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Outline.
• Generalities

• Axis-angle

• Rodrigues’s formula

• Rotation matrices

• Euler angles
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Why representing rotations is hard.
• Rotations do not commute.

• The topology of spatial rotations does not permit a smooth
embedding in Euclidean three space.
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Choices
• More than three numbers

• Rotation matrices
• Unit quaternions. (aka Euler parameters)

• Many-to-one
• Axis times angle (matrix exponential)

• Unsmooth and many-to-one
• Euler angles

• Unsmooth and many-to-one and more than three numbers
• Axis-angle
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Axis-angle
Recall Euler’s theorem: every spatial
rotation leaves a line of fixed points:
the rotation axis.

Let O, n̂, θ, be . . .

Let rot(n̂, θ) be the correspond-
ing rotation.

Many to one:

rot(−n̂,−θ) = rot(n̂, θ)

rot(n̂, θ + 2kπ) = rot(n̂, θ), for any
integer k.

When θ = 0, the rotation axis is
indeterminate, giving an infinity-
to-one mapping.

n
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Representation
What do we want from a representation? For a start:

• Rotate points;
Rodrigues’s formula

• Compose rotations;
Using axis-angle? Ugh.

• (Convert to other representations.)
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Rodrigues’s formula
Others derive Rodrigues’s formula us-
ing rotation matrices, missing the ge-
ometrical aspects.

Given point x, decompose into
components parallel and
perpendicular to the rotation axis

x = n̂(n̂ · x) − n̂ × (n̂ × x)

Only x⊥ is affected by the
rotation, yielding Rodrigues’s
formula:

x′ = n̂(n̂·x)+sin θ (n̂×x)−cos θ n̂×(n̂×x)

A common variation:

x′ = x+(sin θ) n̂×x+(1−cos θ) n̂×(n̂×x)

n n x

n n x

n

n x
x

x

O
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Rotation matrices
Choose O on rotation axis. Choose frame (û1, û2, û3).

Let (û′

1
, û′

2
, û′

3
) be the image of that frame.

Write the û′

i vectors in ûi coordinates, and collect them in a
matrix:

û′

1
=







a11

a21

a31






=







û1 · û′

1

û2 · û′

1

û3 · û′

1







û′

2
=







a12

a22

a32






=







û1 · û′

2

û2 · û′

2

û3 · û′

2







û′

3
=







a13

a23

a33






=







û1 · û′

3

û2 · û′

3

û3 · û′

3







A = (aij) = (û′

1
|û′

2
|û′

3
)
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So many numbers
A rotation matrix has nine numbers,

but spatial rotations have only three degrees of freedom,

leaving six excess numbers . . .

There are six constraints that hold among the nine numbers.

|û′

1
| = |û′

2
| = |û′

3
| = 1

û′

3
= û′

1
× û′

2

i.e. the û′

i are unit vectors forming a right-handed coordinate
system.

Such matrices are called orthonormal or rotation matrices.
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Rotating a point
Let (x1, x2, x3) be coordinates of x in frame (û1, û2, û3).

Then x′ is given by the same coordinates taken in the (û′

1
, û′

2
, û′

3
)

frame:

x′ =x1û′

1
+ x2û′

2
+ x3û′

3

=x1Aû1 + x2Aû2 + x3Aû3

=A(x1û1 + x2û2 + x3û3)

=Ax

So rotating a point is implemented by ordinary matrix
multiplication.
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Rotating a point
Let A and B be coordinate frames. Notation:

x a point
x a geometrical vector, directed from an origin O to the point x;

or, a vector of three numbers, representing x in an unspecified
frame

Ax a vector of three numbers, representing x in the A frame

Let B
AR be the rotation matrix that rotates frame B to frame A.

Then (see previous slide) B
AR represents the rotation of the point

x:
Bx′ = B

AR Bx

Note presuperscripts all match. Both points, and xform, must be
written in same coordinate frame.
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Coordinate transform
There is another use for B

AR:
Ax and Bx represent the same point, in frames A and B resp.

To transform from A to B:

Bx = B
AR Ax

For coord xform, matrix subscript and vector superscript
“cancel”.

Rotation from B to A is the same as coordinate transform from A to

B.
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Example rotation matrix

B
AR =

(

BxA
ByA

BzA

)

=







1 0 0

0 0 −1

0 1 0







How to remember what B
AR does?

Pick a coordinate axis and see. The
x axis isn’t very interesting, so try y:







1 0 0

0 0 −1

0 1 0













0

1

0






=







0

0

1






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Nice things about rotation matrices
• Composition of rotations: {R1; R2} = R2R1.

({x; y} means do x then do y.)

• Inverse of rotation matrix is its transpose B
AR−1 = A

BR = B
ART .

• Coordinate xform of a rotation matrix:

BR = B
AR AR A

BR
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Converting rot(n̂, θ) to R

Ugly way: define frame with ẑ aligned with n̂, use coordinate
xform of previous slide.

Keen way: Rodrigues’s formula!

x′ = x + (sin θ) n̂ × x + (1 − cos θ) n̂ × (n̂ × x)

Define “cross product matrix” N :

N =







0 −n3 n2

n3 0 −n1

−n2 n1 0







so that
Nx = n̂ × x
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. . . using Rodrigues’s formula . . .

Substituting the cross product matrix N into Rodrigues’s
formula:

x′ = x + (sin θ)Nx + (1 − cos θ)N 2x

Factoring out x

R = I + (sin θ)N + (1 − cos θ)N 2

That’s it! Rodrigues’s formula in matrix form. If you want to you
could expand it:







n2

1
+ (1 − n2

1
)cθ n1n2(1 − cθ) − n3sθ n1n3(1 − cθ) + n2sθ

n1n2(1 − cθ) + n3sθ n2

2
+ (1 − n2

2
)cθ n2n3(1 − cθ) − n1sθ

n1n3(1 − cθ) − n2sθ n2n3(1 − cθ) + n1sθ n2

3
+ (1 − n2

3
)cθ







where cθ = cos θ and sθ = sin θ. Ugly.
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Rodrigues’s formula for differential rotations
Consider Rodrigues’s formula for a differential rotation rot(n̂, dθ).

x′ =(I + sin dθN + (1 − cos dθ)N 2)x

=(I + dθN)x

so

dx =Nx dθ

=n̂ × x dθ

It follows easily that differential rotations are vectors: you can scale
them and add them up. We adopt the convention of representing
angular velocity by the unit vector n̂ times the angular velocity.
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Converting from R to rot(n̂, θ) . . .

Problem: n̂ isn’t defined for θ = 0.

We will do it indirectly. Convert R to a unit quaternion (next
lecture), then to axis-angle.
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Euler angles
Three numbers to describe
spatial rotations. ZY Z

convention:

(α, β, γ) 7→ rot(γ, ẑ′′) rot(β, ŷ′) rot(α, ẑ)

Can we represent an arbitrary
rotation?

Rotate α about ẑ until
ŷ′ ⊥ ẑ′′′;

Rotate β about ŷ′ until
ẑ′′ ‖ ẑ′′′;

Rotate γ about ẑ′′ until
ŷ′′ = ŷ′′′.

Note two choices for ŷ′ . . .

. . . except sometimes infinite
choices.

x

x

y

y

z

z
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From (α, β, γ) to R

Expand rot(α, ẑ) rot(β, ŷ) rot(γ, ẑ)

(Why is that the right order?)







cα −sα 0

sα cα 0

0 0 1













cβ 0 sβ

0 1 0

−sβ 0 cβ













cγ −sγ 0

sγ cγ 0

0 0 1







=







cα cβ cγ − sα sγ −cα cβ sγ − sα cγ cα sβ

sα cβ cγ + cα sγ −sα cβ sγ + cα cγ sα sβ

−sβ cγ sβ sγ cβ






(1)
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From R to (α, β, γ) the ugly way
Case 1: r33 = 1, β = π. α − γ is indeterminate.

R =







cos(α + γ) − sin(α + γ) 0

sin(α + γ) cos(α + γ) 0

0 0 1







Case 2: r33 = −1, β = −π. α + γ is indeterminate.

R =







− cos(α − γ) − sin(α − γ) 0

− sin(α − γ) cos(α − γ) 0

0 0 1







For generic case: solve 3rd column for β. (Sign is free choice.)
Solve third column for α and third row for γ.

. . . but there are numerical issues . . .
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From R to (α, β, γ) the clean way
Let

σ = α + γ

δ = α − γ

Then

r22 + r11 = cos σ(1 + cosβ)

r22 − r11 = cos δ(1 − cosβ)

r21 + r12 = sin δ(1 − cosβ)

r21 − r12 = sin σ(1 + cosβ)

(No special cases for cosβ = ±1?)

Solve for σ and δ, then for α and γ, then finally

β = tan−1(r13 cos α + r23 sinα, r33)Lecture 6. Mechanics of Manipulation – p.23



Next: Quaternions.
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