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Abstract— We show through experiment and simulation
that a high-centered round-bodied legged robot can lo-
comote by generating out-of-phase motions of reaction
masses attached to its legs. These leg motions create body
attitude oscillations which, when coupled with the slip-
free contact constraints, locomote the robot. By varying
the mean position of the leg oscillations, the robot can
move in different directions in the plane. We also present
some simplified models, where body attitude dynamics and
contact kinematics are decoupled, to explain this form of
legless locomotion.
Keywords: Legless locomotion, Lagrangian dynamics, con-
tact kinematics, underactuated system.

I. INTRODUCTION

Legged robots offer good mobility, but they can
get stuck. For example, when the robot body is high-
centered and its legs dangle in air, the robot cannot
use its legs to locomote in a conventional manner. Is a
high-centered robot stuck permanently? Can the robot
locomote while high-centered? In Balasubramanian et
al. [1], we hypothesized that a high-centered round-
bodied legged robot could locomote using oscillating
reaction masses to excite body attitude oscillations. We
then explored the relationship between leg motions and
body attitude dynamics in simplified models using sim-
ulation. In this paper, we show both through simulation
and experiment that a high-centered round-bodied legged
robot can effectively locomote using these ideas. We also
present models to explore the underlying mechanics in
this form of locomotion.

The high-centered robot used in this paper is RRRobot
(Rocking and Rolling Robot), a hemispherical shell
with two short actuated legs (see Fig. 1). The massless
legs have reaction masses at their distal ends similar
to halteres, the dumbbells sometimes used by athletes
to give impetus in leaping. The battery and processor
are attached to the hemisphere bottom, and the goal
is to locomote RRRobot in the plane. Fig. 2 shows a
sequence of interleaved X and Z body rotations that
produces predominantly forward translation. Similarly, a

Fig. 1. The RRRobot is a hemisphere with two short actuated
legs [1].

sequence of interleaved Y and Z body rotations produces
predominantly sideways translation. The challenge is to
find leg trajectories that create body attitude oscillations
which, when coupled with the nonholonomic contact
constraints, cause RRRobot to locomote in the plane.
Note that producing Z rotations is a crucial common
element of both XZ and YZ body oscillations that
produce RRRobot locomotion.

An important element in RRRobot locomotion is the
non-constant system inertia which changes with leg
configuration (even in the body frame). Note that while
gravity acts as an external force for X and Y rotations,
no external forces exist to create Z rotations. Thus, the
only way to produce Z rotations is by moving the legs in
an out-of-phase manner and exploiting inertia differences
(see [1] for more details).

After a brief review of related work, we explore the
RRRobot model in Section 2 and a simplified model
called the Pivoting Dynamics Model in Section 3. The
Pivoting Dynamics model decouples RRRobot dynamics
from the contact kinematics and can be used to under-
stand how leg motion influences body attitude dynamics.
Section 4 presents three leg trajectories that produce
RRRobot locomotion with results from simulation and
experiment.



Fig. 2. Body XZ rotations that produce locomotion. Motions are represented as rotations about axes attached to the body but aligned with
the world coordinate frame. There is a local X rotation between positions (a) and (b) and positions (c) and (d); there is a local Z rotation
between positions (b) and (c) and positions (d) and (e).

A. Related Work
The locomotion strategy proposed here for RRRobot

involves the interplay between XYZ attitude dynamics
and the kinematic nonholonomic contact constraints.
Numerous investigators have studied dynamic systems
with constraints using Lagrangian dynamics [6] or the
energy-momentum method. Lewis et al. [8] study the
constrained mechanics of the constant inertia snake-
board, a modified version of a skateboard in which
wheel directions can be controlled. The snakeboard rider
locomotes by twisting his body back and forth, while
simultaneously moving the wheels with a suitable phase
relationship. Lewis et al. present numerical simulations
of snakeboard locomotion using characteristic wheel
motions and discuss a general framework for studying
mechanical systems with constraints in a coordinate-free
form. Zenkov et al. [14] discuss the energy-momentum
method for control of dynamic systems with nonholo-
nomic constraints such as the rattleback, the roller racer,
and the rolling disk. After identifying system symme-
tries, Zenkov et al. use the momentum equation to
analyze the system. In studying RRRobot dynamics, we
use the Lagrangian method.

While RRRobot’s spatial position and orientation
(called the fiber space [3]) are not actuated, the internal
configuration of the two legs (called the base space) is
actuated. Ostrowski [12] presents a general framework
for studying systems where the fiber space can be
represented as a group. Since only the base space is
actuated, Ostrowski finds a connection relating the base
space velocities to the fiber velocities. While Ostrowski
focusses on systems with constant inertias and simple
constraints, such as the snakeboard and the Hirose snake,
RRRobot has a spherical contact with the plane, its
inertias change with configuration, and the mass matrix
is coupled. Thus, it is unclear if this framework can be
extended to encompass RRRobot behavior.

RRRobot locomotes by rolling its round body without
slip on the planar surface. The curvatures of the two
surfaces and the type of contact between the two sur-
faces determine the kinematic constraints and, hence, the
relative motion between the two bodies. Montana [10]
derives equations for the motion of the contact point
between two moving rigid bodies using differential ge-
ometry. Camicia et al. [5] provide an analysis of the
nonholonomic kinematics and dynamics of the Spheri-
cle [2], a hollow ball driven on a planar surface by an
unicycle placed inside. The Sphericle and RRRobot have
similar nonholonomic contact constraints (see [11] and
[9] for more details on nonholonomic constraints).

If we consider RRRobot to be floating in space and
ignore the surface it is resting on, the problem reduces
to controlling body attitude using halteres. Fernandes
et al. [7] discuss near-optimal nonholonomic motion
planning for coupled bodies using Lagrangian dynamics.
Given an arbitrary starting point, Fernandes et al. find
plans to land a falling cat on its feet, subject to the an-
gular momentum conservation nonholonomic constraint.
RRRobot’s body attitude is not directly actuated, but
its inertias change with leg position. By repeatedly
wiggling the legs while exploiting the differences in
angular inertia, RRRobot may be able to adjust its
orientation. In contrast, when spinning reaction wheels
are used to control satellite attitude, the inertias of the
satellite system do not change with rotation of reaction
wheels [13].

To understand the interactions between leg motions
and body attitude changes, we simplify the RRRobot-on-
a-plane model by decoupling the body attitude dynamics
from the contact kinematics (see Section II-B for more
details). This approach of splitting up the dynamics from
the kinematics is different from the kinematic reduction
technique of Bullo et al. [4] for mechanical systems
with constraints. Kinematic reduction is useful because



Fig. 3. RRRobot on a plane.

the kinematic reduced system is easier to control using
velocity inputs than the unreduced dynamic system using
acceleration inputs (see [4] for details on controllability
properties for reducible systems).

II. LEGLESS LOCOMOTION MODELS

A. RRRobot on a plane

We begin studying legless locomotion by exploring
RRRobot on a plane. The RRRobot-on-a-plane model is
a hemispherical shell with two short actuated legs (see
Fig. 3). The massless shell has radius r, and the massless
legs have length l. There are five masses on the robot
indicated by black dots: a mass at the distal end of each
leg (Ml), a mass where each leg is pinned (Ms), and a
mass at the bottom of the shell (Mb). Torques τ1 and τ2

may be applied at the leg joints, and the shell rolls on
the plane without slip.

The configuration of RRRobot on a plane q consists
of the sphere’s position and orientation (x, y,R) with
respect to a spatial frame and the internal configura-
tion of its legs (φ1, φ2). Here R = R(θ1, θ2, θ3) ∈
SO(3) represents the orientation of the sphere according
to the ZXY fixed-angle convention [6]. Thus, q =
(x, y,R(θ1, θ2, θ3), φ1, φ2)T ∈ R2 × SO(3)× R2.

The equations of motion for RRRobot on a plane take
the form

M(q)q̈ + C(q, q̇)q̇ +G(q) =

τ + (λ1ω
1)T + (λ2ω

2)T , (1)

where M(q) ∈ R7×7 is the positive-definite non-diagonal
variable mass matrix, C(q, q̇)q̇ ∈ R7 is the vector of
Coriolis and centrifugal terms, G(q) ∈ R7 is the vector
of gravitational terms, τ = (0, 0, 0, 0, 0, τ1, τ2)T is the
generalized force, and ωa ∈ R7, a = 1, 2, are the rolling
constraints for a sphere-plane contact [10] given by

ω1 = (1, 0, 0, r sin θ1,−r, 0, 0),

ω2 = (0, 1, r cos θ3, r cos θ1 sin θ3, 0, 0, 0), (2)

Fig. 4. The Pivoting Dynamics model simplifies the RRRobot-on-
a-plane model (see Figure 3) into two parts: (a) RRRobot pivoted at
its geometric center on a spherical joint and (b) a sphere on a plane.

and λa ∈ R is the magnitude of the contact constraint
force. The right side of (1) indicates that only the legs
are actuated.

B. Pivoting Dynamics Model

The RRRobot-on-a-plane model includes the interplay
between body dynamics and contact kinematics. To
analyze just the interaction between leg motion and body
attitude, we simplify the RRRobot-on-a-plane model by
pivoting the robot on a spherical joint and ignoring the
effect of translation on body attitude dynamics. Once
we compute the body attitude motion for a certain leg
trajectory, we use the contact kinematics equations to
approximately predict RRRobot translation in the plane.
Thus, this model, called the Pivoting Dynamics model,
approximately reduces the RRRobot system into two
parts (see Fig. 4): 1) The dynamics of RRRobot rotating
about a spherical joint, 2) The contact kinematics of a
sphere on the plane.

The configuration of the Pivoting Dynamics model
qp consists of the sphere’s orientation R(θ1, θ2, θ3) with
respect to a spatial frame and the configuration of its
legs (φ1, φ2). Thus, qp = (R(θ1, θ2, θ3), φ1, φ2)T ∈
SO(3)× R2.

The equations of motion for the Pivoting Dynamics
model take the form

M(qp)q̈p + C(qp, q̇p)q̇p +G(qp) = τ, (3)

where M(qp) ∈ R5×5 is the positive-definite non-
diagonal variable mass matrix, C(qp, q̇p) ∈ R5 is the vec-
tor of Coriolis and centrifugal terms, G(qp) ∈ R5 is the
vector of gravitational terms, and τ = (0, 0, 0, τ1, τ2)T

is the generalized force. The right side of (3) indicates
that only the legs are actuated and that there are no
constraints on the system. Once we compute the changes
in body configuration for a certain leg trajectory, we use



Fig. 5. A planar eccentric-mass wheel performs harmonic oscilla-
tions for small amplitude.

the kinematic contact equations
(
ω1

ω2

)
q̇ =

(
0
0

)
(4)

to compute the velocity of the contact point in the plane,
where ωa is given in (2).

C. Single Axis Rotation Models

If we consider body attitude changes only about one
axis, say, the X or Y axis, then RRRobot on a plane is
similar to a planar wheel with an eccentric mass (see
Fig. 5). The location of the mass and the inertia of the
system is determined by the weight distribution on the
robot. If r is the wheel radius, M̄ is the lumped mass of
the system, and ρ is the radius of gyration of the system
with respect to an axis passing through the contact point
and perpendicular to the plane, the time-period for small
amplitudes is

Tw = 2π

√
ρ2

g(r − ρ)
, (5)

where g is gravity. Note that Tw decreases as r increases,
and Tw increases as ρ increases.

If the Pivoting Dynamics model is restricted to oscil-
late about the X or Y axis, then the Pivoting Dynamics
model is similar to a simple pendulum (see Fig. 6),
whose time-period is

Tsp = 2π

√
ρ

g
, (6)

where ρ is the radius of gyration, and g is gravity. The
time-period Tsp decreases as ρ decreases.

Note that to get similar oscillatory behavior between
the eccentric mass wheel and the simple pendulum, a
rearrangement of masses may be required. Table I shows
the time-periods for X and Y rotations for the RRRobot-
on-a-plane model and the Pivoting Dynamics model.
Since the time periods of the two models are close to
each other, we do not rearrange the masses.

Fig. 6. The simple pendulum performs harmonic oscillations for
small amplitude.

TABLE I

ROTATION TIME-PERIODS FOR THE RRROBOT-ON-A-PLANE

MODEL AND THE PIVOTING DYNAMICS MODEL

X Rotations (sec) Y Rotations (sec)
RRRobot-on-a-plane 1.29 1.07
Pivoting Dynamics 1.19 0.96

III. PRODUCING RRROBOT TRANSLATION

There are two oscillators in the RRRobot system
due to gravity- the X attitude oscillator and the Y
attitude oscillator. It seems natural to use sinusoidal
leg trajectories or gaits to control the body oscillatory
motion. We present three sinusoidal gaits of the form
a sin(ωt+β)+γ that produce RRRobot translation. In all
three gaits, the legs are π/2 out-of-phase with each other.
The legs oscillate about the vertical position in Gait 1, the
horizontal position in Gait 2, and π/4 off the horizontal
in Gait 3 (see Table II for the gait parameters). We ran
simulations of the RRRobot-on-a-plane model and the
Pivoting Dynamics model for fifty seconds, while we ran
the robot experiment for one hundred seconds. The robot
starts from rest at the origin with the legs in the vertical
position, and a PD controller is used to track the position
trajectories. We use Ms = 0.053 kg, Ml = 0.057 kg,
Mb = 0.3 kg, r = 0.12 m, l = 0.1 m, g = 9.81 m/s, and
a damping coefficient k = −0.01. In the experiments,
a vertical tether provides the servo power and control
signals. We keep body oscillations small to minimize
external disturbances from the tether. In simulation and
experiment, we observe initial transients in the robot
motion.

Gait 1

Gait 1 produces translation along the Y axis (see
Fig. 7) due to YZ body attitude oscillations, while X
body attitude changes are negligible.

Gait 2

Gait 2 produces translation along the X axis (see
Fig. 8) due to XZ body attitude oscillations, while Y
body attitude changes are negligible. There is a large
X translation at the start, because the legs move quickly
from the vertical position to sinusoidal oscillations about



TABLE II

GAIT PARAMETERS

Gait 1
Leg 1 Leg 2

Amplitude a (rad) 0.3 0.3
Frequency ω (rad/s) 8 8

Phase β (rad) 0 π/2
Offset angle γ (rad) π/2 π/2

Gait 2
Leg 1 Leg 2

Amplitude a (rad) 0.3 0.3
Frequency ω (rad/s) 8 8

Phase β (rad) 0 π/2
Offset angle γ (rad) 0 0

Gait 3
Leg 1 Leg 2

Amplitude a (rad) 0.3 0.3
Frequency ω (rad/s) 8 8

Phase β (rad) 0 π/2
Offset angle γ (rad) π/4 π/4

Fig. 7. Planar plots of contact point time history during sideways lo-
comotion produced by Gait 1 in (a) RRRobot-on-a-plane simulation,
(b) RRRobot-on-a-plane experiment, (c) Pivoting Dynamics model
simulation. The solid arrow gives robot motion direction, and the
dotted lines indicate the robot position at the specified time.

Fig. 8. Planar plots of contact point time history during forwards lo-
comotion produced by Gait 2 in (a) RRRobot-on-a-plane simulation,
(b) RRRobot-on-a-plane experiment, (c) Pivoting Dynamics model
simulation. The solid arrow gives robot motion direction, and the
dotted lines indicate the robot position at the specified time.

the horizontal. Gait 2 does not produce much translation,
because the XZ oscillations are small and surface stick-
iness restricts motion. Our experience indicates that this
gait is the least reliable of the gaits explored in this paper.

Gait 3

Gait 3 produces counter-clockwise circular translation
(see Fig. 9) due to a combination of XYZ body atti-
tude oscillations. The robot completes a circle in the
RRRobot-on-a-plane simulation, completes one and a
half circles in the Pivoting Dynamics Model simulation,
and almost completes a half circle in experiment.

Note that in all three gaits, swapping the relative phase
between the two legs produces translation in the opposite
direction. The paths followed by the contact point in
simulation and experiment match well, but there is one
clear difference- the robot in experiment moves slower
than in simulation. This may be due to unmodelled
surface friction, slip between the body and the surface,
or a deformed spherical shape at the contact point.

The translation produced in the Pivoting Dynamics
model and in the RRRobot-on-a-plane model match



Fig. 9. Planar plots of contact point time history during forwards lo-
comotion produced by Gait 3 in (a) RRRobot-on-a-plane simulation,
(b) RRRobot-on-a-plane experiment, (c) Pivoting Dynamics model
simulation. The solid arrow gives robot motion direction, and the
dotted lines indicate the robot position at the specified time.

well; the contact point follows similar paths, but the
Pivoting Dynamics model moves faster, especially for
Gaits 1 and 3. This is because the Pivoting Dynamics
Model is pivoted at its geometric center, while in the
RRRobot-on-a-plane Model, the robot has a rolling con-
tact. Thus, for a given change in attitude, the point of
contact moves faster in the Pivoting Dynamics model
than in the RRRobot-in-a-plane Model. In summary, we
can use the Pivoting Dynamics model to approximate
RRRobot planar translation.

IV. CONCLUSION

We explored locomotion for a high-centered round-
bodied legged robot, the RRRobot, using experiments
and simulation. We presented sinusoidal leg trajectories
that produce forward, sideways, and rotational transla-
tion and explored simplified models to understand the

locomotion. Future work will include using more legs
to perform richer motion, understanding the influence of
body shape on the translation, gait search, and kinematic
reduction of RRRobot dynamics.
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