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Outline.

• What is a quaternion

• Representing rotation

• Geometric view

• Transformations to other representations

• Topological and metric properties

Lecture 7. Mechanics of Manipulation – p.3



Why can’t we invert vectors in R3?
We can invert reals. x × 1

x
= 1.

We can invert elements of R2 using complex numbers.
z × z∗/|z|2 = 1, where ∗ is complex conjugate.

Can we invert v ∈ R3?
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Why can’t we invert vectors in R3?
We can invert reals. x × 1
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Why can’t we invert vectors in R3?
We can invert reals. x × 1

x
= 1.

We can invert elements of R2 using complex numbers.
z × z∗/|z|2 = 1, where ∗ is complex conjugate.

Can we invert v ∈ R3? No.

How about v ∈ R4? Yes!

Hamilton’s quaternions are to R4 what complex numbers are to
R.
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Complex numbers versus quaternions

To define complex numbers:
Basis elements 1 and i;
Vector space over reals: elements have the form x + iy;
One more axiom required: i2 = -1.
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Complex numbers versus quaternions

To define complex numbers:
Basis elements 1 and i;
Vector space over reals: elements have the form x + iy;
One more axiom required: i2 = -1.

To define quaternions:
Basis elements 1, i, j, k;
Vector space over reals: elements have the form
q0 + q1i + q2j + q3k;
Six more axioms:

i2 = j2 = k2 = −1

ij = k

jk = i

ki = j
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Quaternion notation

We can write a quaternion several ways:

q = q0 + q1i + q2j + q3k

q = (q0, q1, q2, q3)

q = q0 + q

where q0 is the scalar part and q is the vector part
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Quaternion product

We can write a quaternion product several ways:

pq = (p0 + p1i + p2j + p3k)(q0 + q1i + q2j + q3k)

= (p0q0 − p1q1 − p2q2 − p3q3) + . . . i + . . . j + . . . k

pq = (p0 + p)(q0 + q)

= (p0q0 + p0q + q0p + pq)

So what is pq? Cross product? Dot product?
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Quaternion product

We can write a quaternion product several ways:

pq = (p0 + p1i + p2j + p3k)(q0 + q1i + q2j + q3k)

= (p0q0 − p1q1 − p2q2 − p3q3) + . . . i + . . . j + . . . k

pq = (p0 + p)(q0 + q)

= (p0q0 + p0q + q0p + pq)

So what is pq? Cross product? Dot product?Both! Cross product
minus dot product!
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Quaternion product

We can write a quaternion product several ways:

pq = (p0 + p1i + p2j + p3k)(q0 + q1i + q2j + q3k)

= (p0q0 − p1q1 − p2q2 − p3q3) + . . . i + . . . j + . . . k

pq = (p0 + p)(q0 + q)

= (p0q0 + p0q + q0p + pq)

So what is pq? Cross product? Dot product?Both! Cross product
minus dot product!

pq = (p0q0 − p · q + p0q + q0p + p × q)
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Conjugate, length

Quaternion conjugate:

q∗ = q0 − q1i − q2j − q3k

Note that

qq∗ = (q0 + q)(q0 − q)

= q2

0
+ q0q − q0q − qq

= q2

0
+ q · q − q × q

= q2

0
+ q2

1
+ q2

2
+ q2

3

Quaternion length:

|q| =
√

qq∗ =
√

q2

0
+ q2

1
+ q2

2
+ q2

3
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Quaternion inverse

Note that every quaternion other than the additive identity 0 has
an inverse:

q−1 =
q∗

|q|2

That means quaternions are a linear algebra and a field. Hamilton’s

dream. Quaternions are the only extension of complex numbers that

is both a linear algebra and a field. If 1D numbers are the reals,

and 2D numbers are the complex numbers, then 4D numbers are

quaternions, and that’s all there is. (Frobenius?)
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Rotation using unit quaternions

Let q be a unit quaternion, i.e. |q| = 1.
It can be expressed as

q = cos
θ

2
+ sin

θ

2
n̂

Let x = 0 + x be a “pure vector”.

Let x′ = qxq∗.

Then x′ is the pure vector rot(θ, n̂)x!!!
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Proof that unit quaternions work

Expand the product qxq∗;

Apply half angle formulas;

Simplify;

to obtain Rodrigues’s formula.
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Why θ/2? Why qxq∗ instead of qx?
Two puzzling things. In analogy with complex numbers, why not use

p = cos θ + n̂ sin θ

x′ = px

To explore that idea, define a map Lp(q) = pq with p a unit pure
vector. Note that Lp(q) can be written:

Lp(q) =













p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0

























q0

q1

q2

q3













Note that the matrix above is orthonormal. Lp is a rotation of Eu-

clidean 4 space! (Without even using the fact that p is a pure vector.)
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Geometrical explanation

Although Lp(q) rotates the 4D space of quaternions, it is not a
rotation of the 3D subspace of pure vectors. Some of the 3D
subspace leaks into the fourth dimension.

Consider an example using p = i. Is it a rotation about i of π/2?

no
rotation

i

1

j

k

j j

1 1

i i

k k

1- i plane

j- k plane

L i q iq Ri q qi iqi L i Ri q

2 2

2 2
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What do we do with a representation?

Rotate a point: qxq∗.

Compose two rotations:

q(pxp∗)q∗ = (qp)x(qp)∗

Convert to other representations:

From axis-angle to quaternion:

q = cos
θ

2
+ sin

θ

2
n̂

From quaternion to axis-angle:

θ = 2 tan−1(|q|, q0)

n̂ = q/|q|

assuming θ is nonzero.
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From quaternion to rotation matrix

Just expand the product

qxq∗ =







q2

0
+ q2

1
− q2

2
− q2

3
2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2

0
− q2

1
+ q2

2
− q2

3
2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2

0
− q2

1
− q2

2
+ q2

3






x
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From rotation matrix to quaternion

Given R = (rij), solve expression on previous page for quaternion
elements qi

Linear combinations of diagonal elements seem to solve the
problem:

q2

0
=

1

4
(1 + r11 + r22 + r33)

q2

1
=

1

4
(1 + r11 − r22 − r33)

q2

2
=

1

4
(1 − r11 + r22 − r33)

q2

3
=

1

4
(1 − r11 − r22 + r33)

so take four square roots and you’re done? You have to figure the
signs out. There is a better way . . .
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Look at the off-diagonal elements

q0q1 =
1

4
(r32 − r23)

q0q2 =
1

4
(r13 − r31)

q0q3 =
1

4
(r21 − r12)

q1q2 =
1

4
(r12 + r21)

q1q3 =
1

4
(r13 + r31)

q2q3 =
1

4
(r23 + r32)

Given any one qi, could solve the above for the other three.
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The procedure

1. Use first four equations to find the largest q2

i . Take its square
root.

2. Use the last six equations (well, three of them anyway) to solve
for the other qi.

That way, only have to worry about getting one sign right.

Actually q and −q represent the same rotation, so no worries
about signs.

Taking the largest square root avoids division by small numbers.
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Properties of unit quaternions

Unit quaternions live on the unit sphere in R4.

Quaternions q and −q represent the same rotation.

Inverse of rotation q is the conjugate q∗.

Null rotation, the identity, is the quaternion 1.
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Metrics and topologies

Quaternions have the right metric. Consider unit quaternion

q = cos
θ

2
+ sin

θ

2
n̂

Shortest path on the unit sphere joining ±q with 1 has length θ/2.

What is the shortest distance on the sphere from ±p to ±q? The
same as the distance from ±pq∗ to 1. I.e. α/2, where α is the rotation
angle required from p to q.

The right metric matters. Uniform distribution on the three-sphere
maps to uniform distribution on SO(3). Hence the problem on the
problem set.

What is the topology of SO(3)? Since unit quaternion representation
has the right metric, it also has the right topology. What do we call
the topology of a three-sphere with antipodes identified?
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Next: Representing displacements.
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