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1 Introduction

The focus of this report is to clarify the complementarity based formulation of multi-rigid-
body simulation through use of illustrative examples. We present an existing semi-implicit
time stepping method with complementarity formulation for the contact [2]; and use this
method on several 2D examples.

The report is organized as follows. In the next section, preliminary material and notation
is presented. In section 3, the semi-implicit time stepper used for all the examples is pre-
sented. Section 4 begins the examples with a simple planar 2 bar pendulum and continues
by adding more and more complexity to the subsequent examples.

2 Preliminaries and Notation

As the focus of this report is on implementation, all vectors will be written with respect to
some frame. The frames are denoted as pre-superscrips appearing before the vector. For
example

A~u (1)

Denotes a vector ~u in the A frame. If no superscript is present, it is assumed the vector is
represented in the fixed inertial frame F . The identity matrix is denoted U, as I is reserved
for the inertia tensor.

For a body B, the center of mass of the body is denoted B∗.
The rotation matrix used to transform a vector between frames, say A and B is denoted[

ARB
]
. For example, the 2D rotation matrix is:[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(2)

where θ is the desired rotation amount.

1



The configuration of the body is denoted ~q. For a 3D body, ~q = [x y z ~ε], where ~ε is the
orientation of the body. For 2D, ~q = [x y θ]. The velocity of a body ~̇q = d~q

dt
consists of its

linear ~v and angular ~ω components. For 2D systems, ω is a scalar.
For compactness, we will use velocity twists in the examples. The velocity of a body

given in twist coordinates ~ν is:

~ν =

{
~v
~ω

}
(3)

To transform velocity twists between coordinate systems, say A and B, one must use the
adjoint transform denoted AAdB. The adjoint matrix for mapping twists between the two
systems can be written as:

AAdB =

[[
ARB

] ([
ARB

]
~rAB

)∧
01×2 1

]
(4)

where ~rAB is the position vector from the origin of frame A to the origin of frame B, and
the symbol ∧ denotes the linear cross product operator. For 3D vectors, it is the 3× 3 skew
symmetric matrix:

(~a)∧ =

 0 −az −ay
az 0 −ax
−ay ax 0

 (5)

For 2D vectors, it becomes the perpendicular product:

(~a)∧ =

[
−ay
ax

]
(6)

The velocity of any point p attached to a rigid body A can be written as

A~vp = A~vA
∗
+ Aω × A~rA

∗p (7)

For 2D systems, the analog of the cross product, denoted by the symbol ⊗, is

~u⊗ ~v = uxvy − uyvx;

The velocity of a point p attached to a rigid body can be written more compactly using
twist notation:

~vp =
[
U

([
FRA

]
~rA

∗p
)∧]

~νA (8)

2.1 Complementarity

The standard nonlinear complementarity problem (NCP) [1] can be written as:

Definition 1. Given a vector function w : Rm → Rm, find a vector z ∈ Rm such that:

0 ≤ w(z) ⊥ z ≥ 0

where ⊥ indicates w(z)Tz = 0.
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In the special case that the function w is linear, we can write the definition of a standard
linear complementarity problem (LCP) as:

Definition 2. Given a matrix B ∈ Rm×m and a vector b ∈ Rm find a vector z ∈ Rm such
that:

w = Bz + b

0 ≤ w ⊥ z ≥ 0

2.2 Dynamics of multibody systems

The starting point for the dynamic model is the Newton-Euler equations.

~f(~q, ~̇q, t) = m(~q, t)~̇v (9)

~τ(~q, ~̇q, t) = I(~q, t)~̇ω (10)

where m is the mass of the body, ~̇v is the linear acceleration of the body’s center of mass,
~f is the sum of all forces acting on the system, ~τ is the sum of all moments acting on the
system, I ∈ R3×3 is the inertia matrix, and ~̇ω is the angular acceleration of the body. Note,
for 2D systems Euler’s equation is scalar.

Assume there are n bodies in the scene, we can compactly write equations (9) and (10)
in matrix form as:

M(~q, t)~̇ν = λ(~q, ~̇q, t) (11)

where M ∈ R6n×6n is the generalized mass matrix of the bodies

M =


m1U3×3 0 0 0

0 I1 0 0
. . .

0 0 mnU3×3 0
0 0 0 In


where mi is the mass of body i, and Ii ∈ R3×3 is the inertia matrix of body i. The vector
~ν ∈ Rnν represents the velocity twists of the bodies in the system

~ν =
[
~vT

1 ~ωT
1 . . . ~vT

n ~ωT
n

]T

and ~λ ∈ Rnν is the sum of all wrenches acting on the system of bodies.
We must also parameterize the configuration:

~̇q = G(~q)~ν (12)

where ~q ∈ Rnq represents the configuration of the body, nq = n(3 + ζ), ζ is the number of
parameters used to represent the orientation, and G ∈ Rnq×nν is the representation Jacobian
relating the system velocity ~ν to the time-derivative of the system configuration ~̇q. For 2D
systems, nq = 3n and G(~q) = U.
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2.3 Bilateral Constraints

Joints constrain the relative positions of two bodies, which in turn impose velocity and
acceleration constraints. Mathematically, for each joint j, there is an equality constraint
function, Φj(~q, t) = 0. We can combine all the constraint functions into a single constraint
matrix, represented by

0 = Φ(~q, t) =


Φ1(~q, t)
Φ2(~q, t)

...
Φn(~q, t)

 (13)

As written, these constraints are expressed at the position level. As we will see later,
timestepping formulations will specify the bilateral constraints at the velocity level.

By differentiating the position level constraints (13), we arrive at the velocity level con-
straints:

0 =
∂Φ(~q, t)

∂~q
~̇q +

∂Φ(~q, t)

∂t
ṫ (14)

Looking back at equation (12), we can substitute in G(~q)~ν for ~̇q arriving at:

0 = WT
b (~q, t)~ν +

∂Φ(~q, t)

∂t
(15)

where Wb(~q, t)
T = ∂Φ(~q,t)

∂~q
G(~q) is the constraint Jacobian1 matrix of Φ(~q, t) with respect

to ~q times the representation Jacobian, and allows us to represent the constraint at the
velocity level for various parameterizations of SO(3). The constraint Jacobian ∂Φ(~q,t)

∂~q
takes

on different forms dependant on the desired joint.

2.4 Contact Constraints

Unlike the joint constraints mentioned above, contact constraints are unilateral and are
represented as inequalities. Physically, contact forces are compressive, meaning the contact
force cannot pull the two bodies together.

To describe the modelling of contact constraints, we begin by introducing some notation.
When two bodies j and k (j 6= k) are in contact, we label the contact point as i, and consider
it uniquely associated with the pair (j, k). Let nc denote the total number of contact points
at the current time t. Each contact point i of bodies j and k defines the origin of a contact
frame Λi. Let n̂i denote the unit contact normal. The other 2 axes2 of contact frame Λi,
denoted t̂i and ôi, span the contact tangent plane.

Furthermore, when discussing contact constraints, it becomes convenient to break the
constraint into two components: the normal and tangential. We then define a normal wrench
matrix, Win ∈ R6 and a two tangential wrench matrices Wio,Wit ∈ R6 for each contact force

1In robotics, the Jacobian is sometimes referred to as a “Wrench” matrix, since the rows of the matrix
are unit wrenches.

2In 2D systems there is only one other axis. We would remove either the o or the t axis.
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magnitude (wrench intensity) λin, λit, and λio respectively. Lastly, we can combine all the
contact wrenches into a single wrench matrix, and all the contact force magnitudes into a
single vector, arriving at expressions for the contact forces:

Wn
~λn −→ force along the n̂ direction Wt

~λt −→ force along the t̂ direction

Wo
~λo −→ force along the ô direction

2.4.1 Normal Contact (Nonpenetration) Constraints

The normal contact constraint prevents interpenetration of the bodies, but must also allow
for separation. For each contact, we can define a signed distance function ψin(~q, t) along
the contact normal direction, n̂i, which equals 0 when bodies j and k are in contact, and
is greater than 0 when the two bodies separate. Also, since no overlapping can occur3 the
function must be non-negative. Analogous to before, we stack all the active contact gap
functions into a single vector, ~Ψn obtaining the nonpenetration constraint:

~Ψn(~q, t) ≥ 0 (16)

Unlike the joint constraints, the normal contact forces at a contact cannot pull the bodies
together, λin ≥ 0. Again, combining all the normal contact forces into a single vector, we
obtain a constraint on the contact forces4:

~λn ≥ 0 (17)

Lastly, at each contact there is a naturally occurring disjunctive relationship between
the normal gap, ψin, and normal contact force, λin. Namely, if the contact is producing a
normal contact force (λin ≥ 0) then the normal distance between the two bodies must be
zero (ψin = 0). Conversely, if there is a gap between the two bodies (ψin ≥ 0), then the
normal contact force must be zero (λin = 0). This final constraint can be written as:

~Ψn(~q, t)
T~λn = 0 (18)

Equations (16), (17), and (18) taken together represent the normal contact constraint.

3The distance function must be able to return a negative gap if two bodies are overlapping for numerical
stability issues. Otherwise, if a small penetration occurs, it will snowball and break the simulation.

4The contact forces prevent the gap function from becoming negative and thus act as the lagrange
multipliers
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2.4.2 Tangential Contact Constraints (Friction)

Compactly (for more details see [3][4]), Coulomb’s law for all contacts is:

0=(U~λn)◦(WT
t ~ν +

∂~Ψt

∂t
) + ~λt◦~σ (19)

0=(U~λn)◦(WT
o ~ν +

∂~Ψo

∂t
) + ~λo◦~σ (20)

0 ≤ ~σ⊥(U~λn)◦(U~λn)− ~λt◦~λt − ~λo◦~λo≥0 (21)

where U is the diagonal matrix with ith diagonal element equal to µi and ◦ connotes the
Hadamard product.

Some of the above equations are nonlinear in the unknowns (forces, configuration, and
velocity), so their direct use in a time-stepping scheme would require the solution of mixed
nonlinear complementarity problems (NCPs). In order to obtain a scheme based on mixed
LCPs, a piecewise linear approximation of the quadratic friction cone with nonnegative force
variables is needed.

Combining the tangential force vectors and relative slip velocity vectors at a contact into

single vectors ~λif = [λit λio]
T, ∂ ~ψif

∂t
= [∂ψit

∂t
∂ψio

∂t
]T, maximum dissipation for all contacts can

be written compactly (again see [3][4] for more details) as:

0 ≤ ~λf ⊥ WT
f ~ν + E~σ +

∂~Ψf

∂t
≥ 0 (22)

0 ≤ ~σ ⊥ U~λn − ET~λf ≥ 0 (23)

where now σi approximates the sliding speed at contact i, e ∈ Rnd is a vector of ones, nd is
the number of sliding directions, and E is the block diagonal matrix with ith block on the
main diagonal given by e.

2.5 Instantaneous Form of Constrained Dynamics

Combining the above equations together, we arrive at the final set of equations for con-
strained multi-body dynamics.

~̇q = G(~q)~ν

M(~q, t)~̇ν = Wb(~q, t)λb +Wn(~q, t)~λn +Wf(~q, t)~λf + λapp(~q,~̇q, t)

Φ(~q, t) = 0

~Ψn(~q, t) ≥ 0

~λn ≥ 0

~Ψn(~q, t)
T~λn = 0

0 ≤ ~λf ⊥ WT
f ~ν + E~σ +

∂~Ψf

∂t
≥ 0

0 ≤ ~σ ⊥ U~λn − ET~λf ≥ 0

(24)
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where λapp represents all applied or non constraint forces.

3 Semi-Implicit Time-Stepping

Using an Euler step, we approximate derivatives as:

~̇q =
~ql+1 − ~ql

h

where ql = ~q(tl) = ~q(lh) if time step h is constant.
The Newton-Euler and velocity kinematic equations (11), (12), and (15) can be written

in discrete time form as follows:

M~νl+1 = M~νl + h(λapp(tl+1) +Wb
~λl+1

b +Wn
~λl+1

n +Wf
~λl+1

f ) (25)

0 = WT
b ~ν

l+1 (26)

~ql+1 = ~ql + h~νl+1 (27)

In equation (27), we cannot use ~νl since that would determine ql+1 without dynamics
The discrete form of the nonpenetration and friction conditions (16), (17), (18), (22),

and (23) can be written as:

0 ≤ ~λl+1
n ⊥ ~Ψl

n +
∂~Ψl

n

∂~q
∆~q +

∂~Ψl
n

∂t
∆t ≥ 0 (28)

0 ≤ ~λl+1
f ⊥ E~σl+1 +

∂~Ψl
f

∂~q
∆~q +

∂~Ψl
f

∂t
∆t ≥ 0 (29)

0 ≤ ~σl+1 ⊥ U~λl+1
n − ET~λl+1

f ≥ 0 (30)

where ∆~q = ~ql+1 − ~ql, ∆t = h,
∂~Ψl

f

∂~q
= W T

f , and ∂~Ψl
n

∂~q
= W T

n . Note that
∂~Ψl

f

∂t
h represents the

lateral position change of the frictional surface in one time step, i.e., imagine walking on a
floor that remains planar, but moves, like people movers in large airports.

Dynamic time-stepping equations are written in terms of the generalized velocity vector
~ν. Let the contact impulse be denoted by p(.) = hλ(.). Using equation (27), equations (28,
29, 30) can be rewritten as:

0 ≤ ~pl+1
n ⊥

~Ψl
n

h
+W T

n ~ν
l+1 +

∂~Ψl
n

∂t
≥ 0 (31)

0 ≤ ~pl+1
f ⊥ E~σl+1

h
+W T

f ~ν
l+1 +

∂~Ψl
f

∂t
≥ 0 (32)

0 ≤ ~σl+1 ⊥ Uλl+1
n − ETλl+1

f ≥ 0 (33)
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Equations (25, 26, 31, 32, 33) constitute an MCP. Equation (27) is used to update the
configuration after solution of the MCP:

0
0
~ρl+1
n

~ρl+1
f

~sl+1

 =


−M Wb Wn Wf 0
WT

b 0 0 0 0
WT

n 0 0 0 0
WT

f 0 0 0 E
0 0 U −ET 0



~νl+1

~pb
l+1

~pn
l+1

~pf
l+1

~σl+1

 +


M~νl + ~pext

~Φl

h
~Ψl

n

h
+ ∂~Ψl

n

∂t
∂~Ψl

f

∂t

0

 (34)

0 ≤

~ρl+1
n

~ρl+1
f

~sl+1

 ⊥
~pl+1

n

~pl+1
f

~σl+1

 ≥ 0. (35)

4 Examples

4.1 Planar 2 Bar Pendulum

This system consists of a planar simple double pendulum with all joint axes parallel to the
Z-axis. It is constructed of two slender rods A and B with masses mA and mB respectively.
Link A has length LA and is connected to ground at point O. Link B has length LB and
is connected to link A at point P by point P ′. Frames are attached to each body and are
fixed in that body. The position and orientation of the frames are used as the generalized
coordinates. Figure 1 illustrates a free body diagram of the system.

a
1

a
2

x

y

m
A

L
A

A,

m
B

b
1

b
2

p’
B,

L
B

o p
g

Figure 1: Free Body Diagram of Simple planar double pendulum.

The configuration q of the system is ~q = [~qA ~qB] and similarly the velocity twist of the
system is ~ν = [~νA ~νB].
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For this system, the generalized mass matrix is

M =


mA 0 0 0 0 0
0 mA 0 0 0 0
0 0 1

12
mAL

2
A 0 0 0

0 0 0 mB 0 0
0 0 0 0 mB 0
0 0 0 0 0 1

12
mBL

2
B

 (36)

where 1/12mAL
2
A is the moment of inertia for a slender rod.

There are 2 bilateral constraints on this system, the postion of point O is fixed in the
world frame and the position of points P and P ′ must lie in the same location. Let point O
be (0, 0) in the fixed world frame. Next, attach a “joint” frame α with its origin at point O.
For computational simplicity align the joint frame axes with the world frame axes. We can
mathematically write the first bilateral constraint φ1 as

φ1 , O =
[
αRF

]
A∗ +

[
αRF

] [
FRA

]
A~rA

∗O = 0 (37)

where A∗ is the location of body A’s center of mass and ~rA
∗O is a vector from the center of

mass to the point O. However, since we aligned the joint frame with the fixed world frame,[
αRF

]
is the identity matrix and the constraint simplifies to:

φ1 , O = A∗ +
[
FRA

]
A~rA

∗O = 0 (38)

The second bilateral constraint is that points P and P ′ lie at the same location. Again,
attach a “joint” frame β at points P and P ′ aligned with the world frame. The constraint
that the points cannot separate can be written as:

φ2 , P − P ′ = A∗ +
[
FRA

]
A~rA

∗P −
[
B∗ +

[
FRB

]
B~rB

∗P ′
]

= 0 (39)

However, the unknowns in the time-stepping formulation are not position they are veloc-
ity. Therefore, the constraints must be enforced at the velocity level. For 2D revolute joints,
the linear velocity is constrained to be zero by two scalar equations, while the angular veloc-
ity is unconstrained. We know from equation (8) the linear velocity of a point attached to a
rigid body. Setting this equation equal to zero will satisfy the 2D revolute joint constraint,
however, we will set up the joint constraint more generally in a framework that allows for
other joint types, and for this revolute joint we will recover equation (8).

The constraint Jacobian is most easily specified in the joint’s frame, however the velocity
twist of the body is of the body’s center of gravity in the fixed world frame. Therefore, to
constrain the joint, we must first align the body frame with the world frame5, followed by a

5It is important to realize that A~νA is not 0. Another way of thinking of this velocity is as A′
~νA, where

A′ is located at the origin of the fixed frame, but instantaneously aligned with the moving body frame A.
This is why the transformation of F~νA to A~νA has 0 for the position vector in the top right block of the
transform matrix defined in equation (4).

9



coordinate transform of the resulting velocity twist to the joint frame. With the velocity twist
in the correct frame, we can apply the constraint Jacobian. Mathematically, the constraint
can be written as:

0 =
[
αJA

] [
αAdA

]
A~νA =

[
1 0 0
0 1 0

] [[
αRA

] ([
αRA

]
A~rA

∗O
)∧

01×2 1

] [[
ARF

]
0

01×2 1

]
~νA

=
[
U

([
αRA

]
A~rA

∗O
)∧]

~νA
(40)

where the matrix
[
αJA

]
is the constraint Jacobian for a 2D revolute joint specified at the

joint frame. As stated earlier, the constraint equation reduced to the equation for the linear
velocity of a point attached to the rigid body.

The second bilateral constraint (the revolute joint between links A and B) can also be
written in matrix form as:[

βJA
] [

βAdA
]
A~νA +

[
βJB

] [
βAdB

]
B~νB = 0 (41)

Expanding equation (41):

0 =

[
1 0 0
0 1 0

] [[
βRA

] ([
βRA

]
A~rA

∗P
)∧

01×2 1

] [[
ARF

]
0

01×2 1

]
~νA

+

[
−1 0 0
0 −1 0

] [[
βRB

] ([
βRB

]
~rB

∗P ′)∧
01×2 1

] [[
BRF

]
0

01×2 1

]
~νB

=
[
U

([
βRA

]
A~rA

∗P
)∧]

~νA +

[
−U −

([
βRB

]
B~rB

∗P ′
)∧

]
~νB

(42)

Using our notation,

WT
b1 =

[
U

([
αRA

]
A~rA

∗O
)∧]

WT
b2 =

[
U

([
βRA

]
A~rA

∗P
)∧]

(43)

WT
b3 =

[
−U −

([
βRB

]
B~rB

∗P ′
)∧

]
(44)

Combining the 3 constraints into a single matrix WT
b produces the constraint wrench for the

system:

WT
b =

[
WT
b1 0

WT
b2 WT

b3

]
(45)

We can now formulate the mixed complementarity problem:[
06×1

04×1

]
=

[
−M Wb

WT
b 0

] [
~νl+1

~pb
l+1

]
+

[
M~νl + h~λapp

~φl

h

]
(46)

where
~φl

h
is the constraint stabilization term for the bilateral constraints and ~φl is obtained

from equations (38) and (39):[
A∗ +

[
FRA

]
A~rA

∗O

A∗ +
[
FRA

]
A~rA

∗P −
[
B∗ +

[
FRB

]
B~rB

∗P ′]] (47)
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4.2 Planar 2 Bar Pendulum Attached to Block

This system consists of a planar simple double pendulum attached to a block with all joint
axes parallel to the Z-axis. The pendulum is constructed of two slender rods A and B with
masses mA and mB respectively. Link A has length LA and is connected to the block at point
O by point O′. Link B has length LB and is connected to link A at point P by point P ′.
Initially, the block is at rest on a horizontal surface. Frames are attached to each body and
are fixed in that body. The position and orientation of the frames are used as the generalized
coordinates. Figure 2 illustrates the system.

r
1 r

2

a
1

n
1

X

Y

a
2

n
2

b
1

b
2

r
o

r
p

r
p’

c
1

c
2

t
2t

1

A

C

O

P

P’

B

Figure 2: A planar simple double pendulum with all joint axes parallel to the Z-axis attached
to a block on a surface.

The configuration q of the system is ~q = [~qC ~qA ~qB] and similarly the velocity twist of
the system is ~ν = [~νC ~νA ~νB].

The bilateral constraint between links A and B of the pendulum is identical to the
previous example. The constraint between the pendulum and the block at point O must
now be handled, it can be written in matrix form as:[

U
([
αRC

]
C~rC

∗O
)∧]

~νC +

[
−U −

([
αRA

]
A~rA

∗O′
)∧

]
~νA (48)
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Partitioning into the bilateral constraint wrenches:

WT
b1 =

[
U

([
αRC

]
C~rC

∗O
)∧]

WT
b2 =

[
−U −

([
αRA

]
A~rA

∗O′
)∧

]
(49)

WT
b3 =

[
U

([
βRA

]
A~rA

∗P
)∧]

WT
b4 =

[
−U −

([
βRB

]
B~rB

∗P ′
)∧

]
(50)

The nonpenetration constraints between the block and floor are written as:

ψ1n = [nRc] c~r1 ≥ 0 (51)

ψ2n = [nRc] c~r2 ≥ 0 (52)

where ~r1 and ~r2 are shown in figure 2. Vectors ~r1 and ~r2 are constant in the body fixed
frame C, and must be transformed into the inertial frame F to determine the gap above
the floor. Each gap function has a corresponding multiplier λin which is the contact force
between contact i and the floor.

4.2.1 System Dynamics

Assuming the two contacts are included in the active set every time step, the MCP is size
15 and the various quantities appearing in it are:

M =

 Mc 03×3 03×3

03×3 Ma 03×3

03×3 03×3 Mb

 (53)

where Mc =

mc 0 0
0 mc 0
0 0 Ic

, Ma =

ma 0 0
0 ma 0
0 0 Ia

, and Mb =

mb 0 0
0 mb 0
0 0 Ib

. The scalar

Ic = 1
12
mc(l

2
c + w2

c ) is the moment of inertia for a 2D block and the scalars Ia = 1
12
mal

2
a and

Ib = 1
12
mbl

2
b are the respective moments of inertia for rod’s A and B.

The system constraint wrenches are:

WT
b =

WT
b1

... WT
b2

... 02×3

. . . . . . . . . . . . . . .

02×3
... WT

b3

... WT
b4

 Wn =



n̂1
... n̂2[

FRC
]
C~r1 ⊗ n̂1

...
[
FRC

]
c~r2 ⊗ n̂2

. . . . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1

. . . . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1


(54)

For the terms appearing in the MCP’s b vector:

λapp =
[
0 −mcg 0 0 −mag 0 0 −mbg 0

]T
(55)
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where g is the gravitational acceleration constant.
The bilateral constraint stabilization terms are again obtained from the position level

constraint functions:

~φl =

[
C∗ +

[
FRC

]
C~rC

∗O −
(
A∗ +

[
FRA

]
A~rA

∗O′)
A∗ +

[
FRA

]
A~rA

∗P −
(
B∗ +

[
FRB

]
B~rB

∗P ′)] (56)

We now also have unilateral constraint terms, and these are obtained from equations (51)
and (52):

~Ψl
n =

[
[nRc] c~r1
[nRc] c~r2

]
(57)

Putting it all together, we can now formulate the mixed complementarity problem for
this example: 09×1

04×1

~ρl+1
n

 =

−M Wb Wn

WT
b 0 0

WT
n 0 0

 ~νl+1

~pb
l+1

~pn
l+1

 +

M~νl + h~λapp
~φl

h
~Ψn

h

 (58)

0 ≤ ~ρl+1
n ⊥ ~pl+1

n ≥ 0 (59)

4.3 Planar 2 Bar Pendulum Attached to Block with Friction

This problem is identical to the previous “Planar 2 Bar Pendulum Attached to Block”
example, with the addition of a friction force between the block and surface. We can skip
right to the system dynamics.

4.3.1 System Dynamics

Assuming the two contacts are included in the active set every time step, the MCP is size
21 and the following quantities appearing in it are:

M =

 Mc 03×3 03×3

03×3 Ma 03×3

03×3 03×3 Mb

 WT
b =

WT
b1

... WT
b2

... 02×3

. . . . . . . . . . . . . . .

02×3
... WT

b3

... WT
b4

 (60)

Wn =



n̂1
... n̂2[

FRC
]
C~r1 ⊗ n̂1

...
[
FRC

]
C~r2 ⊗ n̂2

. . . . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1

. . . . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1


λa =



0
−mcg

0
0

−mag
0
0

−mbg
0


(61)
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The new frictional quantities to appear are:

Wf =



t̂1 −t̂1
... t̂2 −t̂2[

FRC
]
C~r1 ⊗ t̂1

[
FRC

]
C~r1 ⊗−t̂1

...
[
FRC

]
C~r2 ⊗ t̂2

[
FRC

]
C~r2 ⊗−t̂2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1 03×1
... 03×1 03×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1 03×1
... 03×1 03×1


(62)

E =


1 0
1 0
0 1
0 1

 U =

[
µ1 0
0 µ2

]
(63)

where µi is the coefficient of friction at contact i.
Putting it all together, we can now formulate the mixed complementarity problem:

09×1

04×1

~ρl+1
n

~ρl+1
f

~sl+1

 =


−M Wb Wn Wf 0
WT

b 0 0 0
WT

n 0 0 0
WT

f 0 0 E
0 U −ET 0



~νl+1

~pb
l+1

~pn
l+1

~pf
l+1

~σl+1

 +


M~νl + h~λapp

~φl

h
~Ψn

h

04×1

02×1

 (64)

0 ≤

~ρl+1
n

~ρl+1
f

~sl+1

 ⊥
~pl+1

n

~pl+1
f

~σl+1

 ≥ 0 (65)

4.4 Planar 2 Bar Pendulum Attached to Block with Friction and
Position Controlled Body

We extend the previous example with the introduction of a position controlled body ma-
nipulating the block. For simplification, we assume the pusher is a particle and interacts
with the block through a single frictional point contact. The configuration of this system is
unchanged as the new body is not force controlled. Figure 3 illustrates the problem.
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Figure 3: A planar simple double pendulum with all joint axes parallel to the Z-axis attached
to a block on a surface. In addition, there is a position controlled body manipulating the
block.

4.4.1 System Dynamics

The following quantities from before still appear:

M =

 Mc 03×3 03×3

03×3 Ma 03×3

03×3 03×3 Mb

 WT
b =

WT
b1

... WT
b2

... 02×3

. . . . . . . . . . . . . . .

02×3
... WT

b3

... WT
b4

 λa =



0
−mcg

0
0

−mag
0
0

−mbg
0


(66)

Assuming the 3 contacts are included in the active set every time step, the MCP is size
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25, and the other quantities are:

Wn =



n̂1
... n̂2

... cn̂3[
FRC

]
C~r1 ⊗ n̂1

...
[
FRC

]
C~r2 ⊗ n̂2

...
[
CRF

]
F~r3 ⊗ cn̂3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1

... 03×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1

... 03×1


(67)

The friction constraint wrench (for space constraints the rotation matrices performing
the frame transforms have been dropped):

Wf =



t̂1 −t̂1
... t̂2 −t̂2

... C t̂3 −C t̂3

~r1 ⊗ t̂1 ~r1 ⊗−t̂1
... ~r2 ⊗ t̂2 ~r2 ⊗−t̂2

... C~r3 ⊗ C t̂3
C~r3 ⊗−C t̂3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1 03×1
... 03×1 03×1

... 03×1 03×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

02×1 02×1
... 02×1 02×1

... 02×1 02×1


(68)

E =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 U =

µ1 0 0
0 µ2 0
0 0 µ3

 (69)

Since the position of the pusher is a time-dependent function f(t), we must remember to
include the partial derivative of that function in the b vector.

Putting it all together, we can now formulate the mixed complementarity problem:
09×1

04×1

~ρl+1
n

~ρl+1
f

~sl+1

 =


−M Wb Wn Wf 0
WT

b 0 0 0
WT

n 0 0 0
WT

f 0 0 E
0 U −ET 0



~νl+1

~pb
l+1

~pn
l+1

~pf
l+1

~σl+1

 +


M~νl + h~λapp

~φl

h
~Ψl

n

h
+ ∂~Ψl

n

∂t

06×1

03×1

 (70)

0 ≤

~ρl+1
n

~ρl+1
f

~sl+1

 ⊥
~pl+1

n

~pl+1
f

~σl+1

 ≥ 0 (71)
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4.5 Planar 2 Bar Pendulum Attached to Block with Friction, Po-
sition Controlled Body, and Moving Floor

This example is identical to the previous example with the simple addition of ∂~Ψf

∂t
in the b

vector. This term represents the lateral position change of the frictional surface in one time
step, i.e., people movers in airports.

b =



M~νl + h~λapp
~φl

h
~Ψl

n

h
+ ∂~Ψl

n

∂t

∂~Ψl
f

∂t

03×1


(72)

4.6 Full Planar Model

We extend the previous example by replacing the bottom rod of the pendulum with a spring
and particle mass. Figure 4 illustrates the problem. For this example, vectors ~r1 and ~r2 are
constant in the blocks body frame C and vector ~r3 is most naturally represented in the fixed
inertial frame. Similarly, vectors n̂1, n̂2, t̂1, and t̂2 are constant in the fixed inertial frame,
and vectors n̂3 and t̂3 are constant in the C frame.

Assuming the 3 contacts are included in the active set every time step, the MCP is size
22, and the quantities appearing in the matrix are presented next.

The mass matrices of the three force controlled bodies are:

Mc =

mc 0 0
0 mc 0
0 0 Ic

 Ma =

ma 0 0
0 ma 0
0 0 Ia

 Mb =

[
mb 0
0 mb

]
(73)

resulting in a system mass matrix of

M =

 Mc 03×3 03×2

03×3 Ma 03×2

02×3 02×3 Mb

 (74)

Next, we must deal with the single bilateral constraint of the system, the revolute joint at
point O. From before, we know we must constrain the relative velocity at point O between
bodies C and A to be zero.

WT
b1 =

[
1 0
0 1

] [
U2×2 0
01×2 1

]
WT
b2 =

[
−1 0
0 −1

] [
U2×2

[
FRA

]
A~ro

01×2 1

]
Wb =

Wb1

Wb2

02×2

 (75)
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Figure 4: A force controlled block is sitting on a conveyor belt with a pendulum attached
at its center of mass. At the other end of the pendulum, a spring and particle are attached.
The block is interacted along its left edge with a position controlled pusher.

Now, the unilateral constraint wrench:

Wn =



n̂1
... n̂2

... C n̂3[
FRC

]
C~r1 ⊗ n̂1

...
[
FRC

]
C~r2 ⊗ n̂2

...
[
CRF

]
F~r3 ⊗ C n̂3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1
... 03×1

... 03×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

02×1
... 02×1

... 02×1


(76)

The friction constraint wrench (for space constraints the rotation matrices performing
the frame transforms have been dropped):

Wf =



t̂1 −t̂1
... t̂2 −t̂2

... C t̂3 −C t̂3

~r1 ⊗ t̂1 ~r1 ⊗−t̂1
... ~r2 ⊗ t̂2 ~r2 ⊗−t̂2

... C~r3 ⊗ C t̂3
C~r3 ⊗−C t̂3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

03×1 03×1
... 03×1 03×1

... 03×1 03×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

02×1 02×1
... 02×1 02×1

... 02×1 02×1


(77)
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The other matrices required for Coulomb’s friction:

E =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 U =

µ1 0 0
0 µ2 0
0 0 µ3

 (78)

In this example, gravity is not the only external force acting on the system, we also have
the spring force and damping force acting on bodies A and B.

For the spring, sin(θ) and cos(θ) are functions of rod A’s endpoint (point P ) and the
particle B’s position.

L =
√

(Bx − Px)2 + (By − Py)2 (79)

sin(θ) = −(Bx − Px)/L (80)

cos(θ) = −(Py −By)/L (81)

where L is the length of the spring. This allows us to construct the rotation matrix from
the springs frame s into the fixed world frame n:

[nRs] =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(82)

The force produced by the spring acts along the spring’s y-axis and is equal to−K(L−L0),
where L0 is the rest length of the spring and K is the spring constant. This allows us to
write down the spring force in the springs frame as: sfs = [0 −K(L− L0)]

T.
To compute the force of the spring on the particle, a simple change of frame is all that is

required: fs = [nRs] sfs.
For the pendulum, slightly more work is needed. We first compute the spring force acting

at point P , which we know must be opposite and equal the force acting on the particle B:
−fs. Now that we know the force acting at point P , we need to compute the wrench acting
at A∗. Similar to contact forces, the wrench associated with the spring ~Ws for body A is:

~Ws =
[
−~f [nRa] ars ⊗−~fs

]
(83)

For the damping force, we need to first compute the relative velocity between the particle
B and the point P . The velocity of point P can be obtained from the velocity twist of the
pendulum:

~vp = ~va + ωa (~rp)
∧ (84)

The damping force acting on the particle B therefore becomes:

~fd = −C(~vb − ~vp) (85)
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and the force acting at point P is −~fd (opposite and equal). For the body A, we again have
to transform the damping force acting at point P into the corresponding wrench acting at
A∗.

~Wd =

[
−~fd

~rs ⊗−~fd

]
(86)

We can group all the external forces/wrenches into a single vector λapp:

λapp =

 ~gc
~ga + ~Ws + ~Wd

~gb + ~fs + ~fd

 (87)

The other elements of b are the constraint stabilization terms and the partial derivative
appearing from the position controlled body. Putting it all together, we can formulate the
mixed linear complementarity problem:

08×1

02×1

~ρl+1
n

~ρl+1
f

~sl+1

 =


−M Wb Wn Wf 0
WT

b 0 0 0
WT

n 0 0 0
WT

f 0 0 E
0 U −ET 0



~νl+1

~pb
l+1

~pn
l+1

~pf
l+1

~σl+1

 +


M~ν + h(λapp)

~φl

h
~Ψn

h
+ ∂~Ψn

∂t
∂~Ψf

∂t

03x1

 (88)

0 ≤

~ρl+1
n

~ρl+1
f

~sl+1

 ⊥
~pl+1

n

~pl+1
f

~σl+1

 ≥ 0 (89)
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