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Exhortations
“Hands are levers of influence on the world that made intelligence
worth having. Precision hands and precision intelligence coevolved
in the human lineage, and the fossil record shows that hands led the
way.”—Steven Pinker, in How the Mind Works
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Outline.
Reuleaux’s space. . .what is it?

Formal definitions.

Central projection.

Convexity in the oriented plane.

Relation to polyhedral convex cones.

Rotation centers and the oriented plane.
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Reuleaux’s space
Reuleaux represents PCC’s in planar
diff’l twist space.

3D twist space is 6D.

planar twist space is 3D.

Reuleaux does it in 2D!

What space do signed rotation cen-
ters live in?

Plane with + and/or − label,

and points at infinity?

Stolfi and Guibas: the oriented plane.
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Formal definition
Consider homogeneous coordinates (x, y, w) 6= (0, 0, 0).

A point in the oriented plane is a ray of triples:

{(kx, ky, kw) | k > 0} (1)

Three cases:

w > 0 : Signed Euclidean point (x/w, y/w,⊕).

w < 0 : Signed Euclidean point (x/w, y/w,	) .

w = 0 : Ideal point: point at infinity.
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Central projection
Project each point
(x, y, w) to w = 1 plane.

Attach appropriate sign.

Ideal points miss the
plane but hit the equator.
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negative planes
superimposed

line at in finity
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Relation to projective plane
Maybe we should call it the Oriented
Projective Plane.

Projective plane is set of lines through
the origin of E

3.

Oriented plane is set of directed lines
through the origin of E

3.

The projective plane is the sphere
S(2) with antipodes identified.

The oriented plane is the sphere S(2).

Northern hemisphere is the
positive plane,

Southern hemisphere is the
negative plane,

Equator is the ideal line.

w

x
y

positive and
negative planes
superimposed

line at in finity
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(x/w,y/w,1)
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Why do we need it?
Because, e.g. Reuleaux’s method is easier than analyzing
polyhedral convex cones in planar differential twist space.

(or rather, Reuleaux’s method is an easy way to analyze PCCs
in planar differential twist space.)

In practice, we work directly in the oriented plane, as Reuleaux did,
not worrying too much about the projection.

But to answer deep questions, refer back to the projection.
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Geometry
An example question. We know what points are in the oriented
plane. Are there lines?

Transform to a question about spheres. In spherical geometry, are
there lines? How are they defined?

So . . .

• Two non-antipodal points determine a line.
(The ideal line, or a Euclidean line labeled “±”.)

• Every pair of lines intersects in two antipodal points.
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Convexity
Another “deep” question: How does convexity work in the oriented
plane?

How is convexity defined for Euclidean space?

If a and b are in the figure, then so is ab.

What is ab in the oriented plane? What is conv({a, b})?
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Convexity: plus and plus
Consider the polyhedral convex cone
determined by the two rays.

Project it to the plane.

So, if a and b have the same sign
then conv({a, b}) is the line segment
between them with the same sign.
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Convexity: plus and minus
Consider the PCC . . .

Define the external line segment.
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Problem Set 4
Let’s do PS4!

How do you construct the convex hull of some set of points?

1. Pick two points, and construct their convex hull.

2. Repeat step 1, ad nauseum.
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Reuleaux’s method
Given a differential velocity twist (v0x, v0y, ωz), what is the rotation
center?

Velocity at a point p = (x, y) is

v0 + ω × p

=

(

v0x − ωy

v0y + ωx

)

Set equal to (0, 0) and solve for (x, y) . . .

Rotation center is at
(

−v0y/ω

v0x/ω

)

Central projection, and rotation of coordinates.
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Next: Moment labeling.
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