware

and updating control and access API’s of the underlying infrastructure requires

more time to update every distributed component of the system and re-launching

the middleware. The attractive features of simulation led to a rise in interest in

modeling Data Grid environments and simulating different data replication tech-

niques as well as basic file replication protocols to support development of Data

Grid middleware [80].

Different studies were conducted to model scientific experiments settings and

configurations, such as the CMS and ATLAS experiments [80, 7]. A simulation

framework was introduced in [22] where data replication is combined with job

scheduling. In contrast to our approach, introduced first in [57, 56], this simula-

tor uses a prediction function based on spatial and time locality regardless of the

overall data access cost in the Data Grid. In [64], an approach is proposed for au-

tomatically creating replicas in a typical decentralized P2P network. The goal is to

60
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create a certain number of replicas on a given site to guarantee minimal availability

requirements. Different replication and caching strategies within simulated Grid en-

vironments are discussed in [65] and their combination with scheduling algorithms

is studied in [64]. The replication algorithms used were based on the assumption

that popular files in one site are also popular at other sites. We take a different

approach by evaluating replica creation and placement using the network attributes

and data access costs as well as data popularity along with its spatial and temporal

locality based on user demands.

In [66] the authors have studied different replication strategies coupled with

job scheduling techniques in a grid. Their results show that taking into considera-

tion the location of data instead of focusing only on available and idle cpu cycles

yields better performance. In [67] the authors study the performance of a some-

what distributed and dynamic replica creation mechanism in P2P environments.

Their approach outperformed static replication in most cases but with the risk of

creating more replicas than necessary, thus consuming even more resources. Op-

torsim is a grid simulator that was developed to study the efficiency of different

replication algorithms in a grid [25]. The studies conducted with Optorsim com-

bined job scheduling with data access optimization, and showed that scheduling

techniques that take as input the availability and location of data outperform the

classical scheduling methods. The simulations allowed the authors of this research

to perform initial verifications of the design and evaluate the performance of their

strategies. The results show that a dynamic replication technique yields better per-

formance with larger file sizes and with an appropriate allocation of storage space.

The results show that dynamic replication improves dramatically the performance

of the overall Data Grid.

As stated above most existing systems have focused on job scheduling vs. data

location. In such scenarios, Data placement is coupled with computation and job

scheduling. While computational jobs are an important factor in deciding where to

place data, building data management middleware that actively places and stages

data in strategic locations and adapts data distribution to continuously changing

user and network behavior is a more general and comprehensive approach. Our
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simulator was also among the first simulators to be introduced in the field to enable

the study and analysis of Data Grid replication mechanisms and their performance.

The simulator has been used by multiple research groups who were investigating

replica management techniques in Data Grids.

5.2 Simulation Design

In order to validate our approach we designed a Data Grid simulation Frame-

work through which we can model realistic scenarios. To that end we developed a

modular simulator called GridNet. The simulator was developed in C++ and was

built on top of the network simulator NS [85]. NS provides the ability to abstract

and model basic Grid network components, i.e., nodes and links, as well as the

ability to model messages and data transfers. GridNet introduces application level

services implemented on top of the existing NS protocols. It allows us to specify

different network configurations, different types of nodes, different node resources,

a replication strategy, and a cost function and its parameters. The GridNet simula-

tor modules are composed of objects that are mapped into application level object

classes in NS. Data exchanged between the GridNet nodes is application level data

that is passed down to the NS node as packets. In addition, there are also pack-

ets representing grid user requests as well as the start and the end of grid data

transmissions in NS that transfer control of the simulation to GridNet. The latter

simulates the replication decision at each node and generates new NS traffic (for-

warding requests other nodes or sending the requested data to the client). This

separation of the network simulation layer, the grid node and replication enables us

to use the existing package, NS, and add only the Data Grid specific elements to

the simulation.

One of the main considerations in designing our simulator was to model the

Data Grid architecture and the interactions of the individual Grid components as

realistically as possible. Therefore, the simulation is based on the architecture pro-

posed for High Energy Physics experiments conducted in CERN, CMS and AT-

LAS [46]. We assume a multi-tier Grid topology for our simulations.
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5.3 Overview of the Network Simulator NS

Ns is a discrete event network simulator that allows the simulation different

network topologies and components [85, 19]. In ns, a simulation scenario defines

the input configuration for a simulation run. Simulations are constructed using

several components: a network topology, which describes the physical intercon-

nections between nodes and the static characteristics of links and nodes, traffic

models, which define the network usage patterns and locations of nodes initiating

communication through unicast and multicast messages, test generation, which cre-

ates events such as multicast group distribution, and network dynamics (node and

link failure) [19]. NS supports both pre-defined and automatically generated net-

work topologies. Pre-defined topologies may be created manually or chosen from a

topology library. NS provides a wide variety of traffic models that support differ-

ent transport protocols. At present, supported protocols include reliable delivery

transport (e.g. several TCP variants), and unreliable transports (e.g. UDP). FTP

applications can be modeled on ns using the former model, while the latter models

telnet-like applications. Through the simulation interface, scenarios are defined in

a scripting language (Tcl/Tk) while the underlying processing is performed in the

back-end simulator and written in a system language. Mainly the simulation kernel

is implemented in a compiled language (C++), while simulations are defined and

configured by a simulation program written in the Tcl scripting language [19]. For

an object oriented design support, an extension to Tcl, the Otcl scripting language

is used.

5.4 GridNet Architecture

Grids are made up of a large collection of computers connected by wide area

networks. Most grid nodes provide both computational (CPU) and storage (disk)

resources. As such, our simulation is based on that model. Grids are composed

of a connected set of nodes that provide either computational or data resources,

or both. In our study we adopt the typical Data Grid architecture used at CERN

(the European Organization for Nuclear Research) and implemented by the Grid

Physics Network GriPhyN [7]. Figure 5.1 shows an example of the architecture
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Figure 5.1: Network

as used in the CMS experiment, it also shows the simulation model and topology

used in our experiments. To specify Data Grid nodes, the simulator extends the

original semantics of a node object in NS. Each node is able to specify its storage

capacity, organization of its local data files, its relative processor performance, and

to maintain a list of its neighbors and peer replica nodes.

Packets representing grid user requests as well as the start and the end of

grid data transmission in NS, transfer control of the simulation to GridNet. The

latter simulates the replication decision at each node and generates new NS traffic

(forwarding requests other nodes or sending the requested data to the client). Given

the configuration of the adopted model, the simulator allows us to specify different

types of nodes: client, server and cache nodes.

• Server Node: represents a main storage site, where all or part of the data

within the Data Grid is stored. This site represents a collection site in both

the CMS and LIGO experiments and is the root of the grid hierarchy.

• Cache Node: represents an intermediate storage site, for example a regional

site in the CMS experiment. Such sites would have high storage capacity and

would replicate part of the data stored on the main storage site. In Figure 5.1,

these nodes represent tier-1 and tier-2 nodes (intermediate levels of the tree)

on the grid hierarchy.
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• Client Node: represents a site where data access requests originate and are

generated. The client nodes are always at the leaf level of the grid hierarchy.

Table Table

Storage
Element

Storage 
Element

NS Node NS NodeReplica
Optimizer

Data
Monitor

Replica Routing Replica Routing

Replica Manager
Replica
Optimizer

GridNet Node

NS Link

GridNet Node

Replica Manager
Data
Monitor

Figure 5.2: Simulation Architecture

The network interface model is specified in the link object that is provided in

NS. The link object is used to model the parameters of physical interconnections in

the simulated network, such as link bandwidth and latency. As shown in Figure 5.2,

each GridNet node consists of a basic NS node, a storage element, a replica manager

or a monitoring agent, and maintains a replica routing table. The network interface

model is specified in the link object that is provided in NS. The link object is used

to model the parameters of physical interconnections in the simulated network, such

as link bandwidth and latency.

The replica manager makes the decision about when to create and delete repli-

cas. This decision is made using statistics collected at each site about data access

requests and network characteristics. Such data include access frequencies per data

file, connection bandwidth information, and storage space availability. To collect

the performance data, each replica manager contains a monitoring module or agent

that is responsible for computing the number of data requests generated at each

node, as well as the number of requests received from other nodes. To compute

bandwidth availability, each node regularly polls connections to its neighbors. The

data collected is then evaluated by the replica placement algorithm or optimizer

using the cost function formulated in Section 3.3.7 (equations 3.3 and 3.4).
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Algortithm: Process Read Request

log-traffic;

log-count;

If (has a local copy and is valid){

Send a GPT_READ_ACK

to the original sender directly;

}

Else{

Forward GPT_READ_REQUEST to parent;

}

Figure 5.3: Description of Read Request Processing

The simulation is constructed assuming that each node in a Data Grid has

some computational power and may provide data-storage resources. The GridNet

defines the simulation through a sequence of commands. Currently the following

five commands are generated by GridNet nodes:

• GPT READ REQUEST used by the client to initiate reading the data,

• GPT WRITE REQUEST used when a client needs to write a file to the server,

• GPT WRITE UPDATE used by a server or cache node to inform the cache

nodes that a newer version of data is available,

• GPT READ ACK used when the server or cache node confirms the read re-

quest

• GPT WRITE ACK used by the server or cache node to confirm the write

request.

Their implementation is quite simple. For example, GPT READ REQUEST is sent

from the client node to a cache node and generates the sequence of commands at

the cache shown as pseudo-code in Figure 5.3.

Some of the parameters used in the simulation, like the frequency of band-

width probing and statistics gathering, are set by NS commands. In our simulation,

only client nodes generate data access requests adopting a bottom up data model

hierarchy. Each client runs a set of jobs that require accessing certain data files.
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The jobs running-time is simulated by associating a processing time with each file.

Each client runs a sequence of jobs concurrently with the other clients. Client nodes

are assumed to have a limited storage space that they use for caching. Before gen-

erating a request, the client checks if the data requested is available locally. Each

node maintains a replica routing table that allows it to locate the closest replica

site and the node to which it should forward its request. Each time new replicas

are created or deleted, replica routing tables are updated accordingly. The next

subsection explains further how these tables are updated and used.

5.5 Replication Model

Given the hierarchical property of the Data Grid, we organized our simulations

into a multi-tier topology. Nodes placed in higher levels have higher storage capacity.

Client nodes are placed in the lowest level. Using the data cost model described in

the previous chapter, the replica manager evaluates the access request frequencies

against the size of the data object and the network connectivity and bandwidth.

As a first attempt to model our approach, we use the read rate (including statistics

of read requests received from other nodes) and the available storage space as the

basis for estimating the replica creation benefits. And we use the write rate, the

data transfer rate, and the replica size as the basis for estimating the replica creation

cost. Using equation 3.4 (in Chapter3), the replica manager computes the costs and

the gains of creating a new replica. A local replica is created if the gains outweigh

the costs. The data transfer cost represents the cost of bandwidth consumed by

transferring data from one node to another. If the replica manager decides to create

a local replica and no space is available, then another replica is deleted to make space

for the new one. The replica manager deletes the least recently accessed replica. It

makes that decision using an evaluation formula that rates the access requests of

that replica and the number of other nodes requesting that replica. The algorithm

used by the replica manager is shown in pseudo-code in Figure 5.4.

When a replica is created at a given node, that information is propagated to

the siblings and children of that node. Subsequent access requests to these replicas

are forwarded to the closest replica site using the closest path. To determine that
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Algortithm: Local Replica Creation

log read_count;

log write_count;

Check_requests_cost() {

for (i=0; i < log_entry; i++) {

if (write_count[i] > 0) {

cost = (read_count[i] * size[i]/band(node,replica))

+ (write_count[i] * size[i]/band(node,replica));

gain = \sum_{known replica sites}(write_count[i] *

size[i]/band(node,replica));

if (gain > cost) Create_replica(file[i]);

}

else {

if (read_count[i] > Threshold)

Create_replica(file[i]);

}

}

}

Create_replica(file){

if (no storage space available) {

\* Order Local Replicas by access Rate *\

for (j=0; j<local_replicas_nbs; j++) {

pick local_replica with least access_rate[j];

if (access_count_replica > access_rate[j]) {

delete local_replica;

add local_replica for file[i];

}

}

}

else add local_replica for file[i];

}

Figure 5.4: Cost Based Replica Creation Algorithm

path, the bandwidths of the node’s connections are evaluated to determine the

more efficient routes to access data. The replica routing tables are then updated

accordingly to reflect that information. The replica routing tables implement some

of the functionality of the replica catalogs implemented by the Data Management

Component of the Globus toolkit [28, 38, 36]. These tables provide a mapping

between logical file names and their physical locations on the Data Grid.



CHAPTER 6

Performance Study

In this chapter we study the performance of our approach, both through the sim-

ulation and deployment of the middleware. We start by describing the testing

environment we use to deploy our prototype and conduct our experiments. We then

list the different scenarios we used to run the experiments and describe the data

models and patterns that characterize the target environment for our middleware.

Finally we show and provide an analysis of the results obtained from our testings

and experimentations.

6.1 Simulation Study

In this thesis we address problems pertaining to supporting medium to large

scale Data Grids to foster collaborative problem solving between researchers in dif-

ferent institutes and organizations. To that end, we have introduced new middleware

for managing data in distributed dynamic platforms. To further study and analyze

our approach, our first research interests focused on simulating different replica-

tion strategies before developing and deploying the middleware. As outlined in

Chapter 5, to validate our approach we designed a Data Grid simulation framework

through which we modeled realistic scenarios to test the performance of our ap-

proach. The simulations allow us to verify the design and evaluate the performance

of our strategies. Simulation helps us to study different approaches and implemen-

tation paradigms as well as their performance before a costly deployment on a real

infrastructure. The simulation environment provides us the ability to run multiple

tests and an easy framework to change system parameters and experiment scenarios

with very small overhead.

6.1.1 Simulation Configuration

In the absence of real trace data in the early stages of our research, we carried

out numerous simulations using different synthetically generated data and hierar-

69
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Figure 6.1: Simulation Model Topology

chical models. In these experiments we will use a case study of a three-tier Data

Grid topology as shown in Figure 6.1. Table 6.1 shows the parameters used in our

study. Essentially, the simulated events represent access requests, and the presented

results were obtained with simulation of only read requests. The simulation gener-

ates random background traffic in the network and the stream of requests for the

grid data. The dataset sizes range from 100MB to 1GB.

Number of sites 28
Total number of Datasets 90
Connectivity bandwidth server-cache, cache-cache 100Mb/s

cache-client 10Mb/s
Total number of requests 1000

Table 6.1: Simulation parameters

Initially only one replica per dataset exists in the system. Users are mapped

evenly across sites and submit a number of sequential data access requests (only read

requests are used). Requests are processed sequentially and each user accesses only
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one file at a time. However, collectively, users utilize some files more than others.

Initially all files are placed on the Main Storage Site (root). Data access patterns

are based on both temporal and geographical data locality. Recently accessed files

are more likely to be accessed again and files accessed by a node are more likely to

be accessed by its siblings and children. Within this model, each site was allocated

storage resources proportional to their location on the grid hierarchy. The main

storage site was allocated a Storage Element to hold all of the master files. Client

nodes, however, do not have any storage space.

6.1.2 Experiments and Results

Our experiments consisted of running different simulation scenarios of the

model described above. The topology consisted of a 3-tier tree, with three cache

nodes in the first tier. Each of these nodes has cache nodes as its children. In

addition, each cache node in tier 1 has three children client nodes. In total, we

used 18 client nodes, two cache levels with 9 cache nodes, and one main storage

site or server node. The goal of the simulations was to evaluate our replication

approach against cases where static replication, and no replication were used. In

static replication, subsets of popular replicas were placed in cache nodes closer to

the request-generating nodes. Because of storage capacity limitations, these subsets

did not contain all requested datasets and did not satisfy all requests. The file sizes

used in the simulations ranged from 100Mb to 1Gb. We use response time as our

performance metric as it incorporates and represents both the data transfer costs and

gains of the replica placement strategy. Figure 6.2 shows the average response time of

read requests for multiple file sizes comparing scenarios using static or no-replication

vs dynamic replication policies. In the static replication scenario the data was placed

only in server nodes, and no caching was activated at the cache nodes. In the static

replication scenario popular files were pre-staged in strategic locations at different

cache nodes. The pre-staging was based on the popularity of data requested by

the user applications. Prior to running the simulation, popular files were replicated

accordingly at cache nodes. The workload at each node consists of running tasks

that require both file access operations and the processing of the accessed data.
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In the simulation, each file is assigned a processing time that corresponds to its

size. The response time measures the combination of IO and processing times. The

results show that dynamic replication outperforms static replication by up to 30%.
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Figure 6.2: Average Response Time For Different Data Access Loads for
Replication vs. No Replication

In Figure 6.3 we show the results obtained from comparing three different

scenarios using different replication policies and storage/cache capacities at different

levels of the hierarchy. The goal of the simulations was to evaluate our replication

approach and the affect of cache storage space availability on performance against

the case where no replication is used. Scenario 1 represents the case where no

replication is used, therefore all data access requests were forwarded and serviced

by the main storage site. In scenario 2, dynamic replication is used with small

storage capacities allocated to cache nodes. In scenario 3, dynamic replication is

used with larger storage capacities at cache nodes. The no-replication or static

replication policy is similar to the policy we used and described in the previous
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experiment. The dynamic replication policy is based on the cost model described

in Section 5.5. The guiding factor of the replication mechanism is the frequency

and origin of access requests from client nodes. We used 6 data groups for our

experiments. Table 6.1.2 shows the range of data file sizes within each data group.

Data Sets Used File Size range
Data set 1 100MByte to 200MByte
Data set 2 200MByte to 300KByte
Data set 3 400MByte to 500MByte
Data set 4 600MByte to 700MByte
Data set 5 800MByte to 850MByte
Data set 6 950MByte to 1000MByte

Table 6.2: Data File Sizes Used in the Experiments

The results in 6.3 show that replication improves overall workload perfor-

mance by up to 60%. The plots in the Figure show an improvement of up to 60%

for Dataset6 from scenario2 to scenario3, and approximately 64% for Dataset5. The

results also show that with higher network bandwidths, the performance of high

workload scenarios increases noticeably, and that the gains and benefits are more

considerable for larger file sizes. The plots in both Figures 6.2 and 6.3 show that

dynamic replication yields large improvement in the overall data transfer and re-

sponse times within the Data Grid. The results of the second simulation tests also

show that the use of small caches at intermediate nodes does not improve the data

access performance of large data sets in the Grid. With small storage space avail-

able, cache nodes spend a lot of time adding new replicas and deleting older ones.

Since data accesses are based on both temporal and geographical locality, deleted

replicas might be needed at a later time. The replica manager needs then to free

space to add new replicas when their access cost improvement is higher than that

of existing ones.

The plot in Figure 6.3 also shows that the average response times of data

requests for scenario 2 and scenario 3 are similar when the size of data files is

smaller than 500MB. In these cases cache sizes do not much affect the overall data

transfer in the Data Grid. However, for file sizes larger than 500MB, scenario 1
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Figure 6.3: Replication Performance With Different Storage Availabili-
ties And Different Data Sizes

and scenario 2 produce the same results while the use of larger storage spaces at

cache nodes yields better performance. The experiments results also show that data

transfer costs and bandwidth consumption decrease dramatically with the use of

dynamic replication. Our results show that bandwidth consumption decreases by

over 60% from scenario 2 to scenario 3.

With the introduction of additional traffic on the grid, we created an envi-

ronment in which the connection network is not solely dedicated to the grid data

transfer. This additional traffic uses part of the bandwidth and introduces extra

delays. Our results also show that performance gains increase with the size of data

used. As data file sizes in Data Grid environments are reported to reach the Terabyte

scale, we expect that a larger scale use of our model will yield better performance

results. While running the simulation, we also found that with higher network

bandwidths, the performance of high workload scenarios increases noticeably. Our

replication technique yields better performance with the use of larger file sizes and

with an appropriate allocation of storage space at cache nodes.



75

These results are very promising, but they are based on automatically gen-

erated workloads and specific grid scenarios. In the follow up of our research, we

investigated different scenarios using different topologies and workloads. Based on

surveys of scientific applications and user identified requirements for Data Grids

we identified popular access patterns and scenarios in collaborative environments.

These patterns were detected and extracted from experiments run on the Grid and

popular applications. In the next section we will show the results we obtained from

deploying our proposed middleware.

6.2 Middleware Deployment

The testbed of our experimentations consists of a cluster of 40 Linux machines

with dual processors running the distributed file system NFS. In addition to the

Linux machines, workstations from the Computer Science department were also used

to emulate virtual organizations running across multiple organizational domains.

These workstations are running the FreeBSD operating system and the distributed

file system NFS. Each machine though has a local disk that is not accessible through

NFS. As a member of a virtual collaboration and organization, each machine runs the

data management middleware and contributes some of its local storage space. The

data shared by the members of the Grid is placed in the local disk of each machine.

The access permissions on the files determine the users who have the right to access

them. Due to the lack of real Data Grid trace data, we designed the experiments

in a way to emulate existing access patterns within the scientific community. The

models used for our experiments are based on data access patterns observed in

popular scientific applications [88] and documented in surveys and studies of existing

Data Grid applications. The applications we mostly based our testing on are the

CERN High Energy Physics applications such as CMS and Atlas [46, 7]. The data

organization models we adopted are based on the models we discussed in Section 3.2

and shown in Figures 3.1 and 3.3.

We conducted experiments to test the efficiency of the spanning tree overlay

on a dynamic grid platform with and without replication enabled. The experiments

consisted of using a 31 node Grid and placing the nodes issuing access requests
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at the bottom of the tree as leaves. In addition to running the data management

agent, each leaf node runs a client host that runs a script that takes as input a list

of data sets, and then posts read requests for these data sets according to a selected

access pattern. We use the Poisson distribution to model request generation with

different arrival rates at each client host. While each node has the ability to issue

requests, during these experiments only leaf nodes do so to make sure the traffic

load generated travels along the longest paths.

6.2.1 Experiments Modeling

Scientific applications running on the Data Grid have different workloads,

but most applications share the same data access and data flow patterns. In our

survey of applications running on the Data Grid specifically, and high performance

distributed applications in general, we discovered that most applications have one

or two typical data request sizes [17, 14, 7, 88, 46]. The survey also showed that

scientific applications demonstrate a bursty behavior. The spikes and bursts in

access patterns in scientific environments reflect a rise in interest in certain data

files. Such patterns are mostly contributed to and caused by the publications of

new results or discoveries. Within a single application, the bursts are mainly caused

by the nature of scientific computing where computations are data intensive and

require multiple IO operations. These operations mostly occur at the start and

end of iterative computational phases. In both tightly and loosely coupled parallel

and distributed applications data synchronizations cause the output and input of

large amounts of data. In most applications, requests for data sets with similar

sizes account for 90% of the overall data requests [88]. A survey of scientists’ access

patterns show that most of their requests are for file sizes with similar sizes and

similar content. Bursty behavior is attributed to the discovery of newly introduced

or added files to the community repository.

Defining and determining commonly used access patterns help us model our

experiments as realistically as possible. While deploying the middleware with real

Data Grid applications would provide a better testing environment, we hope that our

personal experience working with and developing distributed and parallel scientific
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applications such as earthquake simulations and Plasma simulations [26] gives us a

unique perspective in shaping and modeling scientific collaborative environments as

close to reality as possible. In the next section we will provide further details about

the models we used in our testings.

6.2.2 Experiment Set up

As outlined in the previous section, the most popular data organization and

collaborative models used by the scientific community are the hierarchical models.

The two models we use in our experiments are the top-down model and the bottom-

up model. These models are respectively represented in Figure 3.1 and Figure 3.3.

The first data model is used in an environment where there is a single source of

data, and that data has then to be distributed and copied to multiple locations to

be shared by a large community of collaborators. It shows the data distribution

model in the CERN experiments where data is first generated and stored in CERN,

and later copied to different distribution and regional centers. From these centers

the data is then distributed to different labs worldwide to give access to scientists

from around the world.

The model we use in our experiments is shown in Figure 6.4. Data access

requests are mostly generated at the nodes in the bottom layer of the hierarchy.

All data is originally stored at the root of the hierarchy. Access requests drive

the dynamic replication of popular data files at different levels of the hierarchy.

To model collaborative environments as we described above the data requests are

emulated using a group of 100 files of sizes ranging from 50MBytes to 500Mbytes.

User applications generate data access requests using a Poisson distribution. I/O

operations follow the patterns we descried in the previous section. Among the

100 files used in the experimentations, we designated a group of 20 data sets as

Interesting Files. This labeling means that most users would be highly interested

in getting accessing to those files at a certain time and analyzing the data. This

pattern mimics a natural human characteristic: curiosity. When interesting data

is published most scientists would be highly interested in checking it and using it.

But their interest might shift to another group of Interesting Files afterwards. The
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Figure 6.4: Hierarchical Top Down Experiment Model

access requests are modeled in a train fashion; i.e. each set of random requests to

regular files is followed by a set of requests to interesting files.

Figure 6.5 shows the model used to emulate the bottom up architecture and

evaluate the performance of our approach. Nodes at the bottom of the hierarchy

represent the original sources of data. As shown in Figure 6.5 the leftmost and

rightmost nodes at the lower level of the tree store two groups of Interesting Files.

The remaining nodes at this level each store a different group of data sets. Data

access requests are generated by these same nodes at the lower level. The same

data sets described above and used for the top down model are also used in these

experiments. A similar access pattern as described above was also used in these

experiments. We provide further details about the experiments and their results in

the next section.
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Figure 6.5: Hierarchical Bottom Up Experiment Model

6.2.3 Performance Evaluation

The topologies and experimental setup we described in the previous section

were modeled according to patterns observed in users’ behavior, popular applica-

tions, and collaborative environments. The goal of these experiments is to test the

efficiency and performance of the overlay network on a dynamic grid platform us-

ing cost based replication. The experiments consisted of using a 31 node Grid and

placing the nodes issuing access requests at the bottom of the tree. In addition

to running the data management agent, each leaf node runs an application that

consists of taking as input a list of data sets, and then posting read requests for

these data sets according to a selected access pattern, then processing the files. The

processing consists of executing a set of operations depending on the data set. The

purpose of the processing is to associate and couple a computational task to each

data access request. We use the Poisson distribution to model request generation

with different arrival rates at each node. While each node has the ability to issue

requests, during these experiments only leaf nodes do so to maximize the amount



80

of traffic load generated. Each node has some storage space available where it can

store a number of data sets. The storage space availability dictates the number of

local replicas each node can create and store.

6.2.3.1 Top Down Model

In the top down model data is initially placed at the top of the hierarchy.

In the first set of experiments we compare the access response rates at different

levels of the hierarchy using different cost thresholds for the replication algorithm

as described in Chapter 3. In these experiments we measure the percentage of

requests answered at each level of the hierarchy while the data is being dynamically

replicated based on different cost thresholds. The cost threshold determines the

value that guides the replication. If the cost of not replicating a requested data

file exceeds the threshold then the file is replicated. The threshold values used in

the experiments were chosen empirically based on multiple trials. The chosen cost

values represent each an estimated cost of data transfers between two different nodes

in the Grid.

An important element in designing the experiments is deciding the frequency of

calling the cost function which in turn triggers the invocation of resource monitoring

tools. These calculations incur some overhead. However throughout the experiments

we found that these calls do not actually cause a noticeable overhead and do not

affect the overall performance of the system. The distributed and decentralized

nature of the system helps reduce this overhead. Each Grid node is only responsible

for monitoring its local resources and performing local computations. The call to the

cost function in the Replica Management Service is triggered by the accumulated

number of access requests. After each invocation, the accumulated value is reset

to zero. Given the normal CPU usage and consumption in large scale scientific

applications, the cost function computations are very small. Additionally CPU

consumption of the cost function is not relative to the size of the application, only to

the number of data sets used by the application. Most applications and users have an

interest in a limited number of data sets. Large scale applications such as earthquake

simulations, high energy physics, and climate change modeling [17, 26, 46, 37] require
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Figure 6.6: Top Down Model Experiment Results

access to a limited number of data sets.

The cost threshold values used during the experiments are organized in increas-

ing order from cost-1 to cost-4. The measurements only take into consideration the

data hits and responses registered before data is replicated at the nodes at the lower

level of the tree. These nodes as we mentioned earlier represent the origin of the

requests. The reason we only account for these data hits is to assess the performance

of the replication scheme and how fast data is replicated.

The results of the experiments are shown in Figure 6.6. The results show that

replicating data using higher cost thresholds delays the propagation of data to lower

levels of the hierarchy since most hits occur at the top level of the hierarchy. With

higher cost thresholds more requests are answered at the top levels before data is

replicated, thus increasing resource consumption levels. The plots also show that

lowering the cost threshold triggers data replication at lower levels of the hierarchy

at a faster rate, thus lowering network bandwidth consumption at higher levels of

the structure and decreasing contention and creation of bottlenecks at the root.
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6.2.3.2 Bottom Up Model

In the next set of experiments we use the bottom up model. In this model

initially, only leaf nodes store different sets of data each. All the nodes at the lower

level store each a set of files, with an average of 20 files per node. The total number

of regular files is 80. Throughout different stages of the experiments, results are

collected for different scenarios where both storage availability at each node and

replication threshold are updated. Figure 6.7 and Figure 6.8 show the response

rate at both the lower and upper (root) levels of the tree with two different storage

capacity values and different cost values. The values chosen for space allocated

to caching and storing replicas were decided based on empirical testing of different

scenarios and commonly known and dedicated storage spaces in real Data Grids and

Grid applications relative to the sizes and number of files used in the experiments.

The results show that an increased storage capacity decreases considerably resource

consumption by replicating more data at locations closer to frequent users. Access

requests at data sources decrease from over 80% to less than 20%. Since data

requests are originating from other leaf nodes, this means that less bandwidth is

consumed when data is dynamically replicated based on user demands.

The plots in Figure 6.7 also show and represent the performance of the system

under two different storage space capacities at the top of the tree. The first storage

capacity level, storage1, is lower than the second storage capacity level, storage2.

The results show that with higher storage capacity available at the top level more

requests are answered at the top level. Decreasing that capacity pushes nodes at

lower levels to replicate more of the requested and popular data, thus decreasing

the need for requests to travel to the top of the tree. Higher cost threshold values

decrease the capacity of the Grid nodes to replicate larger number of files at a faster

rate.

Figure 6.8 shows that with a higher storage capacity, more data is replicated

at different levels of the tree thus decreasing traffic load to the original data sources

and the overall bandwidth consumption. The results also show that with higher

cost threshold values about 50% of the access requests get a hit at a lower level of

the tree with a higher storage capacity. Additionally, the plots show that a lower
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Figure 6.7: Bottom Up Model Experiment Results

storage availability at the lower level of the tree triggers replication at higher levels

of the tree at a faster rate, thus reducing traffic load at the data sources. Higher

storage capacity enables more nodes to replicate more files thus reducing the overall

traffic load in the network.

The results shown in Figure 6.9 summarizes the access performance of different

data sets based on their access rates and replica location on the hierarchy. The access

rates represent levels of data popularity. A 10% access frequency means that 10%

of the overall requests were requests to access that specific data set or group of data

sets. The replication levels represent levels of the hierarchy where data is replicated

and access requests get a hit. Rep1 represents the top level of the hierarchy, Rep2

represents the second level of the hierarchy, and so on. The results were accumulated

over thousands of data access requests during multiple runs averaged over time.

The plots show that regardless of access frequencies, dynamic replication of

popular data closer to the origin of access requests improves access performance

by more than 20% and up to 30%and a minimum of 10% compared to static user
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Figure 6.8: Bottom Up Model Experiment Results

initiated replication. The results also show that popular data files benefit the most

from dynamic replication. The results do not show a uniform distribution in access

performance for the different popularity rates at different levels of the hierarchy.

This is due to the fact that when data is replicated at one level of the tree, it does

not restrict and limit the replication of this data at other levels of the tree. For

example, for data sets with access frequencies of 50%, the presence of replicas at the

top of the hierarchy yields a 16% improvement while replicas at the second level of

the hierarchy only improved access performance by 10%. The presence of data at

the second level of the hierarchy does not necessarily mean that this data has been

replicated at all the locations on this level. Since the topology of the experiment

represents a bottom up model, it means that the requests originate from the lower

level of the hierarchy and the access requests do not get a hit in some cases until

the requests go through 2 log(n) nodes.
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Figure 6.9: Data Access Performance for Different Data Popularity Rates
at Different Levels of the Hierarchy

6.3 Summary

In summary, the results presented in this Chapter show that cost guided dy-

namic replication improves data access performance by up to 30% and a minimum of

10% compared to static user initiated replication. Simulation results show an overall

improvement of up to 60% in the overall response time in Data Grids. The results

show that the availability of larger storages contributes significantly to improving

access performance and lowering network resource consumption. Higher storage

availability increases the chances of replicating popular and highly demanded data

at different levels of the tree thus decreasing traffic load to the original data sources

and overall bandwidth consumption.

During the experiments we discovered that the combination of parameter se-

lection for cost evaluation and resource availability play a key role in influencing

the performance of the system. In both the bottom up and top down models, lower

cost thresholds trigger replication at faster rates. However, lower storage availability
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might lead to race conditions where popular data compete for storage space, thus

decreasing performance access. Data collected from multiple experiments suggest

that a good approximation of cost values yields better results. In the experiments we

conducted we chose cost values based on empirical data and multiple trial runs. The

chosen cost values represent estimated costs of data transfers between two different

nodes in the Grid.

The results also show that popular data files benefit the most from dynamic

replication. Popular data files are first replicated in locations where accumulated

frequency rates are higher. The replication scheme follows a cascading model, where

replicas are trickled either up or down the hierarchy depending on the location of

the data sources. The topologies we use in our approach and experiments take

advantage of data organization models that are commonly used and popular in data

sharing environments and data intensive applications.



CHAPTER 7

Conclusion

In Chapter 2 we described major components of a Data Grid and outlined existing

problems with the current approaches and deployed systems. In Chapter 3 we intro-

duced our solution and approach to managing replicas in data sharing environments

for data intensive applications. In Chapter 4 we provided a description of our design

decisions, as well as a detailed description of key components and their implemen-

tation. We then presented in Chapter 5 our Data Grid: GridNet simulator which

we designed and built to validate our approach. In Chapter 6 we studied the per-

formance of our approach, both through the simulation and the deployment of our

middleware. In this chapter we discuss the major contributions of our approach and

how it can be applied to help create and foster small and medium size research col-

laborations. Our system is based on and takes advantage of usage patterns that are

most common and popular in scientific computing and collaborative environments.

7.1 Discussion

In this thesis we introduce a new distributed and decentralized data manage-

ment middleware for Data Grids. In our approach, we provide an adaptive and

scalable lightweight data management framework that enables users to dynamically

join and leave the grid. Our solution provides replication management services that

intelligently and transparently place data in strategic locations in order to improve

the overall data access performance. In our system, we advocate a local and au-

tonomous approach to replica management at each participating node in the Grid.

At the core of our system lies an analytical model that enables each participating

node to decide when and what resources to contribute. The middleware enables

each node to monitor and control its local storage space and capacity, access to

locally stored files, and use of network resources, as well as any other available lo-

cal resources. The basis of our approach is treating data as a first class citizen,

i.e., prioritizing data queries and data management operations. The data replica-

87
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tion, placement, and location techniques we use are based on the analytical model

that treats data access performance in a distributed environment as an optimiza-

tion problem. Our approach also takes advantage of data organization models that

are commonly used and popular in data sharing environments and data intensive

applications.

The results of our simulations and experiments from running the middleware

show that dynamic cost-based replication outperforms static user-initiated replica-

tion. The results also show that the choice of parameters and system variables used

to compute and evaluate data access costs are key to ensuring good access perfor-

mance. In our case dynamic replication outperforms static user-driven replication

by up to 30%. And we believe that deploying the middleware in larger environments

would yield even better performance. The results also show that popular data files

benefit the most from dynamic replication. Additionally, the availability of larger

amounts of storage at locations closer to users contributes significantly to improving

access performance and lowering network resource consumption.

Most existing Data Grid implementations and platforms offer limited support

to replication. Standard existing Data Grid implementations offer replica services

that maintain and provide access to information about the location of data avail-

able within the Data Grid. However, these systems do not support automatic and

dynamic replication. They only offer mechanisms to transfer and replicate data

based on user initiatives. While the deployment of Data Grids remains limited to a

number of scientific institutes and organizations, current trends suggest that there

is an increasing demand for resource sharing mechanisms and collaborative prob-

lem solving platforms. With increasing levels of data production volumes and the

need to address and tackle larger problems, we anticipate that in the near future

more scientists and researchers will need to access larger collections of data. We

believe our middleware fosters and supports the creation of small to medium scale

data sharing Grids. It requires almost no administrative management overhead and

provides simplified and easy to use API’s.
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7.2 Contributions

The major contributions of our work are as follows:

1. A solution that combines and adapts approaches previously used in different

data sharing environments: the Grid and P2P systems. Exploring the prob-

lem from two different perspectives enables us to take advantage of previous

experience and existing solutions. Various solutions that have been developed

to address similar problems in P2P systems have matured over the years and

can be applied to address outstanding issues in Data Grids. Existing Data

Grid solutions have not focused on scalability and supporting dynamic and

intermittent participation. If Data Grids are to grow their user base and

membership participation, they need to provide scalable, distributed, and de-

centralized mechanisms to support larger numbers of users. Our approach is

inspired by the P2P techniques that require no centralized management and

advocate self organization. The P2P approach has many attractive features

that make it very suitable for Grid environments.

2. A formulation of the replica creation and placement problem and its require-

ments using a mathematical model and treating it as an optimization problem.

While the system does not provide absolute solutions, we use the model to ap-

proximate the best possible solutions. The replication mechanism is guided

by a cost/benefit estimation strategy that takes into account current demand

for the data, origin and locality of requests, network resources availability,

and storage capacity. New replicas are created if the estimated accumulated

remote access cost to the requested data is higher than the cost of creating a

local replica. This approach has significant performance benefits. Storage and

bandwidth are consumable commodities that have to be carefully managed in

order to improve access performance for multiple and concurrent users.

3. The use of dynamic and adaptive overlay networks and data organization mod-

els to connect participating nodes in a Data Grid. The overlay networks are

used both to locate and propagate data on the network. The data search

process is based mostly on the structure of the overlay network to propagate
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access requests. This approach yields better performance results than broad-

casting or random propagation. Our work has been cited in multiple research

publications including [25, 24, 86] as we were one of the first groups to inves-

tigate dynamic and adaptive data overlay networks. Most recently our work

was cited in a taxonomy of Data Grids [87] as our approach remains unique

in using adaptive and dynamic overlay networks.

4. The use of access patterns to model and organize the data network. Using

the proper access patterns yields better performance than relying on random

formations and connections. An important pattern in data sharing environ-

ments is the sharing and commonality of users’ interests. This pattern guides

the creation and formation of same-interest communities within a larger com-

munity. Taking advantage of that pattern improves data access performance

by placing data closer to larger numbers of users and lowering storage and

bandwidth consumption.

5. A generic Data Grid simulator, GridNet. The simulator provides a modular

simulation framework through which we can model different Data Grid con-

figurations and resource specifications. The simulator validated our approach

to replica management in intensive data sharing environments. The results

obtained from the simulations show that dynamic replication in combination

with our proposed cost model greatly improves data access performance on

the Grid. Our simulator has been used by multiple research groups to investi-

gate replica management issues in Data Grids. The simulator was distributed

along with a user manual that enabled the users to write simulations as well

as update the internals of the simulator to support additional features or func-

tionalities. We received very positive feedback about the usability and benefits

of the simulator.

6. New data and replica management middleware that scales with the number

of users and supports dynamic and intermittent user participation. The mid-

dleware exploits commonly observed and popular patterns in data access and

user behavior. Our middleware uses a decentralized mechanism to create and
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locate replicas. The decentralized mechanism maps users’ interests and behav-

iors onto an overlay network. The overlay network is dynamically adaptable

to changing users’ interests. The middleware satisfies Data Gird requirements

and provides efficient algorithms and techniques to locate data on the network

under user-controlled access permissions. The techniques employed scale with

the number of users and Grid nodes. Additionally the system supports dy-

namic data insertion as well as dynamic and intermittent node participation

in the Grid.

7.3 Future Work

In this thesis we address the problem of replication in Data Grid environments

by investigating the use of decentralized dynamic replication services used to improve

data access time, data availability, bandwidth consumption, and scalability of the

overall system. There are still more problems that need to be addressed with regard

to data and replica management in Data Grids and in data sharing networks in

general. Some future research directions are a natural continuation of our work,

while others deal with more general and outstanding issues in data management.

A natural continuation of our work would be to investigate additional user

access patterns and overlay structures and study data access performance under

these settings. Interest based clusters and formations could be further investigated

to uncover and develop new data search and location techniques.

Additionally, new cost models could be investigated and tested using different

combinations of parameters and cost evaluation techniques. Different applications

require and stress the use of different resources. An important research direction

is to study the dynamic deployment and selection of a combination of different

replication techniques and cost models. This approach would enable the system

to select different algorithms based on current conditions and adapt to changes in

users’ and applications’ behavior.

Deploying the middleware in a larger environment with larger applications

would enable us to test the performance of our approach in more realistic settings.

During our experimentations we used large numbers of machines under different
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administrative domains, but security issues prevented us from deploying the mid-

dleware across different institutes. We hope in the future to be able to tackle this

issue and secure the participation and contribution of different scientists in larger

experiments over long periods of time.

An important research problem in distributed systems in general and Grids

specifically is identifying the relation and effect of data and replica management on

other services. In our current approach we have decoupled replica management from

other services such as storage management. This approach has clearly more bene-

fits and advantages for the overall data access performance. However, integrating

our services with additional existing Grid services would enable us to reach wider

communities and uncover new patterns that can improve data access performance.

Many storage systems have been developed to satisfy the growing need to provide

more storage allocation and management services within the Grid community. These

storage systems provide access to different types of data storage across distributed

heterogeneous platforms and maintain metadata about available data collections.

Supporting access to such systems and providing mechanisms to handle, replicate,

and manage metadata would widen the scope of our work and enable us to deploy

our middleware in larger environments.
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