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Abstract-Grasp and manipuJation planning of slippery objects
often relies on the "fonn closure" grasp, which is stable regardless
of the external force applied to the object. Despite its importance.
an efficient quantitative test for fonn closure valid for any
nomber of contact points has not been available. The primary
contribution of this paper is the introduction of such a test
fonnulated as a linear program, the optimal objective value of
which provides a measure of how far a grasp is from losing fonn
closure. When the grasp does not have fonn closure, manipulation
planning requires a means to predict the object's stability and
instantaneous velocity, given the joint velocities of the hand.
The "classical" approach to computing these quantities is to
solve the systems of kinematic inequalities corresponding to aU
possible combinations of separating or sliding at the contacts.
All combinations resulting in the interpenetration of bodies or
the infeasibility of the equihorium equations are rejected. The
remaining combination (sometimes there are more than one)
is consistent with aU the constraints and is used to compute
the velocity of the manipuJated object and the contact forces,
which indicate whether or not the object is stable. Our secondary
contribution is the fonnulation of a linear program whose solu-
tion yields the same infonnation as the classical approach. The
benefit of this formulation is that explicit testing of aU possible
combinations of contact interactions is usually avoided by the
algorithm used to solve the linear program.

the mechanisms research community (see [11]) and was first
introduced into the robotics research community by Salisbury
[24]. Since then, motivated by the mathematical interpretation
of "closure," some authors (notably, Nguyen [18], Mishra et
aL [17], and Li [12]) have chosen to use "force closure" to
mean what Reuleaux and Salisbury meant by forDl closure.
In this paper, we follow the precedent set by Reuleaux and
Salisbury by adopting the following definitions.

Definition: Form Closure: A fixed set of contacts on a rigid
body is said to exhibit form closure if the body's equilibrium is
maintained despite the application of any possible externally
applied wrench (force and moment). Equivalently, the con-
tacts prevent all motions of the body, including infinitesimal
motions.

Definition: Force Closure: A fixed set of contacts on a rigid
body is said to exhibit force closure if the maintenance of the
body's equilibrium requires the application of an externally
applied wrench. Equivalently, the contacts do not prevent all
infinitesimal motions of the body.

Note that, in the remainder of this paper, we will use the
words "body" and "object" interchangeably.

While the open literature abounds with papers on grasp-
ing and grasp planning (see [21] for a good bibliography
of grasping literature published before 1988), an efficient
quantitative test for form closure valid for any number of
contact points is not available. Reuleaux [23] studied the
form-closure problem for rigid lamina restricted to move in
a plane. He showed that at least four higher-pair (point)
contacts were required to prevent all motion of the lamina.
He also provided a graphical technique to test a set of four
contacts for form closure. These ideas were used by Nguyen
to develop algorithms to synthesize form-closure grasps of
given rigid lamina and were extended for use with three-
dimensional objects [18]. The conditions for form closure of an
arbitrary three-dimensional rigid body were first given in 1900
by Somoff [26], who established that a minimum of seven
point contacts was necessary. Much later, Lakshminarayana
[11] described an approach to synthesizing form-closure grasps
of three-dimensional frictionless objects, and he gave an
insightful physical interpretation of the associated equations.

Mishra et al. [17] were the first to prove the existence of
a small upper bound on the number of discrete points needed
for a forDl-closure grasp of a frictionless object. They showed
that if the object was "nonexceptional" (i.e., the object's
surface was not one of revolution), then 2nq contact points
were sufficient to balance all possible external wrenches,
where nq is the number of degrees of freedom of motion of

I. INTRODUcnON

I N grasp and manipulation planning, the two most important

classes of grasps are known as "form closure" and "force

closure" grasps. These terms are borrowed from the field of

machine design in which they have been in U3e since 1875

when Reuleaux [23] studied the mechanics of some "early

machines." One machine was the water wheel, whose axel

was usually laid in a groove of semicircular cross section.

The proper operation required the weight of the wheel to

maintain or "close" the contact between the groove and the

axel. Thus, the terminology "force closure" came to describe

contacts whose maintenance depended on an externally applied
force. If, instead, the contact was maintained by virtue of

the geometry of the contacting elements (as would be the

case of an axel in a cylindrical hole), then the term "form

closure" was adopted. This terminology is still in use today in
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the uncontacted object. This bound. however. seemed loose
to Markenschoff et al. who succeeded in "closing the gap"

~ [15]. They proved the stronger result that any nonexceptional

~: frictionless object can be grasped in form closure with only
~ seven contact points. They stated that their proof. which was
~ based on infinitesimal penurbations of the contact points away
[ from the maximal inscribed sphere, can be used as the basis
~ for algorithms for synthesizing form-closure grasps, and it

would seem reasonable, too, that form-closure tests could
; also be developed, but no algorithms were presented. For the
,~ purpose of grasp synthesis, Nguyen [18] and Mishra et al.
;: [17] developed grasp tests that indicated only the existence
~ or nonexistence of form closure. However, the binary nature
~ of the tests motivated Kirkpatrick et al. [10] to formulate
~~ a quantitative test for "positive grips" with form closure
I based on Steinitz's theorems. Unfortunately, these results are
;:; restricted to frictionless grasps of polyhedra with at least 2nq':~ 

contacts occurring only at "nonsingular" points on the object's, 
surface, where singular points are those for which the surface
normal is ill-defined. These restrictions are seen as significant
drawbacks since in dexterous manipulation it is common (and
occasionally desirable) for fewer contacts to occur and for
some of them to be on vertices of the object.

sufficient conditions for characterizing the object's stability
and for the uniqueness of the object's instantaneous velocity
and the contact forces during manipulation.

~"
~
j

B. Paper Layout

This paper is organized as follows. In Section II, we present
our assumptions and derive a linear program that can be used
to predict the quasi-static motion of a grasped frictionless
object. In Section III. we consider the stability of form-
and force-closure grasps and develop our quantitative form-
closure test. We also identify a subclass of force-closure
grasps called strong force-closure grasps and develop a test
for their recognition. Section IV is devoted to indeterminacies
in the linear program derived in Section II; we present several
theoretical results pertaining to object stability and to the
existence and uniqueness of the contact forces and the object's

velocity.

II. QUASI-STATIC FRICTIONLESS MECHANICS

In this section, we derive a linear program that can be used
to predict the instantaneous quasi-static motion of a frictionless
object, where by "quasi-static" we imply that dynamic effects
are negligible [16]. Our derivation depends on the following
list of assumptions, which are quite restrictive. In ongoing
work [32], the assumptions of perfect knowledge and control
have been removed, and linear approximations of the effects
of errors on the velocity of the object and the contact forces
have been derived.

Assumptions:
1) All bodies are rigid polyhedra.
2) The surface geometry and the position of the center of

gravity within each body are known.
3) Friction is negligible.
4) The object is acted upon by a gravitational force.
5) Dynamic effects are negligible.
6) The points of contact and their normal directions are

known.
7) The kinematic parameters of the manipulators are known.
8) Controller errors are negligible.

Let the position and orientation of the grasped object,
relative to an inertial frame, be denoted by the vector q E En.,
where Em represents m-dimensional Euclidean space and
nq is the number of degrees of freedom of motion of the
uncontacted object (six in the spatial case). Then q represents
the position of the origin of a body-fixed frame (not necessarily
coincident with the object's center of mass) and the orientation
of its axes, expressed with respect to the inertial frame. Further,
we define 6 E En, to be the vector of joint displacements of
the hand, where n9 is the number of joints. Together q and 6
define the configuration of the hand/object system. Assuming
that the hand is composed of a set of independent manipulators
in point contact with a single object, then the dynamic model
of the hand can be written by combining the equations of
motion for the individual fingers to yield

A. Contributions

The primary contribution of this paper is the formulation
of a quantitative test, based on purely geometric information,
for detecting fonn closure. This test takes the form of a linear
program and produces a crude measure (qualitatively similar
to Kirkpatrick's) of how "far" a grasp is from losing fonn
closure. In contrast to Kirkpatrick's test, our test is valid for
frictionless grasps with any number of contacts as long as
their locations and nonnal directions are known. The problem
of contacts occurring at nondifferentiable surface points is not
a consideration here, because a unique, computable nonnal is
available in all but the ephemeral and pathological cases of
a convex vertex in contact with either a convex edge (spatial
case only) or another convex vertex. The test is also valid for
frictional grasps, but due to its dependence on purely geometric
quantities, does not quantify the stabilizing friction effects.
However, the test can be modified to quantify the friction
effects [31].

The maintenance of fonn closure during manipulation re-
quires compliant control of the hand. In this situation, com-
puting the velocity of the object is straightforward since the
applicable kinematic constraints must be chosen to perfonn
the compliant motion. To maintain force closure, compliant
motion is not required, so the applicable kinematic constraints
are not known. As a result, the detennination of the object's
motion due to finger motions typically proceeds via the
"classical" approach in which each possible set of applicable
kinematic constraints is hypothesized and then tested for
consistency with the equilibrium relationships. The secondary
contribution of this paper is the derivation of a linear program
that can be used to predict the instantaneous velocity of
a frictionless object more efficiently than solution by the
classical approach. Based on the linear program, we prove

..Tr = Mhand(9)9 + Vhand(9.9) + G(9) + In(9,q) Cn (1)
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Fig. 1. Two convex polygons.

subject to

where T E En8 is the vector of joint torques, M hand E
En8 xn~ is the positive definite inertia matrix, V hand E En8

is the vector of Corio lis and centripetal torques, G E En8
is the vector of gravity torques, J n E En8 x n" is the global

grasp Jacobian matrix [9] relating normal force components (or
wrench intensities) at the contacts to joint torques, Cn E En" is
the vector of the normal components of the forces acting at the
contacts, the superscript T represents the matrix transposition
operation, and the overdot indicates differentiation with respect
to time.

The dynamics of the grasped rigid object are given by the
Newton-Euler equation

W(q,O)nCn + gext = Mobjq + V obj(q, q) (2)

where W n E En" X no is the global 'grasp wrench matrix
[9], M obj E En" X n" is the inertia matrix of the object,

V obj E En" is the vector of angular velocity products arising
in Euler's equation, and gext E En" is the external wrench

acting on the object.
The dynamic differential equations (1) and (2) are coupled

through contacts that give rise to kinematic velocity constraints
[9] that prevent the interpenetration of bodies during motion

T' '

W n q -J nO ? O. (3)

Neglecting the inertial terms in (1) and (2) yields the
equilibrium equations, which must be satisfied by all quasi-
static system motions:

J

J~Cn=T-G (4)
W nCn = -gext (5)

Cn ? 0 (6)

where inequality (6) implies that contact loads must be com-

pressive.
Assuming that the hand controller is always stable, (3), (5),

and (6) can be used, in what we call the "classical" approach,

to determine the quasi-static, instantaneous velocity of the

object caused by the instantaneous joint velocities. This is

accomplished by considering all 2nc possible combinations

of contact interactions (i.e., sliding or breaking). For each

combination, one must solve the for the object velocity iI,

check that the contacts presumed to be breaking satisfy the

kinematic constraints (3), and finally test the feasibility of the

equilibrium equations, (5) and (6). As an alternative to the

classical approach, we now derive a linear program whose

solution is identical to that of the classical approach.

Let r be the homogeneous vector representing the position

of the center of gravity of the object expressed with respect to

its body-fixed frame, and let T(q) represent the homogeneous

transformation describing the position and orientation of the

body-fixed frame with respect to the inertial frame. Further, let

9 be the homogeneous form of the gravitational acceleration

vector, and let m be the mass of the object. Given these def-

initions and the assumptions stated above, stable equilibrium

configuration(s), denoted by q*, of an object within a hand

of fixed known configuration 9* can be determined as the

solution(s) to the following optimization problem:

min y = -mrTT(q)T 9 (7)
II

q E Cvalid(9.) (8)

where the objective function is equivalent to the usual mgh,
but was written in the above form to expose the homogeneous
transformation matrix. Cvalid is the subset of configuration
space corresponding to nonpenetrating configurations of the
hand and object, i.e.,- the geometrically valid configurations.
This subset is the union of the sets normally called the "free"
space and "contact" space and can be defined through various
logically linked combinations of C-function inequalities [4].
The C-functions, introduced by Lozano-Perez (13], represent
the relative proximity of the vertices, edges, and faces of
the object and hand. For example, consider the two convex
polygons shown below (see Fig. 1). The C-function f(q,OO) is
the distance between edge ell and vertex v21 (measured from
ell to V21 along the outward-pointing normal, n). A necessary
condition for contact is that f equal zero. However, to restrict
the contact to lie between the ends of ell, the C-functions
relating elO to V21 and el2 to V21 must be nonpositive.
Also, to ensure that the polygons do not interpenetrate, the
C-functions relating e22 to VII and e21 to Vl2 must be
nonnegative. Naturally, V21 may separate from ell. This
condition is indicated by f becoming positive, at which
point the additional four constraints discussed above become
meaningless. Thus. in the planar case, five C-functions. all
nonlinear functions of q and 0. are required to define all valid
contacts between an edge and a vertex of convex polygons.
C-function constraints for the spatial case are more numerous
and more complicated in form, but their use in defining valid
contacts is conceptually identical to their use in the planar case.
Note that the number of C-functions required to define Cvalid is
the number of object and hand features that could ever possibly
be in contact. However, the following development will show
that, to determine the instantaneous motion or stability of the
hand/object system, we need only consider the current set of
contacts.

The nonlinear problem formulation given by relationships
(7) and (8) cannot be used effectively for the prediction
of the quasi-static motion of frictionless objects partially
because the representation of the set Cvalid is not conducive
to efficient optimization techniques and partially because.
when the configuration of the grasped frictionless object
is "far" from an equilibrium configuration. its motion will
be dominated by dynamic effects. These problems can be
alleviated by employing the following line of reasoning. Since
quasi-static dexterous manipulation will take place slowly.
the object will never be "far" from a stable equilibrium
configuration (unless- i~ becomes unstable). To rlet~n'ninp th~
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effect on the nonlinear optimization problem. suppose that the
system is in a stable state defined by q* and O' and further
suppose that the system is subjected to an infinitesimal joint
angle perturbation dO. In the example discussed above, only
the C-function describing the distance between the elements
ell and v2l constrains the perturbations of q. Since. at a
contact, f equals zero, then valid differential changes in
q and 0 are constrained by the inequality df ? o. The
other constraints. however, are not "tight," and thus will
not be violated by any differential perturbation. Therefore,
in linearizing the nonlinear optimization problem, we need
only consider those zero-valued C-functions corresponding to
the actual contacting elements. Thus, the perturbation in the
object's configuration dq corresponding to the perturbation in
the hand's configuration dO can be determined by solving the

following linearized problem:

min -mdqTT~ (q)g (9)
dq

This formulation is called the velocity formulation' of the
frictionless object motion problem and can also be derived
from Peshkin's minimum p°v.:er principle [29]. Given the
instantaneous joint velocities 0, the solution of this linear
program provides not only the instantaneous velocity of the
object q but also the wrench intensities and the nature of the
contact interactions. These may be determined by noting that
the elements of the vector of Lagrange multipliers (i.e., the
optimal dual variables) associated with inequality (3) are the
wrench intensities. While not considered in detail here, the
effects of errors in 8 (control errors) can be readily determined
through solution sensitivity analyses, which are well developed
in the field of linear programming [14]. However, it is quite
common during manipulation that W n is nonsingular, in which
case the exact error relationship is given as

6q = w;;T Jn68 (14)

"
~

subject to

where 8q is the error in the predicted object velocity due to
the error 8fJ in the joint velocity.

The dual linear program. called the force formulation, is
written in tenDS of the unknown vector of wrench intensities
c.. and is stated as follows:

OT J; Cn (15)max
Coo

subject to

W nc", = -gext (5)

c",? O. (6)

In this formulation, the input iJ has moved to the objective
function, the primal variables are the elements of the wrench
intensity vector. and the vector of dual variables is equivalent
to q. According to the theory of linear programming, both
formulations are equivalent, so either one may be solved
for the wrench intensities and the instantaneous velocity of
the object. The theory of linear programming also allows
us to deduce an important property of these formulations as
follows. The primal's objective function represents the power
expended in lifting the object's center of gravity, while the
dual's represents the power input by the contact wrenches. The
duality theorem of linear programming states that the primal
and dual objective functions are equal at feasible bounded
solutions. Thus, we see that the linear programs derived above
predict motions that conserve energy [14]. Also, since primal
and dual constraints are satisfied at a feasible optimal solution,
solving either formulation results in a solution satisfying both
the kinematic constraints and the equilibrium equations. Note
that the error in the wrench intensities t5c", due to errors in the
external wrench t5gext can also be determined using sensitivity
analysis. In the case that W n is nonsingular. the expression
analogous to (14) is

_dqT gext (11)mill
dq

subject to

iJl \ 8/ 1~ dq+ ~ dO? 0 (12)
vq 9=9' VIJ 9=9"

8=8' 8=8"

where I represents the current set of active nonintersection
constraints (i.e., contacts). Here we note that the rows of
iJ I / 8q are the unit wrenches corresponding to the normal
components of the velocities of the contact points on the object
[1]. Similarly, the rows of 81/88 are the negatives of the
rows of the Jacobian matrices corresponding to the normal
components of the velocities of the contact points on the hand
[20]. Next, if we view q and 8 as functions of time, then we
may rewrite linear program (11) and (12) in terms of time

derivatives as follows Dc.. = -w;; lDgext , (16)
.T

-q gext (13)mill
oj We conclude this section with one final consideration. Smale

[25] has shown that the "average" time complexity of the
simplex algorithm in solving linear programs with a fixed

subject to

W~(q..O*)q ~ In(q*,O*)O. (3')

-'8=8. '8=8.

where T v(q) is the velocity transformation matrix relating the
velocity of the center of mass to that of the origin of the
body-fixed frame and f is the set of zero-valued C-functions
corresponding to the contacts. The objective function now
represents the differential change in the potential energy due to
a differential change in its configuration. Note that associating
T~ with 9 allows us to interpret dq as the (spatial transpose of
the) differential twist of the body and the product mT~ (q)g as
the external wrench gext acting on the body [8]. Therefore, the
objective function can be viewed as the virtual work expended

on the object.
Realizing that. for contact points. the corresponding ele-

ments of f (q.. 0.) are zero. the above linear program reduces

to the following one:
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A. Form Closure

According to the definition of Reuleaux and Salisbury. given
in the Introduction. a grasp has form closure if and only
if object equilibrium is possible regardless of the external
wrench. that is, the following relationships hold:

W nc", = -gext, for all gext E En" (5)

c", ? o. (6)

The dual statement of form closure was previously derived
[1], [11], [16], [19] using the concepts of contrary, reciprocal,
and repelling screws. However, it can also be derived from the
"theorem of the alternative," which can be stated as follows.

Theorem 1 (from Strang [27J): Given the matrix A, x,
and z, either Ax = b has a solution with all elements of x
nonnegative or else there exists a vector z such that zT A ? 0
and zTb < O.

Replacing A. x, and b with W n, Cn, and -gext, respectively,
we see that either a solution to the equilibrium equations exists
such that all elements of Cn are nonnegative or a vector z exists
satisfying the following relationships:

zTw n ? 0 (17)

-zT gext < O. (18)

number of constraints is proportional to the the number of
unknowns. Since the force formulation of the object motion
problem always has nq constraints. we expect the average
solution time to be proportional to nt:, the number of contacts.
also the number of unknown elements in the wrench intensity
vector Cn. To determine the instantaneous velocity of a quasi-
statically manipulated object via the classical analysis. it is
necessary to consider 2nc systems of equations and inequal-
ities. Even chosing to forgo the possibility of degenerate
solutions one must still solve the (~:) systems corresponding
to the possible ways to maintain nq contacts. This number,
(::), is also the maximum number of systems solved by
the simplex method (through basis change operations) in
the worst case for both formulations. Therefore, for grasp
configurations with a large numbers of contacts, one would
expect the solution of the force formulation via the simplex
algorithm to be much more efficient than solutions com-
puted via an algorithm based on the "classical" solution

approach.
These two approaches were implemented in "c" using code

provided in [22] and were used to compare the computation
time for 10 000 frictionless planar grasps with from 3 to 18
contacts per grasp. The computation time for the solution of
the force formulation increased linearly with nc while the
computation time for the solution of the classical formulation
appeared to increase exponentially. We found, however, that
the solution of the linear programming algorithm imposed
a large overhead cost, so that, on average, grasps with nine
or fewer contacts, were solved more quickly by the classical
method. Grasps with more than nine contacts were solved more
quickly using the linear programming algorithm (10 times
faster for grasps with 18 contacts).

Interpreting z as the instantaneous velocity q of the grasped
object implies the following. If there exists an external wrench
gext such that equilibrium is infeasible, then there must
exist a kinematically admissible motion that will reduce the
object's potential energy. For form closure, however, the
contact points must balance every possible external wrench.
As a consequence, the theorem of the alternative implies that
no q may exist that satisfies the following system of linear

inequalities:

W~q ~ 0
T .

-gextQ < 0

(19)
(20)

III. STABILITY

In grasp and dexterous manipulation planning, the qualities
with which we are most concerned are known as form closure
and force closure. Form-closure grasps (or the objects so
grasped) are stable in the face of all possible external wrenches
acting on the grasped object, whereas force closure grasps are
only stable for a subset of all possible external wrenches [11],
[16], [23]. One reason that this distinction is important is that
maintaining form closure requires some form of compliant
control.

To help distinguish between form- and force-closure grasps.
in Section III-A, we present a new quantitative test for form
closure, the output of which indicates whether or not a grasp
has form closure, and if it does have form closure, the objective
value provides a crude measure of how far the grasp is
from losing form closure. In Section III-B. we show that
the existence of a unique. bounded, feasible solution to the
velocity formulation of the frictionless object motion problem
is sufficient for stability. In Section III-C, we define strong
force-closure grasps and present a test for its identification and
quantification. Finally, in Section III-D, we present sufficient
conditions for the instability of force-closure grasps based
on the linear programming formulation of the object motion

problem.

which, in turn, implies that a grasp has form closure if and
only if inequality (19) admits only the trivial solution.! Since
inequ~lity (19) represents the special case of inequality (3),
with () set equal to zero, we may restate form closure as
follows: a grasp is said to have form closure if, when locking
the hand's joints, it is impossible to move the object, even
infinitesimally, regardless of the external wrench applied to
the object.

From Somoff's work, a necessary condition for form closure
is that the wrench matrix W n has more columns than rows
and, therefore, a nontrivial null space. Thus, we may rewrite
the form closure requirements as follows:

W nCn,row = -gext: for all gext E En. (21)

W nCn,null = 0 (22)

Cn,row + Cn,null ?: 0 (23)

where Cn.null E En" and Cn,row E En" are elements of the
null and row spaces of W n, respectively. With relationships

I To see that this is so, suppose that a nonzero II exists satisfying inequality

(19), Then inequality (20) defines all external wrenches that cannot be
balanced by the grasp.
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~- (21H23) in mind. Salisbury showed that a sufficient condition
~. for form closure is the existence of a vector c", with all
i positive elements. This is equivalent to the result of Mishra
~ et al. requiring that the origin of the wrench space lie strictly
.~1 within the convex hull defined by the columns W n [17]. Next
,~ we use the facts that W n and its pseudoinverse provide one-

to-one and onto mappings between the spaces of gext and
c".row, and that gext is arbitrary. As such. any or all elements

.of c".row can be made negative by the proper choice of gext.
This places the onus of c,,'s nonnegativity squarely on c",null.
Therefore, form closure requires that (22) admit at least one
.strictly positive solution, i.e., the following relationships must
be feasible:

~
~

~

Fig. 2. Rectangle with four frictionless contact pointS.

(22)

(24)

W nCn,null = 0

Cn,null > 0 TABLE I
QUAN11FICA110N OF FORM CLOSURE

f
")'-

":;",-
i:
..
Ii'
.~,"

0.0

0.020

0.097

0.300

0.267

0.170

0.071

0.010

0.0

0.0

1.04
1.06
1.1
1.2

1.3

1.4

1.5

1.56
1.5707

1.58

_..J;~
-~'
:I;

If no such solution exists, then one can easily find a gext that
cannot be balanced. If a strictly positive Cn,null does exist,
then it may be arbitrarily scaled to make Cn nonnegative for
any finite choice of gext. In fact, in this case, all wrench
intensities may be increased without bound, which in turn,
implies that the joint torques may be increased without bound,
too. This observation turns out to be quite useful in trajectory
planning for dexterous manipulation. as it implies that we can
squeeze as hard as we like without disturbing the form-closure
character of the grasp. This fact considerably reduces the
accuracy required of the controller. However, it is important
to note that Cutkosky has shown that compliant effects can
cause grasp instability as the joint torques increase [3].

The form-closure measure we propose is the scalar value d
of the minimum element of c~.null' where c~,null is the vector
satisfying inequalities (22) and (24) with maximum minimum
element. If d is strictly positive. then the grasp has form
closure. This measure is the objective value of the following

linear program:

(25)max d
c. ,nul',J

subject to

object may rotate counterclockwise. If a = 7r /2, then the
object may translate vertically. Table I illustrates how our
form-closure measure varies with a. For this example, A was
chosen so that inequality (28) would represent a cube with
edges of length 2. Using the coordinate directions shown and
summing the moments about the upper right-hand comer of
the rectangle, the wrench matrix is given by

[ 0 0 1 -cos( a) ]W n = 1 1 0 -sin(a) .
-l 0 If 0

4

The grasp "furthest" from losing form closure is the one which
maximizes d, i.e., a ~ 1.2 rad.

One might think that it should be possible to test for form
closure during prediction of the velocity of the object using
the frictionless .object motion problem. This is not possible.
Consider using the velocity formulation to predict the motion
of a grasped object. Any planned finger motions would either
tend to crush the object (kinematically infeasible motions)
or release it (kinematically feasible motions). If the planned
joint motions would tend to crush the object, then the finger
motions would be prevented by the system's rigidity. This
occurrence would not signal that the current grasp has form
closure, because kinematic infeasibility can also occur with
some force closure grasps. If the planned joint motions would
release the object, then the fingers' motions would proceed and
form closure would be lost. Since the object motion problem
only predicts the imminent state of the grasp, the fact that the

W nCn.llull = 0 (22)

Cn.null -d ? 0 (26)

d ? 0 (27)

ACn.null? h (28)

where d is essentially a slack variable. and d is a vector with
all elements equal to d. Inequality (28) may be any set of
constraints that is feasible for Cn.null = O. Its purpose is merely
to prevent the linear program from becoming unbounded.

If inequality (28) approximates the unit sphere. then our
measure is quite similar to the efficiency given in [10].
However, Kirkpatrick's measure is valid only for grasps with
2nq (i.e.. 12 for the spatial case) or more contact points.
whereas our measure is valid for grasps with any number of

contact points.
Example 1: Consider a rectangle subjected to a planar grasp

with four contact points as shown in Fig. 2. This grasp has
form closure if 1.052 < a < 7i /2. If a < 1.052. then the
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object was in form closure just prior (0 finger motion would
not be revealed.

is either unstable or the requested finger motions are kinemat-
ically infeasible. If the object motion problem has a bounded.
feasible solution. then the corresponding object configuration
qs represents a stationary point of the constrained potential
energy function. because the equilibrium relationships (5) and
(6) present in the force formulation must also be satisfied.

Given stationarity. the grasp will be first-order stable if

every infinitesimal. kinematically feasible penurbation of the
object's configuration away from qs infinitesimally increases
the object's potential energy. Let the augmented potential
energy F be given by

F = y(q) -~T f(q) (29)

~?; 0 (30)

where). is a vector of Lagrange multipliers and f(q) is the
vector of C-functions for which each zero element corresponds
to a point of contact between the object and the hand. Note
that, for this proof, we need not make use of the dependence
of the C-functions f on 6, so henceforth, the dependence will
not be explicitly indicated.

Next, recall that a positive Lagrange multiplier always
corresponds to a tight noninterference constraint (2) and,
therefore, to a point of contact, i.e., if >'j > 0, then j}(q) = o.
Then since j j must be nonnegative, differential changes in
the object's configuration q are constrained by the following
system of linear inequalities:

dfj = ~ I dq?' 0, for all j E {j I >'j > O}. (31)
q q=q.

Casting inequality (31) into matrix form yields

W~C(q5)dq ? 0 (32)

where Wac has dimension (nac x nq), nac is the number
of active contacts (those corresponding to ). J > 0), and
maintenance of the jth contact is indicated when the jth
element of the product W~cdq is zero. The differential change
of the the augmented objective function F due to differential
changes in the objective function and the constraints yields
the following equation:

dF = dy(q) -~~cdl ac(q) (33)

where >'ac is the vector of Lagrange multipliers formed by
removing the zero-valued elements from >.. Equation (33) is
required to be zero at the stationary point q~ [2]. To show
how the potential energy depends on perturbations in q, we
rearrange (33) as

dy(qs) = ~~cW~c(qs)dq. (34)

Applying inequalities (32) and (30), we see that ever:-' feasible
perturbation results in a nonnegative change in y, However,
for first-order stability, dy must be strictly positive for every
feasible nonzero perturbation. Since all elements of >'ac are
positive, then dy will be strictly positive if at least one element
of the product W~cdq is positive. In other words, if there exists
dq ~ 0 that satisfies (35) below, then there exists a feasible
perturbation of q such that the objective function does not

B. Force Closure

In the case of fonn closure, the grasp is stable regardless
of the external wrench applied to the object. In contrast,
a force-closure grasp can only satisfy the object's equilib-
rium relationships for a specific subset of possible external
wrenches. The dual statement is that, when locking the hand's
joints, it is possible to move the object. By definition, then,
even grasps with one contact point have force closure. Thus,
knowledge that particular grasp has force closure is not, in
itself, particularly useful. What is important, both for static
grasping and quasi-static manipulation, is whether a grasp
with force closure will exhibit stable equilibrium under the
application of a particular external wrench.

Given our assumptions, a grasped object will be stable if
and only if its configuration corresponds to a local minimum
of the constrained potential energy. However, we would prefer
to not solve the nonlinear optimization problem given by (7)
and (8) just to check stability. What we will conclude below
is that if the object motion problem has a unique, bounded,
feasible, solution q., then the object is guaranteed to be stable;
however, if the solution is not unique, then the object mayor
may not be stable. In the case of a unique q., the stability is
of first order in the sense that all infinitesimal perturbations
of the object's configuration increase the potential energy
infinitesimally (e.g., a ball at rest inside a cubical container
tilted so that one comer is lower than all others). In the case
of nonunique q., if the object is stable, it is due to higher order
effects in the sense that at least one infinitesimal perturbation
of the object's configuration does not increase the potential
energy even though a finite perturbation in the same direction
does (e.g., a ball at rest in a hemispherical container). As one
might expect, higher order stability may not be detennined
by solving the linear program but requires examination of the
full nonlinear problem given by (1) and (2). The following
definitions are relevant to the statement and proof of Theorem
2 below.

Definition: A set of contacts is said to be linearly indepen-
dent if and only if the rank of the associated wrench matrix
W n is equal to the number of contacts.

Definition: A frictionless grasp is stable to first order, or is
first-order stable, if the object's configuration corresponds to a
stationary point of its constrained potential energy and if every
feasible infinitesimal perturbation of the object's configuration
away from that stationary configuration strictly increases the

potential energy.
Definition: A frictionless grasp is stable to higher order, or is

higher-order stable, if the object's configuration corresponds
to a relative minimum of the object's constrained potential
energy and the grasp is not first-order stable.

Theorem 2: A frictionless grasp is first-order stable if and
only if the velocity fonnulation of the object motion problem
has a unique, bounded. feasible solution.

Proof: If the frictionless object motion problem does not
have a bounded. feasible solution, then the grasp configuration
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.Thus. the grasp will have first-order stability if and
if the following equation has only the trivial solution:

W~c(qs)dq = o. (35)

.the rank of Wac must be equal to nq, which
equivalent to requiring that the grasp has nq linearly

active contacts. These contacts are active, since
corresponding Lagrange multipliers are positive.

To cast the above result into the light of the velocity formu-
of the frictionless object motion problem, we reiterate

the requirement to have a bounded, feasible solution is
to requiring stationarity of the grasp configuration.

the velocity formulation, the elements of the Lagrange
intensities) represent the rate of

relationships (22) and (24) are infeasible) but that at least
one nonnegative solution must exist (i.e., relationship (24)
is relaxed by allowing equality with zero). If a nonnegative
solution does not exist, then no wrench intensity can be
increased indefinitely.

Theorem 3: A grasp has strong force closure if and only if it
does not have form closure and there exists a nontrivial vector
Cn.null in the null space of W n with all nonnegative elements
such that if the ith element of Cn,row is negative, then the ith
element of Cn,null is positive.

Proof: The quasi-static assumption implies that the grasp
under consideration is in equilibrium and therefore satisfies
the relationships (5) and (6). Solving (5) and substituting into

inequality (6) yields

c,. = c,.,row + c,.,null ? 0
while all others are maintained. If, at a constrained
point, there are nq positive Lagrange multipliers

to nq linearly independent contacts, and Wac
a trivial null space, then the minimum, q*, is guaranteed

be a local minimum [6]. Since the velocity formulation
a linear program, the local minimum is the unique global

minimum [14]. In other words, fust-order stability corresponds
.to nondegeneracy of the velocity formulation. Q.E.D.

Corollary 2.1: A grasp is stable if it has first-order stability.
Proof: The conditions stated above for first-order stab il-

.ity are clearly sufficient for stability. Q.E.D.
The most important practical implication of Theorem 2

is that the uniqueness of the instantaneous velocity of the
object is guaranteed if there are nq positive wrench intensities.

.Typically during manipulation, there will be nq contacts.
~ However, if there are more contacts, but nq wrench intensities

remain positive, then the instantaneous velocity of the object
can be determined uniquely even though the wrench intensities
are statically indeterminate. On the other hand, if there are
fewer than nq contacts, then there cannot be nq positive
wrench intensities, which implies that neither stability nor the
instantaneous velocity of the object may be determined with
first-order information alone.

where Cn,null = -:Wtgext'Cn,null = (wtwn -I)kfa,a is

a positive scalar, kf is an arbitrary unit vector of compatible

dimension. and W n is the psuedoinverse of W n.
If Cn,null > 0 exists. then by definition. the grasp has form

closure: not force closure. Next. note that Cn,null with all
nonpositive elements (i.e., Cn,null .$: 0) prevents the unbounded
increase of Cn,null. Therefore. for a grasp to have strong force
closure. it is necessary that a nontrivial Cn,null exist such that
Cn,null ?: O. Finally, let Cin,row be the ith element of Cn,row. It
is clear from (36) that if Cin,row is negative, then Cin,null must
be positive. Q.E.D.

In light of the above proof, a test for frictionless strong
force closure must allow some of the elements of Cn,null to
remain zero while encouraging others to be positive. This can
be accomplished with the following linear program:

max 1 T Cn,null (37)
c",null

subject to

(22)

(38)

(23)

(39)

(28)

W nCn,null = 0W 

nCn,row + W nCn,null = -gext

Cn,row + Cn,null ? 0

Cn,null ? 0

ACn,null ? h

where 1 is a vector with all elements equal to 1.
As illustrated in example 2 below, this strong force-closure

test is binary in nature. This comes from the fact that the null
space components of some wrench intensities are zero-valued.
However, a quantitative result similar to that given earlier for
form closure could be formulated in two stages. First, apply
the binary test to identify the nonzero components of Cn.null
and then apply the form closure test with the slack variable d
added only to those components.

Example 2: Consider a rectangle subjected to a planar grasp
with four contact points as shown in Fig. 3. It can be shown
that this grasp has strong force closure if -1.00 $: a $: 1.00,
but not form closure, since the object may translate vertically.
Table II illustrates how the components of Cn,null and Cn.row
vary with a. For this example, A was chosen so that inequality

C. Strong Force Closure

The wrench intensities of a form-closure grasp can be
increased indefinitely while the grasp maintains equilibrium.
For force-closure grasps, all wrench intensities have finite
bounds. In terms of velocities, manipulation maintaining form
closure requires compliant finger motion, whereas maintaining
force closure usually does not. In this section, we define the
strong force closure grasp. It is the subset of force-closure
grasps for which some wrench intensities can be increased
indefinitely. This class of grasps deserves recognition, because
its maintenance during manipulation requires compliant mo-
tion, as does a form-closure grasp, but it can become unstable
since it is, in fact, a force-closure grasp.

Definition: A grasp is said to have strong force closure if it
has force closure and a subset of the contact wrench intensities
can be increased without bound.

Given the definition of strong force closure, it is clear
that no strictly positive solution of (22) may exist (i.e.,
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(7) and (8) must be used to detennine stability. If the objeCt's
configuration corresponds to a relative minimum, then, by
definition, the grasp has higher order stability. However, if
the grasp configuration does not represent a local minimum,
then the equilibrium of the object is unstable and dynamic
effects would be required to detennine the object's subsequent
motion. Finally, if the velocity fonnulation has an unbounded
solution (or equivalently, the force fonnulation is infeasible),
then the grasp is unstable and again dynamic infonnation is
required for motion prediction.

Theorem 4: A grasp is unstable if the force fonnulation
of the frictionless object motion problem is infeasible or,
equivalently, if the velocity formulation is unbounded.

Proof." The Kuhn-Tucker necessary condition for sta-
tionarity of the object's configuration is composed of the
equilibrium relationships [2]. Satisfaction of these equations
is necessary for the object's stability, and therefore, their
infeasibility is a sufficient condition for grasp instability. Since
the infeasibility of the force fonnulation is equivalent to an
unboundedness of the velocity formulation, this condition is
also a sufficient condition for grasp instability. Q.E.D.

The physical interpretation of infeasibility of the force
fonnulation is rather straightforward. However, the dual in-
terpretation is less obvious. The physical interpretation of
unboundedness in the velocity fonnulation is that there exists
a feasible velocity of the object that causes reduction of
the object's potential energy. Object motion in that direction
increases the rate of potential energy reduction in direct pro-
portion to the magnitude of iI, and thus the velocity fonnulation
is unbounded. An example of such an unstable grasp is an
object on a frictionless plane that is not perpendicular to the
vector of gravitational acceleration.

Fig. 3. Square in strong force closure grasp.

TABLE n
DEIECIING STRONG FORCE CLOSURE

Object
Value ~ Type cn.aull.l Cn.aull.2 cn.aull.3 Cn.aull.4

force

strong fon:e

strong fon:e

strong fon:e

strong fon:e

strong fon:e

strong fon:e

force

0.0

0.0

0.0

0.0
0.0

0.0

0.0

0.0

0.0
0.0
0.25
0.5

0.7
0.85
1.0
0.0

0.0

1.0

0.75

0.5

0.3

0.15

0.0

0.0

0.0

1.0

1.0

1.0

1.0

1.0

1.0
0.0

-1.001

-1.000

-0.5

0.0

0.4

0.7

1.00

1.001

0.0

2.0

2.0

2.0
2.0

2.0

2.0

0.0

IV. INDETERMINACIES

In the case of first-order stability, the object is stable, and its
instantaneous velocity can be determined uniquely by solving
the frictionless object motion problem. Typically, the matrix
W n is square and nonsingular, providing a unique solution
to the wrench intensities also. In this section, we consider
the cases in which things do not work out quite so nicely.
We comment briefly on the well-studied case of statically
indeterminate wrench intensities but concentrate primarily on
the less well known case of velocity indeterminacy.

(28) would represent a cube with edges of side 2. Using the
coordinate directions shown and summing the moments about
the object's center of mass yields the following wrench matrix:

[ 0 -1 -1 1 ]Wn = 1 0 0 o.
0 -1 1 a

Note that the nonzero components of Cn,null can be increased

indefinitely by squeezing.
During manipulation under compliant control, the matrix

W n is typically of full rank and often has more than nq
contacts. If the nullity of W n is one, then the solution of
the above linear program indicates which wrench intensities
may be increased and which may not. When the nullity is
greater than one, then the solution returned is just one of
many possible and will not necessarily reflect which intensities
may be increased. Brute force circumvention of this problem
could be achieved by solving the linear program one time
for each contact with the objective being to maximize the
corresponding component of Cn.null rather than the sum of the

elements.

!
i
,
I

A. Force Indeterminacies

Rigid-body models lead to grasp configurations that are
statically indetenninate with respect to the wrench intensities
(see, for example, [16] and [7]). This happens when the wrench
matrix W n possesses a nontrivial null space. Practically speak-
ing, for the frictionless case, this situation occurs when there
are more contacts nc than the number of degrees of freedom
of the object nq (i.e., when the wrench matrix W n has more
columns than rows). However, as a frictionless grasp evolves
quasi-statically, this indetenninacy is often resolved by the
breaking of redundant contacts. In some situations, though, it
may be desirable to maintain "extra" contacts by compliant
control, in which case it may be possible to detennine the

D. Instability
If the object is not in form closure during manipulation,

then it must be stable in force closure or unstable. As we
have seen, the frictionless object motion problem may be
used as a sufficiency test for stability. If the velocity for-
mulation has a unique, bounded, feasible solution, then the
grasp is stable. If the velocity formulation has a nonunique,
bounded, feasible solution (indicated by fewer than nq positive
wrench intensities), then the nonlinear optimization problem



STABILITY AND INSTANTANEOUS VELOCITY OF GRASPED FRlcnONLESS OBJEcrS 569

PALM

Fig. 4. Grasp with first-order statically indeterminate velocity.

Proof: Suppose we solve the velocity formulation for the
grasp in question. The result will be one of the following:
no solution, an unbounded solution, or a bounded feasible
solution. The result of concern here is that of a bounded
feasible solution, at which there will always be a subset of
the kinematic constraints that are active (i.e., corresponding to
maintained contacts) and thus satisfy

W~kq. -J/1kO = 0 (41)
intensities of an otherwise statically indeterntinate

by specifying some of the elements of T and solving
following system of equations:

where WT kEEn." X no and J ak E En." X n9 are constructed

from wf and J n by removing the rows corresponding to
the inactive kinematic constraints (i.e., those corresponding
to kinematic inequalities satisfied by strict inequality and
therefore corresponding to breaking contacts), nak is the
number of active kinematic constraints, and 8 is fixed and
known. From the theory of linear programming, we know
that any kinematic constraints corresponding to zero-valued
elements of the Lagrange multiplier vector ..\ may be relaxed
without affecting the objective value. Removing those rows
from Wak and J ak yields the following system of equations
that the set of minimizing instantaneous velocities of the object
must satisfy:

[Wn
JTn

(40)

I E En9 x n9 is the identity matrix and 0 E Enq x n9

zero matrix. Even still, if nc is greater than nq + n8,
contact wrenches will be statically indeterminate. For a

complete discussion of force indeterminacies, see [9].

T. .
Wacq -J acD = 0

where nac is the number of active contacts (those correspond-
ing to positive elements of ~), and W~c E En"c xn. and
J ac E En"c xn, are the wrench and Jacobian matrices of

the active contacts. If (42) has a unique solution, then the
velocity fomlulation is said to be nondegenerate, implying that
the velocity fomlulation has a unique solution. Otherwise, the
velocity fomlulation is degenerate, implying that the object's
velocity is statically indeterminate to first order with

q* = (W~c)t JacO + [(W~c)tw ac -/]k" (43)

wT .. J .
inacq -inacO? 0

where W inac and J inac are the partitions of W nand J n
corresponding to the inactive contacts (those corresponding
to the zero-valued elements of A) and k" is an arbitrary vector
of compatible length. Q.E.D.

Corollary 5.1.. A sufficient condition for the instantaneous
velocity to be statically indeterminate to first order is that there
be fewer than nq contacts.

Proof." W~c has dimension (nac x nq). Since nac < nq,
the rank of Wac must be less than nq. Therefore, Wac
will have a nontrivial left null space and q* will statically
indeterminate to first order, as shown by relationships (43)
and (44). Q.E.D.

Note that usually nac is equal to the number of contacts,
so that, practically speaking, the instantaneous velocity of a
grasped object will be statically indeterminate to first order
if it has fewer than nq contacts; it is rare that the velocity
formulation will be degenerate when there are nq or more
contacts. If this case does arise, reorientation of the palm will
typically remove the problem.

B. Velocity Indeterminacies

Under certain geometric conditions, the nonlinear optimiza-
tion problem described by (7) and (8) cannot provide a unique
solution for the instantaneous velocity of the object. In this
case, we say that the velocity of the object is statically
indeterminate. If the velocity formulation of the frictionless
object motion problem has a nonunique, bounded, feasible
.solution (i.e., a degenerate solution), then we say that the
velocity is statically indeterminate to first order.

Definition: The instantaneous velocity of a manipulated
frictionless object is said to be statically indeterminate to first
order if the velocity formulation of the frictionless object
motion problem has a nonunique, bounded, feasible solution.

In this case, if the object remains stable, then the velocity
of the object may usually be computed uniquely by deter-
mining the local minimum of the original nonlinear problem
in the neighborhood of the current stationary configuration.
However, we would prefer to identify and avoid these grasp
configurations, so, we characterize them mathematically.

Fig. 4 shows a frictionless planar grasp with first-order
statically indeterminate velocity but with statically determinate
wrench intensities. Note that if the finger is rotated counter-
clockwise, the object will translate to the left. However, the
velocity and force formulations cannot predict the speed of
the leftward motion, because leftward translation at any speed
does not affect their objective values. In this case, even the
nonlinear optimization problem cannot be used to determine
the object's velocity without an auxiliary ad hoc condition
such as minimizing the object's kinetic energy.

In the above example, the indeterminacy appears to arise
from the fact that the palm's surface is perpendicular to
the direction of gravity. Theorem 5 provides a more general

statement of this condition.
Theorem 5: The instantaneous velocity of a frictionless

object is statically indeterminate to first order if and only
if the velocity formulation of the object motion problem is

degenerate.
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COR ,

Fig. 5. Stable grasp with first-order statically indeterminate velocity.

.

Fig. 6. Planar grasp with completely, statically, indeterntinate velocity.

recognize such grasps and to avoid using them when solving

planning problems.

C. Completely Statically Indeterminate Velocity

Completely statically indeterminate velocity configurations
are those for which the nonlinear optimization problem (7) and
(8) has a nonunique minimum, i.e., the object may move in
a number of directions all consistent with our assumptions.
In this situation, higher order effects cannot indicate the
correct solution. Instead, the actual value of q- depends on
unmodeled effects and uncertain parameters. A planar grasp
with completely statically indeterminate velocity is shown
in Fig. 6. If the fingers are spread slowly, then the object
will rotate either clockwise or counterclockwise maintaining
three contacts, but the direction of rotation is indeterminate
as predicted by the "voting rule" proposed by Mason and
Salisbury [16]. If the object's surface were curved at the
contact. then higher order information available in the C-
function constraints (8) could possibly be used to resolve
the ambiguity. Unfortunately, we have found no good math-
ematical characterization of this type of grasp and are unable
to estimate how often they arise. However, since we have
not observed them in simulations, we conjecture that their
rate of occurrence will depend on the manipulation planning

algorithm employed.

v. CONCLUSION

A desire to solve frictionless manipulation planning prob-
lems has highlighted the need for efficient computational
procedures for predicting the contact wrench intensities and
the instantaneous velocity of a grasped rigid object. Toward
this end, we have derived dual linear programs called the
velocity formulation and the force formulation whose solutions
provide the instantaneous velocity of a frictionless object
moving quasi-statically in contact with frictionless points.
In the case of force-closure grasps, these linear programs
are particularly useful, because usually both linear programs
are nondegenerate, implying that the instantaneous velocity
and the wrench intensities have unique solutions. Also, we
showed that when the velocity formulation is nondegenerate.

Corollary 5.2: A necessary condition for stable quasi-static
manipulation of a frictionless object with first-order statically
indetenninate velocity is that the external wrench applied to
the object be orthogonal to every nontrivial vector lying in the
the left null space of the global grasp wrench matrix.

Proof." Continuing from the proof of Theorem 5, we may
write the objective function by pre multiplying both sides of

(43) by 9~xt yielding

9;xtq* = 9;xt(W~c)t Jac9 + 9;Xt[(W~c)tw~c -1]k". (45)

Since static indeterminacy is manifested in objective insensi-
tivity to changes in q., and since varying k" is equivalent to
varying q. (see (43», we see that the condition of first-order
static indeterminacy of velocity is equivalent to the condition
that the second tenn on the right-hand side of (45) be zero for
all values of k". Equivalently, the external wrench applied to
the object gext must be orthogonal to the null space of W~c.
Also, since the null space of W~ is equivalent to the left null
space of Wac, and since the column and the left null spaces of
a matrix are orthogonal complements, it is clear that Corollary
5.2 is a statement of equilibrium-a necessary condition for

stability. Q.E.D.
Corollary 5.3: For a stable grasp with first-order stati-

cally indetenninate velocity, if the active contacts are linearly
independent, then the wrench intensities may be computed

uniquely.
Proof." If the object's velocity is indetenninate to first

order, then all solutions to the velocity fonnulation imply
the maintenance of the contacts corresponding to the matrix
Wac. Other contacts could be maintained, but their wrench
intensities must be zero since the velocity fonnulation is de-
generate. Also, because the velocity fonnulation has a bounded
feasible solution, the dual relationship of the velocity and
force fonnulations implies that the equilibrium relationships
can be satisfied. If, in addition, the active contacts are linearly
independent, then the solution of the equilibrium equations is
unique and provided by the dual variables. Q.E.D.

A typical planar configuration particularly relevant to The-
orem 5 is shown in Fig. 5. Note that the center of gravity
of the object is directly below the intersection of the two
contact nonnals. An infinitesimal rotation of the object about
the instantaneous center of rotation (the point marked "COR"
in Fig. 5) does not raise the object's center of gravity: the
source of the static indetenninacy. However, a small finite
rotation in either direction does. Corollary 5.2 suggests that
to avoid static indetenninacy of the object's instantaneous
velocity, Wac be changed with respect to gext. In the situation
depicted in Fig. 4, rotating the palm clockwise infinitesimally
has the desired effect. In the case shown in Fig. 5, the object
will respond to a rotation of the palm by moving to maintain
stable equilibrium. However, if the palm is rotated far enough,
the object will become stable with a third contact, thus making
its velocity statically detenninate.

Grasps with statically indetenninate velocity have arisen
approximately 5% of the time during our simulations of
the manipulation of random convex polygons [28], but their
appearance clearly depends on the joint trajectories. This
suggests that manipulation planners could be developed to
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~ stability is guaranteed and its velocity may be
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-(i.e., the force formulation is degenerate).
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force-closure and fonD-closure grasps. To our knowledge, the
fonD-closure test is the first quantitative test valid for any

number of contact points.

I .;

A. Future Work
The work presented here depends on a quite restrictive set

of assumptions. In panicular. the "frictionless" assumption
leads to the formulation of the quasi-static motion problem
as a linear program. which usually yields a unique solution

for the object's velocity. When friction is significant. the

linear program is invalid, and the "classical" approach must

be used [30]. The assumption of perfect knowledge of part
geometry is also too restrictive. Therefore, the sensitivities of

the contact forces and the object's velocity to control, sensing,
and modeling errors are currently being explored for both the

frictional and frictionless cases.
In future work, we plan to address the problem of de-

termining bounds in the coefficients of friction, which if

satisfied. would allow the successful execution of dexterous

manipulation plans generated under the frictionless assumption
in the presence of significant friction. For preliminary results,

refer to [5].

[1] H. Asada and A. By, "Kinematic analysis and design for automatic
workpan fixtUring in flexible assembly:' in 2nd InterllDtiollDl Symposium
on Robotics Research (Kyoto, Japan. Aug. 20-23, 1984). Cambrid2e.MA: Mrr Press, 1984, pp. 237-244. -

[2] G. S. G. Beveridge and R. S. Schechter. in Optimization: Theorv andPractice. New York: McGraw-Hili. 1970. .

[3] M. R. Cutkosky. in Robotic Grasping and Fine Manipulation. Boston:
KIuwer, 1985.

[4] B. R. Donald. "A search algorithm for motion planning with six degrees
of freedom," in ArtificiallntelL, vol. 31, pp. 295-353, 1987.

[5] A. O. Farahat and J. C. Trinkle. "An investigation of dexterous manip-
ulation planning using C-functions and stability functions," in Proc. Int.
Conf. IntelL Robots Syst. (Raleigh, NC), July 1992.

[6] P. E. Gill, W. Murray, and M. H. Wright, in Practical Optimization.
New York: Academic, 1981.

[7] W. Holzmann and J. M. McCarthy, "Computing the friction forces
associated with a three-fingered grip," in Proc. Int. Conf. Robotics
AUtOmat. (St. 1.Duis. MO, Mar. 1S-21, 1985), pp. 594-<iOO.

[8] K. H. Hunt, in Kinematic Geometry of Mechanisms. Oxford. England:
Clarendon. 1978.

[9] J. R. Kerr. "An analysis of multi-fingered hands," Ph.D. dissenation,
Dept. of Mecbanic. Eng.. Stanford Univ., Stanford. CA. Dec. 1984.

[10] D. Kirkpatrick. S. R. Kosaraju, B. Misbra, and C-K. Yap, "Quantitative
Steinitz's theorem with applications to multifingered grasping," TR 460,
Robotics Rep. 210, Courant Inst. of Math. Sci., New York Univ.. NY,

Sept. 1989.[11] K. Lakshminarayana, "Mechanics of form closure," ASME Rep. 78-

DET-32, 1978.
[12] Z. Li. "Kinematics, planning and control of dexterous robot hands,"

UCB/ERL M89/127, Ph.D. dissenation, College of Eng., Univ. of
California. Berkeley, CA. Nov. 29, 1989.

[13] T. 1.Dzano-Perez, "A simple motion-planning algorithm for general
robot manipulators," IEEE J. Robotics Automat., vol. RA-3, no. 3, pp.

224-238,1987.[14] D. G. Luenberger,LinearandNonlinearProgramming. Reading, MA:
Addison-Weslev, 1984.

[15] X. Markenscoff. L. Ni. and C. H. Papadimitriou. "The geometry of
grasping," Int. J. Robotics Res.. vol. 9. no. I. pp. 61-74. Feb. 1990.

[16] M. T. Mason and J. K. Salisbury. Jr.. in Robot Hands and the MechanIcs
of Manipulation. Cambridge. MA: M1T Press. 1985.

[17] B. Mishra. J. C. Schwanz. and M. Sharir. "On the existence and
synthesis of multifinger positive grips," TR 259, Robotics Rep. 89,
Courant Inst. of Math. Sci., New York Univ., NY. Nov. 1986.

[18] V. D. Nguyen. "The synthesis of stable force-closure grasps," M.S.
thesis, TR-905. MIT Al Lab.. Cambridge, MA. May 16, 1986.

[19] M. S. Ohwovoriole, "An extension of screw theory and its application
to the automation of industrial assemblies," Ph.D. dissenation. Stanford
Univ., Stanford. CA. Apr. 1980.

[20] R. P. Paul, in Robot Manipulators: Mathematics, Programming, and
Control. Cambridge, MA: MIT Press. 1981.

[21] J. Penin- Troccaz. "Grasping: A state of the an," in The Robotics Review:
I, T. 1.Dzano-Perez, Ed. Cambridge, MA: MIT Press, 1989.

[22] W. H. Press et aI., Numerical Recipes: The Art of Scientific Computing.

Cambridge, U.K.: Cambridge Univ. Press. 1989.
[23] F. Reuleaux. The Kinematics of Machinery. New York: Macmillan,

1876: reprint. New York: Dover. 1963.
[24] J. K. Salisbury. "Kinematic and force analysis of aniculated hands."

Ph.D. dissenation, Dept. of Mechanic. Eng., Stanford Univ., Stanford,
CA. Rep. STAN-CS-82-921, July 1982.

[25] S. Smale, "On the average number of steps of the simplex method of
linear programming," Math. Program.. vol. 27, no. 3, pp. 241-262,1983.

[26] P. Somoff, "Uber Gebiete von Schraubengeschwindigkeiten eines star-
ren Korpers bie verschiedener lahl von Stutzflachen," Z. Math. Phys.,

vol. 45, pp. 245-306, 1900.
[27] G. Strang, in Linear Algebra and its Applications. New York: Aca-

demic. 1980.[28] J. C. Trinkle. "The mechanics and planning of enveloping grasps:' Ph.D.
dissenation, Dept. of Syst. Eng., Univ. of Pennsylvania. Philadelphia.
PA. MS-CIS-87-46. GRASP Lab. 108, June 1987.

ACKNOWLEDGMENT

The author would like to thank C. Ang for implement-
ing most of the ideas described in this paper, R. Diaz for



---

-..

572 IEEE TRA.~SACI10NS ON ROBOTICS AND AUTOMATION. VOL. 8. ~O. 5. OCTOBER 1992

Jeffrey C. Trinkle received bachelor degrees in
physics from Ursinus College. Collegeville. PA. and
in engineering sciences and mechanics from the
Georgia InstitUte of Technology, Atlanta. both in
1979. He received the Ph.D. degree from the De-
panment of Systems Engineering at the University
of Pennsylvania. Philadelphia. in 1987.

Prior to his graduate stUdies. he was a membe"
of the Fiber Composites Group at the Lawrenc.
Livermore National Laboratory for tWo and one hal:

-years. After receiving his Ph.D.. he was a Lecturer in
Mechanical Engineering at the University of Wollongong, Australia. and was
an Assistant Professor in the Depanment of Systems and industrial Engineer-
ing at the University of Arizona. He is currently an Assistant Professor in the
Depanment of Computer Science at Texas A&M University, College Station.
His research interests include dexterous manipulation planning, assembly
planning. and the autonomous execution of plans over distributed robotics
netWorks.

[29] J. C. Trinkle and R. P. Paul. "Planning for dexterous manipulation with
sliding contacts." InL J. Robotics Res., vol. 7, no. 3. pp. 24-48. June
1990.

[30] J. C. Trinkle and D. C. Zeng, "Planar quasistatic motion of a lamina
with uncenain contaCt friCtion:' in Proc. InL Conf. IntelL Robots SYSL
(Raleigh, NC), July 1992.

[31] J. C. Trinkle, "A quantitative test for fonD closure grasps:' in Proc. InL
Conf. IntelL Robots S.YSL (Raleigh, NC), July 1992.

[32] D. C. Zeng, "On the prediCtion of quasistatic motion in the presence
of uncenain contaCt friCtion." M.S. thesis. Dept. of Comput. Sci.. Texas
A&M Univ., College Station. TX. Dec. 1991.


