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Outline.
1. Positive linear span

2. Types of cones

3. Edge and face representation
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6. Cones in wrench space
• force closure
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Positive linear span
For now, use n-dimensional vector space Rn. Later, wrench space
and velocity twist space.

Let v be any non-zero vector in Rn. Then the set of vectors

{kv | k ≥ 0} (1)

describes a ray.

Let v1, v2 be non-zero and non-parallel. Then the set of positively
scaled sums

{k1v1 + k2v2 | k1, k2 ≥ 0} (2)

is a planar cone—sector of a plane.

Generalize by defining the positive linear span of a set of vectors
{vi}:

pos({vi}) = {
∑

kivi | ki ≥ 0} (3)

(The positive linear span of the empty set is the origin.)
Lecture 13. Mechanics of Manipulation – p.4



Relatives of positive linear span
The linear span

lin({vi}) = {
∑

kivi | ki ∈ R} (4)

The convex hull

conv({vi}) = {
∑

kivi | ki ≥ 0,
∑

ki = 1} (5)
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Varieties of cones in three space

1 edge

2 edges

3 edges

4 edges

a. ray

b. line c. planar cone

d. solid cone e. half plane f. plane

g. wedge h. half space i. whole space
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Spanning all of Rn

Theorem: A set of vectors {vi} positively spans the entire space Rn

if and only if the origin is in the interior of the convex hull:

pos({vi}) = Rn ↔ 0 ∈ int(conv({vi})) (6)

Theorem: It takes at least n + 1 vectors to positively span Rn.
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Representing cones
Two ways to represent cones: edge representation and face
representation.

Edge representation uses positive linear span. Given a set of edges
{ei}, the cone is given by pos({ei}).
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Face representation of cones
First represent planar half-space by inward pointing normal vector n.

half(n) = {v | n · v ≥ 0} (7)

(Here we use dot product, but when working with twists and
wrenches we will use reciprocal product.)

Consider a cone with face normals {ni}. Then the cone is the
intersection of the half-spaces:

∩{half(ni)} (8)
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Supplementary cone; polar
Supplementary cone supp(V ) (also
known as polar ) comprises the vec-
tors that make non-negative dot prod-
ucts with vectors in V :

{u ∈ Rn | u · v ≥ 0 ∀v ∈ V } (9)

The supplementary cone’s edges are
the original cone’s face normals, and
vice versa. So if

V = pos({ei}) = ∩{half(ni)} (10)

then

supp(V ) = pos({ni}) = ∩{half(ei)}

(11)
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Frictionless contact
Characterize contact by set of possible wrenches.

Assume uniquely determined contact normal.

Assume frictionless contact can give arbitrary magnitude force along
inward-pointing normal.

Then a frictionless contact gives a ray in wrench space, pos(w),
where w = (c, c0) is the contact screw.
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Two contacts
Given two frictionless contacts w1 and w2, total wrench is the sum of
possible positive scalings of w1 and w2:

k1w1 + k2w2; k1, k2 ≥ 0 (12)

i.e. the positive linear span pos({w1, w2}).

Generalizing:
Theorem: If a set of frictionless contacts on a rigid body is described
by the contact normals wi = (ci, c0i) then the set of all possible
wrenches is given by the positive linear span pos({wi}).
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Force closure
Definition: Force closure means that the set of possible wrenches
exhausts all of wrench space.

It follows from theorem ? that a frictionless force closure requires at
least 7 contacts. Or, since planar wrench space is only
three-dimensional, frictionless force closure in the plane requires at
least 4 contacts.
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Example wrench cone
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Construct unit magnitude
force at each contact.

Write screw coords of
wrenches.

Take positive linear span.

Exhausts wrench space?

Lecture 13. Mechanics of Manipulation – p.14



Cones in velocity twist space
Cannot use finite displacement twists. They are not vectors.

Velocity twists are vectors!

Let {wi} be a set of contact normals.

Let W = pos({wi}) be set of possible wrenches.

First order analysis: velocity twists T must be reciprocal or repelling
to contact wrenches: T = supp(W ).
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