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Outline.

• One more general theorem: Displacement = translation ◦

rotation.

• Some fundamental theorems on planar motion.

• Main result: every planar motion has a rotation center in
projective plane.

• Centrodes.
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Decomposition of displacements

Theorem 2.2: For any displacement D of the Euclidean spaces E
2 or

E
3, and any point O, D can be expressed as the composition of a

translation with a rotation about O.

Proof:
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Decomposition of displacements

Theorem 2.2: For any displacement D of the Euclidean spaces E
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Proof:

Let O′ be the image of O under D.
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Decomposition of displacements

Theorem 2.2: For any displacement D of the Euclidean spaces E
2 or

E
3, and any point O, D can be expressed as the composition of a

translation with a rotation about O.

Proof:

Let O′ be the image of O under D.

Let T be the translation taking O to O′.

Consider the displacement T−1 ◦ D. Where does it map O?

(T−1 ◦ D)(O) =?
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Decomposition of displacements

Theorem 2.2: For any displacement D of the Euclidean spaces E
2 or

E
3, and any point O, D can be expressed as the composition of a

translation with a rotation about O.

Proof:

Let O′ be the image of O under D.

Let T be the translation taking O to O′.

Consider the displacement T−1 ◦ D. Where does it map O?

(T−1 ◦ D)(O) = O

So T−1 ◦ D is a rotation; call it R.
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Decomposition of displacements

Theorem 2.2: For any displacement D of the Euclidean spaces E
2 or

E
3, and any point O, D can be expressed as the composition of a

translation with a rotation about O.

Proof:

Let O′ be the image of O under D.

Let T be the translation taking O to O′.

Consider the displacement T−1 ◦ D. Where does it map O?

(T−1 ◦ D)(O) = O

So T−1 ◦ D is a rotation; call it R.

So then T ◦ R = T ◦ T−1 ◦ D = D is the desired decomposition.
QED
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Decomposition of displacements

Note:

• Instead of R = T−1 ◦ D, D = T ◦ R,
we could have S = D ◦ T−1, and D = S ◦ T .
So you can do rotation first or translation first . . .
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Decomposition of displacements

Note:

• Instead of R = T−1 ◦ D, D = T ◦ R,
we could have S = D ◦ T−1, and D = S ◦ T .
So you can do rotation first or translation first . . .

• . . . but S is not rotation about O—S 6= R. (Book missed this
point.) Get rotation about O, construct decomposition of D−1.
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• Theorem 2.2 is basis for most common representation of
displacements.

• The decomposition is not unique: it depends on the choice of O.

• The proof extends to arbitrary E
n.
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Decomposition of displacements

Note:

• Instead of R = T−1 ◦ D, D = T ◦ R,
we could have S = D ◦ T−1, and D = S ◦ T .
So you can do rotation first or translation first . . .

• . . . but S is not rotation about O—S 6= R. (Book missed this
point.) Get rotation about O, construct decomposition of D−1.

• Theorem 2.2 is basis for most common representation of
displacements.

• The decomposition is not unique: it depends on the choice of O.

• The proof extends to arbitrary E
n.

• Note how simple it is to prove using group theory!
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Planar kinematics

That is all we will do on “general” kinematics. On to planar
kinematics.
What can we say about rigid motions of E

2?
Theorem 2.3: A planar displacement is completely determined by
the motion of any two points.

Proof: Construct a coordinate frame . . .
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Planar kinematics: every D is an R or a T

Now for the big one:

Theorem 2.4: Every planar displacement is either a translation or a
rotation.

Not a proof:

Pick two points A and B.

Let A′ and B′ be the images.

Construct perpendicular
bisectors.

Intersection gives fixed point.

Why? Preserves distance from
A and from B, so . . .

Okay, not a proof, but a useful
construction.

C

A B

A

B
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Planar kinematics: every D is an R or a T

Theorem 2.4: Every planar displacement is either a translation or a
rotation.

Proof:

Pick any point A. We can assume A 6= A′.

Pick B the midpoint of the line segment AA′.
We can assume B′ is not on AA′.

Construct perp to AB at B, and perp to A′B′

at B′. They are not parallel. Let M be their
intersection.

Consider the rotation that maps A to A′ and
M to itself. Where does it map B?
Preservation of distance gives two
candidates, and we can exclude one.

So our rotation maps B to B′. It is the given
displacement. QED.

A B

M

B

A
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Planar kinematics. Rotation centers

So, every planar displacement is
a rotation or a translation.

Consider again construction of
rotation centers from the motion
of two points. How does it fail
when AA′ is parallel to BB′?

C

A B

A

B
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Planar kinematics. Rotation centers

So, every planar displacement is
a rotation or a translation.

Consider again construction of
rotation centers from the motion
of two points. How does it fail
when AA′ is parallel to BB′?

The perpendiculars are parallel.
There is no intersection, hence
no rotation center.

C

A B

A

B
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Planar kinematics. Rotation centers

So, every planar displacement is
a rotation or a translation.

Consider again construction of
rotation centers from the motion
of two points. How does it fail
when AA′ is parallel to BB′?

The perpendiculars are parallel.
There is no intersection, hence
no rotation center.

But, in the projective plane they
do intersect!!!

C

A B

A

B

Lecture 3. Mechanics of Manipulation – p.9



Planar kinematics. Rotation centers

So, every planar displacement is
a rotation or a translation.

Consider again construction of
rotation centers from the motion
of two points. How does it fail
when AA′ is parallel to BB′?

The perpendiculars are parallel.
There is no intersection, hence
no rotation center.

But, in the projective plane they
do intersect!!!

C

A B

A

B

Every planar displacement is a rotation about a point in the projective plane.
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Displacements, paths, trajectories.

Displacement Discontinuous change
of configuration.

Trajectory Configuration a continuous
function of time: a continuous
curve q(t) in configuration space.

Path A curve q(s) in configuration
space parameterized perhaps by
arc length.

For differentiable trajectory q(t) or a
path q(s) we have velocity dq/dt or dif-
ferential change in configuration dq.
To construct rot’n center for diff’l dis-
placement:

C-space

Displacement

Path

Trajectory

dA dB

A B
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Planar kinematics. ICs for 4bar linkages.

Terminology:

Rotation pole; rotation center for dis-
placements.

Instantaneous center; IC; velocity center; velocity pole
for velocities or differential dis-
placements.

Example: Four bar linkages!

Base link is fixed.

Two links that either translate or
rotate w.r.t. base link.

The coupler link, which can make
all sorts of interesting motions.

Construct the ICs for two different
four-bar linkages.

A

B

I C

dA

dB

I C

B
A

dA

dB

Lecture 3. Mechanics of Manipulation – p.11



Planar kinematics. Centrodes.

Take an arbitrary continuous
planar motion. Generally the IC
moves.

Plot the IC in the fixed plane.
That gives the fixed centrode.

Plot the IC in the moving plane.
That gives the moving centrode.

For any given time, the two
curves must touch at the IC. And
the moving plane rotates about
the IC.

I.e. the moving centrode rolls
without slipping on the fixed
centrode.

It even works for discontinuous
motions — central polygons.

IC

fixed centrode

m o v in g  centrode
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Problem set 1.

1. Example of planar displace-
ments that do not commute.

2. Centrodes (central polygons) for
mobile robot.

3. Centrodes (central polygons) for
fridge.

4. Centrode for Chebyshev’s link-
age. Show them my solution for
Reuleaux’s example.

A

B

C

Start

Goal

A B

C

D

A B

C

D
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Centrodes for Watt’s linkage
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Planar kinematics. False ICs.

Review procedure for linkage IC con-
struction

1. Reduce the constraints to point-
velocity constraints.

2. Construct perpendiculars to al-
lowed velocities at each point.

3. Intersection of perpendiculars
are candidate ICs

No intersection means no
ICs. It must be immobile.
But parallel lines intersect at
infinity.

But existence of intersection does not
imply mobility!!!

I C?
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Next: spherical, spatial kinematics; start on constraint.
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