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6.6  Planar sliding 130
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Outline.

Motivation and overview.
Force and moment of planar sliding.
The limit surface.
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Planar sliding

Examples:
In a gripper. Immobilization; compliant motion.

Workholding on a workbench.
Adjusting position on a workbench.
Handling large or small things.
Handling things in bulk.

Grasping and placing.
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What would we like to know?

Fundamental mechanics: relation of motion to reaction forces.
Given additional applied force or kinematic constraint, predict motion.

Given desired motion, find required applied forces, constraints, initial
velocity.
Examples:

Push the table.

Push a block into the corner.
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Pressure distribution is key

Frictional forces are distributed over support surface.

Coulomb’s law gives each frictional force a weight proportional to
pressure.

Pressure is generally underdetermined.
Classify problems by pressure assumptions:

Determined:
Tactile sensor;
One, two, or three contact points balancing known weight;

Linear (elastic layer between two flat rigid bodies) balancing
known weight;

Underdetermined:
Known support region;
Balancing known weight;
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Force and moment of planar sliding

Let R be support region.

Let v(r) be vel of some point r € R.
Let p(r) be the pressure atr,

Let dA be element of area atr,
Then normal force at r is given by

v(r)

p(r)dA

Assume p uniform over R.

Coulomb’s law at r:

v
T Iv(r)|p( ) dA (1)

for |v(r)| # 0.
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Integrating. . .

To obtain total force and moment we integrate over R:

R
= J o
v(r)

= [ e e

For known pressure distribution we can evaluate the integrals.
Generally we cannot.
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Force and moment for translation

Although the integrals cannot be evaluated, they can be simplified for
translational sliding.

Assume translation: v(r) =v.

We can pull velocity out of integral:

ffz—ul/p(r)dA
v Jr

nfz—u/rp(l‘)dA X =
R
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Center of friction

Let f, be the total normal force:

fo = / p(r)dA
R
Let ro be the centroid of the pressure distribution.
ro = — / (r) dA
0 — fo rp\r
Substituting above:
\
iy = —p mfo

ny =ro xf;

This is Coulomb’s law for a point contact! Call ry the center of
friction. In translation, frictional force acts through center of friction.
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Rotation

Let ric be the instantaneous center of rotation
Velocity atr is:

V(r) =w x (r —ric)

. A

=0k x (r —ri¢)
Direction of motion at r is:
v(r) & T—TIC
= son(f) Kk x
)] SO
Substituting
£, = —p sgn(f)k x / e ) dA
R |T —ric|

: I —ric
g = —nsen(d) [ v T
Lecture 17. R r— rIC|
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Force to motion mapping

Define frictional load to be wrench applied by slider to planar
support. This is a change of sign.

The integrals give the frictional load wrench as a function of slider
velocity twist.

Consider the relation of frictional load to slider velocity for a finite
number of support points. We will see that the motion-force mapping
IS neither one-to-many nor many-to-one.

The Limit Surface is an elegant geometrical representation of the
motion-force mapping.
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One point of support

Let v be the velocity of the particle.
Let £ be the frictional load.
Coulomb’s law can be stated:

slip: f| v, and |f| = uf,, where u is
the coefficient of friction, and f,,
Is the support force.

stick: |f| < ufn,.
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Limit Curve: maximum power inequality

Consider the set of all possible fric-
tional loads, with f,, fixed. That is a
disk centered at the origin of radius

Win-
Define the limit curve LC to be the

circle of radius nf, at the origin of
force space.

Coulomb’s law is equivalent to the
maximum power inequality:

Vesere (F—F)-v>0
l.e. motion v yields a load that is ex-
tremal in the v direction.

When slip occurs f is on the limit
curve, and v is normal to the limit
curve at f. Lecture 17.

LC

f* \4
f /

Jx
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More than one point

Let r vary over the support region
Construct a limit curve LC(r) at each point r,
At each point r the maximum power inequality holds:

V- (r)eLC(r) (f(l‘) — 1 (l’)) 'V(l’) >0

How do we put them all together??? Wrenches and twists!
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Frictional load wrench and velocity twist

Let p be the total frictional load wrench

fa f ()
p=| f |=2_| £@®
N0 r r x f(r)

Let q be the velocity twist
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Power of Coulomb load versus arbitrary load

Let f(r) be a distribution of frictional loads satisfying Coulomb’s law

Let £*(r) be arbitrary, except that at each r, f*(r) is in the
corresponding limit curve:

v, £f(r) € LC(r)

Let p and p* be the total frictional load wrench for f(r) and f*(r)
respectively.

The power dissipated by the Coulomb load can be written two ways

p-q=) f(r) v(r)

Similarly for the arbitrary load can write



Power difference between Coulomb and arbitrar

Taking the difference yields
q = E: ) — £(r)) - v(r)

By maximum power inequality, every term in the sum on the right
hand side is non-negative. So:

P—-p")-q>0

Another maximum power inequality! This time in wrench space!!!

Summary: Consider all loads such that f*(r) € LC(r). The correct
load maximizes the power dissipated.

Lecture 17. Mechanics of Manipulation — p1 8



Limit Surface

No motion: q = 0, power dissipated is zero for any frictional load.
So, form the set of all possible total frictional load wrenches p*
Define the limit surface to be the surface of this set.

Maximum power inequality: the frictional load wrench yields
maximum power over all wrenches in the limit surface.

Equivalently: during slip the total frictional load wrench p lies on the
limit surface, and the velocity twist q is normal to the limit surface at

P.
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Example: two point contact

Two points of contact, support evenly
divided.

y
1. LS,: all frictional loads at a. An A
elliptical disk in wrench space.
2. LS,: all frictional loads at . Also -4 - - - - Q
an elliptical disk. }

3. The desired limit surface LS is
the Minkowski sum:

LS = {Wa+Wb ‘ w, € LS,,w € LSb}
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Barbell Limit Surface

flat
elliptical 7oz
facet

Section on fy = 0 plane
1s a circle

Section on ng; = 0 plane
is a circle

Section on f, = 0 plane
is a square

) noz
vertex corresponding

to pure moment ~__ X

A

AV
f
Jx

N

/Ve::x corresponding

to pure force ( fy, 0, 0)

Lecture 17.
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LS properties

The barbell LS illustrates some properties that hold generally:
Closed, convex, enclosing the origin of wrench space.

Symmetric when reflected through origin.
Orthogonal projection onto the f,,f, plane is a circle of radius > u f,,.

Each discrete point of support yields two antipodal flat facets. On
each facet several loads map to one motion (rotation about the
support point.)

(No discrete points: LS is strictly convex and load-motion mapping is
one-to-one.)

Collinear discrete support is even weirder: vertices on LS where one
load maps to several velocities (rotation about point collinear with
support).
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5.8 Forcedual 112
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