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We pursue a design by social choice, evaluation by statistics and computer science paradigm to build a princi-
pled framework for discovering new social choice mechanisms with desirable statistical, computational, and
social choice axiomatic properties.

Our new framework is called generalized decision scoring rules (GDSRs), which naturally extend gen-
eralized scoring rules [Xia and Conitzer 2008] to arbitrary preference space and decision space, including
sets of alternatives with fixed or unfixed size, rankings, and sets of rankings. We show that GDSRs cover a
wide range of existing mechanisms including MLEs, Chamberlin and Courant rule, and resolute, irresolute,
and preference function versions of many commonly studied voting rules. We provide a characterization of
statistical consistency for any GDSR w.r.t. any statistical model and asymptotically tight bounds on the con-
vergence rate. We investigate the complexity of winner determination and a wide range of strategic behavior
called vote operations for all GDSRs, and prove a general phase transition theorem on the minimum num-
ber of vote operations for the strategic entity to succeed. We also characterize GDSRs by two social choice
normative properties: anonymity and finite local consistency.
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1. INTRODUCTION
Social choice theory studies how to aggregate agents’ opinions or preferences to make a
(joint) decision. Traditional social choice theory concerns how to reach a consensus that
is evaluated by agents’ subjective satisfaction of the decision. Ideally, we would like to
respect agents’ opinions and preferences and make a decision to satisfy all agents,
which is often impossible due to their conflicting preferences. A typical example is
political elections.

In many multi-agent scenarios, the goal of social choice is to aggregate agents’ pref-
erences to reveal the ground truth or make an objectively optimal decision for the deci-
sion maker, who may not be the group of agents. For example, online retailers (decision
makers) aggregate reviewers’ ratings of an item to provide an estimate to the true pop-
ularity of the item, to make decisions such as whether or not to continue selling this
item. In such settings, instead of making a joint decision (e.g. the aggregated score) to
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satisfy the agents (e.g. the reviewers), we want to make a decision with high objective
quality evaluated w.r.t. the ground truth. Still, we often need to respect agents’ prefer-
ences and use a good mechanism in the social choice sense, for scenarios with strong
societal context, e.g. a group of friends vote to decide a restaurant for dinner. Even
for scenarios with less societal context, e.g. meta-search engines [Dwork et al. 2001],
recommender systems [Ghosh et al. 1999], crowdsourcing [Mao et al. 2013], semantic
webs [Porello and Endriss 2013], and peer grading for MOOC [Raman and Joachims
2014], some social choice axiomatic properties are still desired.

These new applications of social choice in multi-agent scenarios naturally lead to
the following challenging question: “How can we design new social choice mechanisms
with desirable statistical, computational, and social choice axiomatic properties?”

1.1. Our Contributions
Recently, Azari Soufiani et al. [2014] follow a “design by statistic, evaluation by so-
cial choice and computer science” paradigm and propose a statistical decision-theoretic
framework to discover new mechanisms as decision rules, then evaluate their compu-
tational and axiomatic properties. In this paper, we answer the above question by pur-
suing a design by social choice, evaluation by statistics and computer science paradigm.
That is, we propose a novel framework where all mechanisms automatically satisfy
some desired social choice axiomatic properties, and examine the statistical and com-
putational aspects of them. More precisely, we propose generalized decision scoring
rules (GDSRs) that naturally extend generalized scoring rules [Xia and Conitzer 2008]
to arbitrary preference space and decision space, including sets of alternatives with
fixed or unfixed size, rankings, and sets of rankings. We show that GDSRs cover a wide
range of existing social choice mechanisms including MLEs, Chamberlin and Courant
rule, and resolute, irresolute, and ranking versions of all positional scoring rules, STV,
ranked pairs, etc. We obtain the following general results.

Statistical properties: We focus on statistical consistency, which is a desirable statis-
tical property that requires the mechanism to reveal the ground truth with probability
1 as the data size goes to infinity. We obtain the following characterization of consistent
GDSRs w.r.t. any given statistical model.

Theorem 1 (informal). A GDSR is statistically consistent w.r.t. a statistical model if
and only if for any ground truth d, the GDSR is robust against smaller perturbations
around the profile corresponding to the probability distribution associated with d.
We also provide asymptotically tight bounds on the convergence rate for all GDSRs.

Computational properties: We prove that winner determination and computing
vote operations for any GDSR are fixed-parameter tractable w.r.t. the number of al-
ternatives. Vote operations are a new and general class of agents’ strategic behavior
covering coalitional manipulation, bribery, control by adding/deleting votes, etc. We
also prove the following theorem on the phase transition of the number of necessary
vote operations for the strategic entity to achieve her goal.

Theorem 7 (informal). For any integer GDSR and any vote operations, the number
of operations needed is one of the following four cases with probability that goes to 1 as
the number of i.i.d. votes goes to infinity: (1) 0, (2) Θ(

√
n), (3) Θ(n), and (4)∞.

Axiomatic properties: We prove the following axiomatic characterization for GDSRs.

Theorem 8 (informal). A social choice mechanism is a GDSR if and only if it satisfies
anonymity and finite local consistency.



Main conceptual contributions. The framework of GDSRs and the corresponding
new paradigm towards the design and analysis of new social choice mechanisms are
the main conceptual contributions. In addition, the notion of vote operations provides
a novel framework for unifying various types of strategic behavior as well as obtain-
ing new results on worst-case complexity and average-case complexity (via the phase
transition theorem), as we will show in Corollary 2.

Main technical contributions. We feel that there are two main technical contri-
butions, especially compared to existing results for generalized scoring rules. (1) The
proof for the characterization of statistical consistency (Theorem 1) involves a novel
application of a multivariate central limit theorem. (2) The proof for the phase transi-
tion on minimum number of vote operations (Theorem 7) involves a novel application
of sensitivity analysis for ILPs.

1.2. Related Work and Discussions
The study of statistical properties of social choice mechanisms can be dated back to the
Condorcet Jury Theorem in the 18th century [Condorcet 1785], which states that when
there are two decisions, the majority rule is statistically consistent w.r.t. a simple sta-
tistical model. Most recent work on statistical approaches towards social choice focused
on computation and characterization of the maximum likelihood estimators (MLEs) of
various statistical models [Conitzer and Sandholm 2005; Braverman and Mossel 2008;
Conitzer et al. 2009; Elkind et al. 2010; Xia and Conitzer 2011; Procaccia et al. 2012;
Lu and Boutilier 2011; Azari Soufiani et al. 2012, 2013; Caragiannis et al. 2013]. While
most previous research are case-by-case analysis of existing social choice mechanisms,
GDSRs provides a novel and general framework to obtain new social choice mecha-
nisms, and also to obtain general results on statistical properties, especially statistical
consistency (Theorem 1).

The study of computational aspects of social choice mechanisms, especially win-
ner determination and agents’ strategic behavior, were initiated by the seminal work
of Bartholdi et al. [1989a,b, 1992]. There is a large literature on these problems in
the computational social choice community, for example [Hemaspaandra et al. 1997;
Conitzer et al. 2007; Procaccia and Rosenschein 2007; Friedgut et al. 2008; Xia and
Conitzer 2008; Faliszewski et al. 2009; Xia et al. 2009; Betzler et al. 2011; Obraztsova
and Elkind 2011; Mossel and Racz 2012; Chierichetti and Kleinberg 2012; Davies et al.
2014], among many others. See recent surveys by Faliszewski and Procaccia [2010],
Faliszewski et al. [2010], and Rothe and Schend [2013]. While most previous results
are case-by-case, our general theorems in Section 5 work for all GDSRs and all vote
operations. The phase transition theorem (Theorem 7) suggests that the minimum
number of vote operations is likely to be easy to compute in practice. Thus the theo-
rem is negative if we want to use high complexity to protect elections, but it is positive
in some other cases where fast computation is favored, for example to compute the
margin of victory for post-election audits [Cary 2011; Magrino et al. 2011; Xia 2012].
This significantly extends the phase transition phenomenon for manipulation [Xia and
Conitzer 2008; Mossel et al. 2013] to other types of strategic behavior and other mech-
anisms (GDSRs).

The study of axiomatic characterizations of social choice mechanisms has been pop-
ularized since Arrow’s impossibility theorem [Arrow 1950]. In addition to voting rules,
axiomatic characterizations have been extended to other application domains, for ex-
ample recommender systems [Pennock et al. 2000] and ranking systems [Altman and
Tennenholtz 2010]. The axiomatic characterization of GDSRs (Theorem 8) is similar
to the axiomatic characterization of generalized scoring rules [Xia and Conitzer 2009],
and can be used to show that some mechanisms are not GDSRs (e.g. Example 7). To



the best of our knowledge, our results on statistical consistency and vote operations
proved are not previously known even for generalized scoring rules.

After all, why are GDSRs useful? We feel that there are at least two reasons. First,
because GDSRs and vote operations are very general, the results obtained in this pa-
per can be applied to existing social choice mechanisms to understand the important
questions on statistical, computational, and axiomatic properties. Specifically, the ap-
plications of statistical consistency (Theorem 1) in Section 4 are new, and most applica-
tions of the phase transition theorem (Theorem 7) are new. Second, more importantly,
the generality and structure of GDSRs allow us to design new social choice mecha-
nisms along the new paradigm of design by social choice, evaluation by statistics and
computation: we can easily obtain new mechanisms that satisfy anonymity and finite
local consistency, and then use the general theorems in this paper to evaluate and
compare them w.r.t. statistical and computational properties. The design may also be
automated using machine learning, as briefly discussed by Xia [2013] for generalized
scoring rules.

2. PRELIMINARIES
Let C = {c1, . . . , cm} denote a set ofm alternatives and let S denote the set of all possible
preferences that the agents can report. In this paper, we assume that S = L(C) for
illustration. All results apply to choices of S with finite elements. Each agent casts
a vote in S to represent her preferences. The vector of all agents’ votes P is called a
profile. Let S∗ = S ∪ S2 ∪ · · · denote the set of all profiles. In the literature, S is often
the set of all linear orders over C, denoted by L(C), but can also be other sets such as
subsets of alternatives as in approval voting.

Let D denote the set of (joint) decisions. A mechanism (or voting rule) r is a mapping
that assigns to each profile a single decision in D. Common choices of D are: (1) C,
where mechanisms are often called resolute voting rules; (2) (2C\∅), where mechanisms
are often called irresolute voting rules; and (3) L(C), where mechanisms are often called
preference functions (a.k.a. social welfare functions).

Many commonly-studied voting rules have resolute, irresolute, and preference func-
tion versions. For example, an irresolute positional scoring rule is characterized by a
scoring vector ~s = (s1, . . . , sm) with s1 ≥ s2 ≥ · · · ≥ sm. For any alternative c and any
linear order V ∈ L(C), we let ~s(V, c) = sj , where j is the rank of c in V . Given a pro-
file P , the irresolute version of positional scoring rule chooses all alternatives c that
maximize

∑
V ∈P ~s(V, c), where P is viewed as a multi-set of votes. The resolute ver-

sion chooses a single alternative by further applying a tie-breaking mechanism, and
the preference function version ranks the alternatives w.r.t. their scores, and uses a
tie-breaking mechanism when necessary.

As another example, the single transferable vote (STV) rule is naturally defined as a
preference function that outputs a ranking in the followingm−1 steps: in each step, the
alternative ranked in the top positions least often is eliminated from the profile;1 the
outcome ranking is the inverse of the elimination order. The resolute version of STV
simply outputs the top-ranked alternative in the winning ranking, and an irresolute
version contains all alternatives that can be made the winner for some tie-breaking
mechanisms (c.f. the parallel-universes tiebreaking [Conitzer et al. 2009]).

In the Chamberlin and Courant rule [Chamberlin and Courant 1983], we are given
a satisfaction function ~s = (s1, . . . , sm) (c.f. the scoring function for positional scoring
rules) and a number k ∈ N. We want to choose k alternatives such that the total sat-
isfaction is maximized, where the satisfaction of an agent w.r.t. a set of k alternatives

1In case there is a tie, we apply a tie-breaking mechanism.



is her maximum satisfaction of any single alternative in the set evaluated by ~s. The
Monroe rule [Monroe 1995] further requires that each alternative can only be used to
satisfy no more than dnk e agents.

In this paper, given S, D, and the number of agents n, a statistical model (model
for short) M = (D,Sn, ~π) has three parts: a parameter space D, which is the same as
the decision space, a sample space Sn, and a set of distributions over S, denoted by
~π = {πd : d ∈ D}. Intuitively, πd is the distribution over i.i.d. votes when the ground
truth is d.

Definition 1 (Mallows’ model with fixed dispersion [Mallows 1957]) Given C
and 0 ≤ ϕ ≤ 1, the model is (L(C),L(C)n, ~π) such that for any profile P , we have
πW (P ) =

∏
V ∈P

(
1
ZM

ϕKendall(V,W )
)

, where Kendall(V,W ) is Kendall-tau distance
between V and W , that is, the number of different pairwise comparisons in V and W .
ZM is the normalization factor such that ZM =

∑
U∈L(C) ϕ

Kendall(U,W ).

Throughout the paper we let Pn denote an i.i.d.-generated profile of n votes from a
distribution πd that is clear from the context. We further require that πd(V ) > 0 for all
V ∈ S and all d ∈ D. GivenM = (D,Sn, ~π), a mechanism r is statistically consistent2

w.r.t. M if for all d ∈ D, limn→∞ Pr(r(Pn) = d) → 1, where the n votes in Pn are
generated i.i.d. from πd. That is, a statistically consistent mechanism correctly reveals
the ground truth with probability 1 as n goes to infinity.

3. GENERALIZED DECISION SCORING RULES
For any K ∈ N, let BK = {b1, . . . , bK} represents the K dimensions of RK . A total
preorder (preorder for short) is a reflexive, transitive, and total relation. Let Pre(BK)
denote the set of all preorders over BK . For any ~p ∈ RK , we let Order(~p) denote the
preorder D over BK where bk1 D bk2 if and only if [~p]k1 ≥ [~p]k2 . That is, the k1-th
component of ~p is at least as large as the k2-th component of ~p. For any preorder D, if
b D b′ and b′ D b, then we write b =D b′. Each preorder D naturally induces a (partial)
strict order B, where b B b′ if and only if b D b′ and b′ 4 b.

Definition 2 (Generalized decision scoring rules) Given an decision space D,
K ∈ N, f : S → RK and g : Pre(BK) → D, we define a generalized decision scor-
ing rule (GDSR), denoted by GDSR(f,g), to be a mapping so that for any profile P ,
GDSR(f,g)(P ) = g(Order(f(P ))), where f(P ) =

∑
V ∈P f(V ).3

Moreover, if f(V ) ∈ ZK for all V ∈ S, then GDSR(f,g) is called an integer GDSR.

In words, a GDSR first uses f to transform the input profile P to a vector f(P ) =∑
V ∈P f(V ) in RK , then use g to select the winner based on the preorder over the

components in f(P ). For any V ∈ S, f(V ) is called a generalized scoring vector, f(P )
is called the total generalized score vector. To simplify notation, we let Orderf (P ) =
Order(f(P )). We note that Orderf (P ) is a preorder over BK , which means that it may
contain ties. For any distribution π over S, we define f(π) =

∑
V ∈S π(V )f(V ) and

Orderf (π) = Order(f(π)). In this paper, we assume that no components in the gen-
eralized scoring vectors are redundant. That is, for each pair k1 6= k2, there always
exists V ∈ S such that [f(V )]k1 6= [f(V )]k2 . This is without loss of generality because if
there is a redundant component, we can easily remove it without changing the GDSR.

Example 1 (Borda) Borda is the positional scoring rule with scoring vector ~s = (m−
1,m− 2, . . . , 0). K = m. fB and gB are defined as follows.

2This should not be confused with the consistency axiom in social choice.
3Equivalently, GDSRs can be defined geometrically similar to hyperplane rules [Mossel et al. 2013].



fB : For any V ∈ L(C) and any i ≤ m, [fB(V )]i is the score of ci in V . That is, ~s(V, ci).
Hence, for any profile P and i ≤ m, [fB(P )]i is the total Borda score of ci in P .
gB : For the resolute version (D = C), gB selects the alternative that corresponds to

the largest component in fB(P ) (and uses a tie-breaking mechanism when necessary);
for the irresolute version (D = (2C \ ∅)), gB selects all alternatives that correspond to
the largest components in fB(P ); for the preference function version (D = L(C)), gB
selects Order(fB(P )) if it is a linear order, otherwise uses a tie-breaking mechanism to
obtain the winning linear order. 2

Example 2 (STV) For STV, the generalized scoring vectors have exponentially many
components. For every proper subset A of C and every alternative c not in A, there is a
component in the vector that contains the number of times that c is ranked first if all
alternatives in A are removed. We define GDSR(f,g) as follows.
• K =

∑m−1
i=0

(
m
i

)
(m− i); the elements of BK are indexed by (A, j), where A is a proper

subset of C and j ≤ m, cj /∈ A.
• [f(V )](A,j) = 1, if after removing A from V , cj is at the top of the modified V ; other-
wise, [f(V )](A,j) = 0.
• g mimics the process of STV to select a winner (for the resolute version), a set of
winners (for the irresolute version, using the parallel-universes tiebreaking [Conitzer
et al. 2009]), or a ranking (for the preference function version). 2

Example 3 (MLE) MLE with a fixed-order tie-breaking4 of any modelM is a GDSR.
Let K = |D|, D = {d1, d2, . . . , dK}, and for any V ∈ S and any i ≤ K, [f(V )]i =
log πdi(V ). g outputs the decision that corresponds to the largest component and uses
the same tie-breaking mechanism as in the MLE. Not all MLEs are GDSRs. For exam-
ple, the MLE that uses the first agent’s vote to break ties is not a GDSR as it violates
anonymity (see Theorem 8). 2

Example 4 (The Chamberlin and Courant rule) The Chamberlin and Courant
rule is a GDSR where each component of f(V ) is indexed by a set of k alternatives,
and its value is the satisfaction of V via the given satisfaction function. 2

MLEs and the Chamberlin and Courant rule are not generalized scoring rules because
the decisions are not single winners. We will show that the Monroe rule is not a GDSR
in Example 7 after presenting the axiomatic characterization (Theorem 8).

In addition, we can prove by construction that many other commonly studied so-
cial choice mechanisms are integer GDSRs. The constructions are similar to those for
generalized scoring rules [Xia and Conitzer 2008].

Proposition 1 Generalized scoring rules [Xia and Conitzer 2008] are GDSRs with
D = C. The Chamberlin and Courant rule (for integer satisfaction function) is a GDSR.
The resolute version, irresolute version, and preference function version of positional
scoring rules (for integer score vectors), Bucklin, Copeland, maximin, ranked pairs, STV
are integer GDSRs.5

4. STATISTICAL CONSISTENCY
We first introduce some definitions to present the results.

Definition 3 (Extension of a preorder) We say that D′∈ Pre(BK) is an extension of
D∈ Pre(BK), if for all b, b′ ∈ BK , we have (b B b′) ⇒ (b B′ b′). For any D,D′∈ Pre(BK),
we let D ⊕ D′ denote the preorder in Pre(BK) obtained from D by using D′ to break ties.

4A fixed-order tie-breaking break ties among alternatives w.r.t. a fixed linear order over all alternatives.
5Definitions of these rules can be found in [Nurmi 1987].



That is, bi is strictly preferred to bj in (D ⊕ D′) if and only if (1) bi B bj , or (2) bi =D bj
and bi B′ bj .

For example, [c1 B′ c2 B′ c3] is an extension of [c1 =D c2 B c3], but is not an extension
of [c1 =D c3 B c2].

Definition 4 (Possible linear orders) Given a generalized scoring function f , we de-
fine the set of possible linear orders, denoted by PL(f), to be the linear orders over
BK that are the orders of the total score vector of some profile. Formally, PL(f) =
{Orderf (P ) : P ∈ S∗)} ∩ L(BK).

Definition 5 (Neighborhood) For any D∈ Pre(BK), we define the neighborhood of D
w.r.t. f , denoted by Nbrf (D), to be all linear orders over BK that can be obtained from D
by using a linear order in PL(f) to break ties. That is, Nbrf (D) = {D ⊕ B∗:B∗∈ PL(f)}.
Given f , the neighborhood of a distribution π, denoted by Nbrf (π), is the neighborhood
of f(π). That is, Nbrf (π) = Nbrf (Orderf (π)).

For example, let m = 3, let fB be the function for Borda as in Example 1, and let π
be the distribution where π(c1 � c2 � c3) = π(c1 � c3 � c2) = 0.5. Then OrderfB (π) =
[c1 B c2 =D c3] and NbrfB (π) = {[c1 B c2 B c3], [c1 B c3 B c2]}. We note that the
definition of neighborhood does not involve the g function.

Theorem 1 Given M = (D,Sn, ~π), f , and g, GDSR(f,g) is consistent w.r.t. M if and
only if for all d ∈ D and all B∈ Nbrf (πd), we have g(B) = d.

Proof: The theorem is mainly based on the following lemma, which characterizes the
asymptotic behavior of Orderf (Pn). It states that for any distribution π over S, if we
generate votes in Pn i.i.d. from π, then Orderf (Pn) asymptotically almost surely (a.a.s.)
falls in the neighborhood of π w.r.t. f . We recall that it is assumed that the generalized
scoring vectors have no redundant components, which means that no pair of compo-
nents in the total generalized score vector are always equal for all profiles.

Lemma 1 Given a generalized scoring function f , for any distribution π that is positive
everywhere on S, we have:

(1) for any B∈ Nbrf (π), there exists a constant δB > 0 so that for sufficiently large n,
Pr(Orderf (Pn) =B) > δB.

(2) for any D 6∈ Nbrf (π), limn→∞ Pr(Orderf (Pn) =D) = 0.

Proof: We first illustrate the idea behind the proof in a very special case where
Orderf (π) is a linear order. In this case Nbrf (π) = {Orderf (π)}. Then, the Cen-
tral Limit Theorem tells us that for each linear order V , the frequency of V in Pn
goes to π(V ) as n → ∞, and the noise is O(n−1). That is, with probability that
goes to 1, votes in Pn are distributed as π + O(n−1)πnoise. Then, when n is suffi-
ciently large, the O(n−1)πnoise part cannot affect Orderf (π). Hence, as n goes to ∞,
Orderf (Pn) = Orderf (π) ∈ Nbrf (π).

The proof for the general case is more involved, because if Orderf (π) is not a lin-
ear order, then the noise part O(n−1)πnoise acts as a tie-breaker and thus cannot be
overlooked even for large n. Our main mathematical tool for estimating πnoise is the
Multivariate Lindeberg-Lévy Central Limit Theorem [Greene 2011, Theorem D.18A],
which states that for i.i.d. generated vector-valued random variables Xi, if the covari-
ance matrix Σ for the components of Xi is nonsingular, then (

∑n
i=1Xi − nE(Xi))/

√
n

converges in probability to a multivariate normal distribution N (0,Σ). However, this
theorem cannot be directly applied to analyze the asymptotic frequencies of the lin-
ear orders because the resulting covariance matrix is singular. This is because for any



given n, the number of occurrences of all m! linear orders must sum up to n, which
means that they are linearly correlated.

Let S = {l1, . . . , lm!} denote the set of all m! linear orders. To avoid the singularity,
our analysis will focus on l1, . . . , lm!−1. For any j ≤ m! − 1, let ~vj denote the vector in
{0, 1}m!−1 where the j-th component is 1 and all other components are zeros. We then
define i.i.d. multivariate random variables X1, . . . , Xn, where each Xi takes ~vj with
probability π(lj), and takes ~0 with probability π(lm!). It is not hard to verify that the
mean of X1 is E(X1) = (π(l1), . . . , π(m!−1)) and the covariance matrix is the following.

Σπ =


π(l1)− π(l1)

2 −π(l1)π(l2) · · · −π(l1)π(lm!−1)
−π(l2)π(l1) π(l2)− π(l2)

2 · · · −π(l2)π(lm!−1)
...

...
−π(lm!−1)π(l1) −π(lm!−1)π(l2)· · ·π(lm!−1)− π(lm!−1)

2


Since each diagonal element is strictly larger than the sum of the absolute values of

other elements in the same row, Σπ is non-singular according to the Levy-Desplanques
Theorem [Horn and Johnson 1985]. Let Yn = X1 + . . . + Xn. Each Yn naturally cor-
responds to a profile Pn of n votes, where for all j ≤ m! − 1, [Yn]j is the number of
occurrences of lj , and n −

∑m!−1
j=1 [Yn]j is the number of occurrences of lm!. By the mul-

tivariate Central Limit Theorem, Ynoise = Yn−nE(X1)√
n

converges in distribution to the
multivariate normal distribution N (0,Σπ).
Part (1) of the lemma. For any B∈ Nbrf (π), there exists a profile P such that (1)
Orderf (P ) ∈ S, and (2) Orderf (π) ⊕ Orderf (P ) =B. We define ~p ∈ Rm! such that for
all j ≤ m!, [~p]j = P (lj)/|P | − 1/m!, where P (lj) is the number of occurrences of lj in P .
That is,

∑
j [~p]j = 0 and for all j, |[~p]j | ≤ 1. Since Order(~p) = Orderf (P ) and is a strict

order, there exist positive numbers δ1, . . . , δm!−1 such that for any vector ~q ∈ Rm! with
(1)
∑
j [~q]j = 0 and (2) for all j ≤ m!−1, |[~p]j− [~q]j | < δj , we have Orderf (~q) = Orderf (~p).

Let S =
∏m!−1
j=1 [π(lj)− 1

m! −δj , π(lj)− 1
m! +δj ] denote a hypercube in Rm!−1. When ~x is

generated from N(0,Σπ), the probability that ~x ∈ S is strictly positive because N(0,Σπ)
has full support. It is not hard to prove that for any Yn, if Ynoise ∈ S, then for the
corresponding profile Pn we have Orderf (Pn) = Orderf (π)⊕Orderf (~p) =B. Hence the
probability for Orderf (Pn) =B is at least Pr(Ynoise ∈ S), which converges to Pr(~x ∈ S)
when ~x is generated from N (0,Σπ). This proves part (1).
Part (2) of the lemma. For any D6∈ Nbrf (π), we prove the lemma in the following
three cases.

Case 1: D does not extend Orderf (π). Following a similar argument with the case
where Orderf (π) is a linear order, if bi is strictly preferred to bj in Orderf (π), then with
probability that goes to 1, bi is strictly preferred to bj in Orderf (Pn). So the probability
for Orderf (Pn) =D goes to 0.

Case 2: D is not a linear order. We recall that for any pair of k1, k2 ≤ K with k1 6=
k2, there exists a linear order l such that [f(l)]k1 6= [f(l)]k2 . Therefore, following the
Berry-Esseen theorem, the probability of a tie between the k1-th component and k2-th
component of f(Pn) for i.i.d. generated Pn is O(n−0.5), which goes to 0 as n→∞.

Case 3: D is a linear order and extends Orderf (π), but there is no profile B∈ PL(f)
such that D= Orderf (π)⊕ B. It follows that D 6∈ PL(f), otherwise D= Orderf (π)⊕ D,
which is a contradiction. Hence for any profile Pn, f(Pn) 6=D, which means that
Pr(f(Pn) =D) = 0. �

The “if” direction follows after Lemma 1. To prove the “only if” direction, if there
exists o and B∈ Nbrf (πd) with g(B) 6= o, then by Lemma 1, as n → ∞, the probability
for the order over the components of the total generalized score vector to be B is non-



negligible. Hence, with non-negligible probability GDSR(f,g) will not output o when Pn
is generated i.i.d. from πd, which means that GDSR(f,g) is not consistent. �

Theorem 1 can be applied to prove that STV is statistically consistent w.r.t. the Mal-
lows model and the model by Conitzer and Sandholm [2005].

Proposition 2 STV (preference function) is consistent w.r.t. the Mallows model. STV
(resolute rule) is consistent w.r.t. all models for positional scoring rules proposed
by Conitzer and Sandholm [2005].

Proof: We will use the following straightforward corollary of Theorem 1.

Corollary 1 Given a model M = (D,Sn, ~π), if for all d ∈ D and all extensions B∈
L(BK) of Orderf (πd) we have g(B) = d, then GDSR(f,g) is consistent w.r.t.M.

The GDSR formulation of STV (as a resolute rule and as a preference function) is
the same as in Example 2. W.l.o.g. suppose the ground truth parameter d = [c1 � · · · �
cm]. By Corollary 1, to show that STV (preference function) is consistent w.r.t. Mϕ,
it suffices to show that for any 2 ≤ k ≤ m, after removing Ck = {ck+1, . . . , cm}, ck
has strictly the lowest expected plurality score, where the expectation is taken over a
randomly generated ranking fromMϕ given d. To this end, for any i < k, we consider
the following one-one mapping. For any rankings V where ci is ranked at the top after
all alternatives in Ck are removed, we switch the positions of ci and ci+1. This will give
us another ranking V ′ where ci+1 is ranked in the top position if alternatives in Ck
are removed. It is easy to check that Kendall(V, d) = Kendall(V ′, d) − 1, which means
that the expected plurality score of ci is higher than the expected plurality score of
ci+1 after Ck is removed. This shows that if Ck is removed, then the expected score of
ck is strictly smaller than all other remaining alternatives. Hence for any B that is an
extension of Orderf (πd), g(B) = d. By Corollary 1, STV is consistent w.r.t.Mϕ.

To prove that STV (resolute rule) is consistent w.r.t. M~s, w.l.o.g. suppose d = c1,
it suffices to show that for any C ⊆ C, after removing C, c1 has the strictly largest
expected plurality score. This can be proved by a similar argument to the proof for
Mϕ: for any other alternative c 6= c1, for any linear order V where c1 is ranked in the
top after removing C, we can obtain another linear order V ′ by switching the positions
of c1 and c′. Since the position of c1 in V is strictly higher than the position of c1 in
V ′, we have πd(V ) ≥ πd(V

′), and the inequality is strict for some V . The proposition
follows after a similar argument as forMϕ. �

The next theorem characterizes all GDSRs that are consistent w.r.t. some models.

Theorem 2 A GDSR is consistent w.r.t. some model if and only if for all d ∈ D, g−1(d)∩
PL(f) 6= ∅.
We note that the condition in Theorem 2 is stronger than requiring that the GDSR is
an onto mapping.
Proof: The “if” direction: For any profile P ′ with Orderf (P ′) ∈ g−1(d) ∩ PL(f),
since Orderf (P ′) is a linear order, there exists t ∈ N so that Orderf (tP ′ ∪ S) =
Orderf (P ′) =B, where tP ′ ∪ S is the profile composed of t copies of P ′ plus each linear
order in S. We note that Pd = tP ′ ∪ S is a profile that contains all types of linear or-
ders. Then, we define a distribution πd such that for any linear order V , πd(V ) = Pd(V )

|Pd| ,
where Pd(V ) is the number of occurrences of V in Pd. Consistency follows after Theo-
rem 1, because the neighborhood of Pd only contains f(Pd).

The “only if” direction. Suppose there exists d ∈ D such that g−1(d) ∩ PL(f) = ∅. We
prove the following lemma.

Lemma 2 For any distribution π and any generalized scoring function f , Nbrf (π) ⊆
PL(f).



Proof: For any B∈ Nbrf (π), let PB be a profile such that B= Orderf (π)⊕Orderf (PB).
The existence of PB is guaranteer by the definition of Nbrf (π) (Definition 5). For any
n, we let Qn = Q1

n ∪Q2
n be a profile composed of the following two parts.

(1) The first part Q1
n contains the following votes: for any V ∈ S, there are bπ(V ) · nc

copies of V .
(2) The second part Q2

n contains b
√
nc copies of PB.

By the Central Limit Theorem, for any i, j such that bi is strictly preferred to bj in
Orderf (π), as n goes to infinity [f(Q1

n)]i− [f(Q1
n)]j = Θ(n) a.a.s.; for any i, j such that bi

is tied with bj in Orderf (π), as n goes to infinity |[f(Q1
n)]i−[f(Q1

n)]j | = O(1) a.a.s. There-
fore, Q2

n effectively acts as a tie-breaker for Orderf (π) in the same way as Orderf (PB).
This shows that there exists n such that Orderf (Qn) =B and proves the lemma. �

By this lemma, because g−1(d) ∩ PL(f) = ∅, for any distribution π and any B∈
Nbrf (π), g(B) 6= d. By Therom 1, GDSR(f,g) is not consistent w.r.t. any model. �

4.1. Convergence Rate
GivenM = (D,Sn, ~π) and a consistent GDSR(f,g), we next give an upper bound on the
convergence rate for GDSR(f,g) to reveal the ground truth with high probably under
i.i.d. generated votes. Let smax denote the maximum absolute value of the components
in all generalized scoring vectors. That is, smax = maxV,j |[f(V )]j |. Let smin denote the
minimum non-zero absolute value of the components in all generalized scoring vectors.
Let dmin denote the smallest non-zero difference between the components in all f(πd).
That is, dmin = mini,j≤K,d{|[f(πd)]i − [f(πd)]j | : [f(πd)]i 6= [f(πd)]j}. Let pmin denote
the minimum non-zero probability of any linear order under any parameter, that is,
pmin = minV,d πd(V ).

Theorem 3 Suppose GDSR(f,g) is a consistent estimator for M = (D,Sn, ~π). For any
d ∈ D and n ∈ N, we have:

Pr
(
GDSR(f,g)(Pn) 6= d

)
< K · exp

(
−n · dmin8s2max

)
+

(K(K − 1)smax)3

(2pmin)1.5(smin)3
√
n

= O(n−0.5)

Proof: Let Strict(πd) denote the set of strict pairwise comparisons in Orderf (πd), that
is, (bi, bj) ∈ Strict(πd) if and only if bi is strictly preferred to bj in Orderf (πd). For any
profile P , if Orderf (P ) is a linear order that extends Orderf (πd), then Orderf (P ) ∈
Nbrf (πd). By Theorem 1, GDSR(f,g)(P ) = d. Hence, if GDSR(f,g)(P ) 6= d, then there
are only two possibilities: (1) for some (bi, bj) ∈ Strict(πd), [f(P )]j ≥ [f(P )]i, or (2) there
exist i 6= j with [f(P )]i = [f(P )]j .

For case (1), for any pair of (bi, bj) ∈ Strict(πd), we let X1, . . . , Xn denote i.i.d. vari-
ables that represents [f(l)]i − [f(l)]j for randomly generated l from πd. Let Yn =
(X1 + · · · + Xn)/n. We have E(Xi) ≥ dmin, V ar(Xi) < 2smax, and each Xi takes a
value in [−2smax, 2smax]. By Hoeffding’s inequality [Hoeffding 1963], we have: Pr(Yn ≤
0) = Pr(Yn − E(X1) ≤ −E(X1)) ≤ exp

(
− 2n2E(X1)
n(4smax)2

)
≤ exp

(
−n · dmin8s2max

)
.

For case (2), for any pair of i, j with [f(πd)]i = [f(πd)]j , we define Xi and Yn similarly
as in case (1). The third moment of X1 is no more than s3max and V ar(Xi) ≥ pmins

2
min.

By Berry-Esseen theorem, the probability for Yn = 0 is no more than (smax)
3

(pmin)1.5(smin)3
√
n

.
Combining the above calculations, for (1) we only need to consider adjacent pairs

in Strict(πd) and for (2) we need to consider all pairs of tied components. Hence the
probability that either (1) or (2) holds is at mostK ·exp

(
−n · dmin8s2max

)
+ (K(K−1)smax)3

(2pmin)1.5(smin)3
√
n

,
which proves the theorem. �



The next theorem states that the O(n−0.5) bound in Theorem 3 is asymptotically
tight for some model and GDSR.

Theorem 4 There exists a model M where D = C and a GDSR r such that (1) r
is consistent w.r.t. M, and (2) there exists d ∈ D such that for all even numbers n,
Pr(r(Pn) 6= d) = Ω(n−0.5), where votes in Pn are generated i.i.d. from πd.

Proof: Let there be three alternatives {c1, c2, c3}, D = C, and S = L(C). We define the
probability distributions in modelM as follows:

πc1(c1 � c2 � c3) = 0.5, πc1(c1 � c3 � c2) = 0.5
πc2(c2 � c1 � c3) = 0.5, πc2(c2 � c3 � c1) = 0.5
πc3(c3 � c1 � c2) = 0.5, πc3(c3 � c2 � c1) = 0.5

Let r be the Borda rule with fixed order tie-breaking c1 � c2 � c3, except in one case:
if c1’s total score is strictly the largest, and the total scores of c2 and c3 are exactly the
same, then the winner is c2 (instead of c1 for Borda). It is not hard to verify that r is
a GDSR, using the same fB in Example 1, and a slightly different g′B that selects c2
when the preorder is c1 B c2 =D c3, otherwise g′B is the same as gB . By Theorem 1, r is
consistent w.r.t.M.

For any profile P and alternative c, let sB(P, c) denote the Borda score of c in P . For
any even n, when the ground truth is c1, the probability for sB(Pn, c2) = sB(Pn, c3) is(
n
n/2

)
/2n. By Stirling’s formula, we have(

n
n/2

)
2n

=
n!

(n2 !)22n
≈

√
2πn(ne )n

(
√
πn( n2e )n/2)22n

=

√
2√
πn

= Ω(n−0.5)

Similar to the proof of Theorem 3, it is not hard to show that the probability for the
total score of c1 to be the highest is 1− exp(−Ω(n)) = 1−o(n−0.5). So the probability for
sB(Pn, c1) > sB(Pn, c2) = sB(Pn, c3) is Ω(n−0.5). In all such cases r(Pn) = c2 6= c1, which
proves the theorem. �

For specific distributions and GDSRs we can improve the convergence rate as in
the following proposition. The proof follows after a straightforward application of the
Hoeffding’s inequality and is thus omitted.

Proposition 3 Suppose GDSR(f,g) is consistent w.r.t. M = (D,Sn, ~π). For any d ∈ D
and n ∈ N, if for all extensions D of Orderf (πd), g(D) = d, then:

Pr
(
GDSR(f,g)(Pn) 6= d

)
< K · exp

(
−n · dmin8s2max

)
Example 5 The bound in Proposition 3 applies to STV (preference function) w.r.t.Mϕ

for all ϕ and STV (resolute rule) w.r.t.M~s for all ~s, following the proof of Proposition 2.

5. COMPUTATIONAL PROPERTIES
We start with a simple observation showing that winner determination is fixed-
parameter tractable w.r.t. the number alternatives.6 A problem is fixed-parameter
tractable w.r.t. parameter p if there exists an algorithm that solves the problem and
runs in time h(p)|I|O(1) for some function h of p, where |I| is the input size. One natu-
ral interpretation is that when h(p) is small, the problem can be solved in polynomial
time.

Theorem 5 Computing the decision for any integer GDSR is fixed-parameter tractable
w.r.t. the number of alternatives.

6We assume that f and g in GDSR(f,g) can be computed in polynomial time in m.



Proof sketch: The theorem is proved by observing that (1) computing f(P ) takes
h(m) · n steps for some function h, (2) computing the preorder over BK takes no more
than K2h′(m) · n steps, and (3) computing g takes time that only depends on K. �

5.1. Vote Operations and an ILP Formulation
In many types of strategic behavior investigated in the (computational) social choice
literature, the strategic entity (e.g. a group of manipulators, a briber, or a chairman)
affects the outcome of the mechanism by changing the votes in the profile. For GDSRs,
any such action can be uniquely represented by changes in the total generalized scor-
ing vector. We first recall the definitions of two well-studied types of agents’ strategic
behavior, then formally define vote operations for integer GDSRs.

Definition 6 ([Zuckerman et al. 2009]) In a constructive (respectively, destructive)
UNWEIGHTED COALITIONAL OPTIMIZATION (UCO) problem, we are given a mecha-
nism r, a non-manipulators’ profile PNM , and a (dis)favored decision d ∈ D. We are
asked to compute the smallest number of manipulators who can cast votes PM such
that d = r(PNM ∪ PM ) (respectively, d 6= r(PNM ∪ PM )).

Definition 7 ([Faliszewski et al. 2009]) In a constructive (respectively, destructive)
OPT-BRIBERY problem, we are given a profile P and a (dis)favored decision d ∈ D.
We are asked to compute the smallest number k such that the strategic individual can
change no more than k votes such that d is the winner (respectively, d is not the winner).

Definition 8 Given an integer GDSR(f,g), a set of vote operations is denoted by ∆ =

[~δ1 · · ·~δT ], where for each i ≤ T , ~δi ∈ ZK is the column vector that represents the changes
made to the total generalized score vector by applying the i-th vote operation. For each
l ≤ K, let ∆l denote the l-th row of ∆.

Example 6 Actions in UCO are vote operations where ∆ is {f(V ) : V ∈ S} (the order
of the generalized score vectors in ∆ does not matter). That is, the group of manipula-
tors is the strategic individual, and each vote cast by a manipulator is a vote operation.

Actions in OPT-BRIBERY are vote operations where ∆ is {f(W ) − f(V ) : V,W ∈ S}.
That is, each action of “changing a vote from V to W ” is a vote operation. 2

Next, we present an integer linear program ILPD to compute the minimum number of
vote operations for the strategic entity to change the preorder of the components of the
total generalized score vector to D.

Definition 9 Given GDSR(f,g), a profile P , the vote operations ∆, and a preorder D
over BK , we define ILPD as:

min ‖~v‖1
s.t. ∀oi =D oj : (∆i −∆j) · ~v = [f(P )]j − [f(P )]i

∀oi B oj : (∆i −∆j) · ~v ≥ [f(P )]j − [f(P )]i + 1
∀i : vi ≥ 0 and are integers

(ILPD)

In ILPD, ~v is a column vector, where for each i ≤ T , vi represents the number of the
i-th operation (corresponding to ~δi) taken by the strategic entity. ‖~v‖1 =

∑T
i=1 vi is the

total number of operations. ∆ · ~v is the change in the total generalized scoring vector
introduced by the strategic entity, where for any l ≤ K, ∆l · ~v is the change in the l-th
component of the total generalized score vector.

Next, we define the strategic entity’s three goals and the corresponding computa-
tional problems studied in this paper.



Definition 10 In the CONSTRUCTIVE VOTE OPERATION (CVO) problem, we are given
GDSR(f,g), a profile P , a favored decision d, and a set of vote operations ∆ = [~δ1 · · ·~δT ],
and we are asked to compute the smallest number k, denoted by CVO(P, d), such that
there exists a vector ~v ∈ NT≥0 with ‖~v‖1 = k and g (Order(f(P ) + ∆ · ~v)) = d. If such ~v

does not exist, then we denote CVO(P, d) =∞.
The DESTRUCTIVE VOTE OPERATION (DVO) problem is defined similarly, where d

is the disfavored decision, and we are asked to compute the smallest number k, de-
noted by DVO(P, d), such that there exists a vector ~v ∈ NT≥0 with ‖~v‖1 = k and
g (Order(f(P ) + ∆ · ~v)) 6= d.

In the CHANGE-WINNER VOTE OPERATION (CWVO) problem, we are not given d and
we are asked to compute DVO(P,GDSR(f,g)(P )), denoted by CWVO(P ).

In CVO, the strategic entity seeks to make d win; in DVO, the strategic entity seeks
to make d lose; and in CWVO, the strategic entity seeks to change the current winner.

The relationship between ILPD and CVO, DVO, CWVO is revealed in the following
Lemma, whose proof is straightforward.

Lemma 3 Given GDSR(f,g), a decision d, and a profile P , we have:
• CVO(P, d) < ∞ if and only if there exists D such that g(D) = d and ILPD has an

integer solution;
• DVO(P, d) < ∞ if and only if there exists D such that g(D) 6= d and ILPD has an

integer solution;
• CWVO(P ) < ∞ if and only if there exists D such that g(D) 6= GDSR(f,g)(P ) and

ILPD has an integer solution. (We do not need the input d for this problem.)

Moreover, the solution to each of the three problems is the optimal solution to the
corresponding ILP. For example, if CVO(P, d) <∞, then

CVO(P, d) = min{‖~v‖1 : ~v is the solution to some ILPD where g(D) = d}

5.2. Complexity and Asymptotic Properties of Vote Operations
Theorem 6 For any integer GDSR and any vote operation, CVO, DVO, and CWVO
are fixed-parameter tractable w.r.t. the number of alternatives.

Proof sketch: We show the idea behind the CVO case. By Lemma 3, d can be made to
win by using no more than k vote operations if and only if ILPD has a feasible solution
for some D with g(D) = d. Since K is a function that only depends on m and there are
no more than 3K

2

total preorders over BK to make a given alternative win, the total
number of ILPD is no more than 3K

2

. For each ILPD, the number of variables is T and
the size of the ILP is h′(K)n for some function h′. By Lenstra’s theorem [Lenstra 1983],
checking whether the ILP has a feasible solution takes time in h(K)n, which can be
combined with binary search to compute the feasible solution with the smallest ‖~v‖1.
Since K can be computed from m, the problem is fixed-parameter tractable w.r.t. m. �

We now present the main theorem of this section, which establishes the asymptotic
property of the minimum number of vote operations for the strategic entity to succeed.

Theorem 7 Let GDSR(f,g) be an integer GDSR, let π be a distribution over S, and
let ∆ be a set of vote operations. Suppose we fix the number of alternatives, generate n
votes i.i.d. according to π, and let Pn denote the profile. Then, for any alternative c, any
VO ∈ {CVO,DVO,CWVO7}, and any ε > 0, there exists β∗ > 1 such that as n → ∞,
the probability for the following four events sum up to more than 1−ε: (1) VO(Pn, d) = 0,
(2) 1

β∗
√
n < VO(Pn, d) < β∗

√
n, (3) 1

β∗n < VO(Pn, d) < β∗n, and (4) VO(Pn, d) =∞.

7When VO = CWVO, we let VO(Pn, d) denote CWVO(Pn).



Proof: We recall that f(π) =
∑
V ∈S π(V ) · f(V ). Let Dπ= Order(f(π)). The theorem is

proved in two steps. Step 1: we show that as n goes to infinity, with probability that
goes to one the difference between any pair of components in f(Pn) is either Θ(

√
n)

or Θ(n). Step 2: we apply sensitivity analysis to ILPs that are similar to ILPD (Def-
inition 9) to prove the theorem. The idea behind Step 2 is, for any profile Pn, if the
difference between a pair of components in f(Pn) is Θ(

√
n), then we consider this pair

of components to be “almost tied”; if the difference is Θ(n), then we consider them to be
“far away”. Take CVO for example, we can easily identify the cases where CVO(Pn, d)
is either 0 (when GDSR(f,g) = d) or ∞ (by Lemma 3). Then, we will first try to break
these “almost tied” pairs by using ILPs, and show that if there exists an integer so-
lution ~v, then the objective value ‖~v‖1 is Θ(

√
n). Otherwise, we have to change the

orders between some “far away” pairs by using ILPD’s, and show that if there exists
an integer solution to some ILPD with g(D) = d, then the objective value is Θ(n).

Formally, given n ∈ N and β > 1, let Pβ denote the set of all n-vote profiles P that
satisfy the following two conditions: for any pair i, j ≤ K,

1. if [f(π)]i = [f(π)]j then 1
β

√
n < |[f(P )]i − [f(P )]j | < β

√
n;

2. if [f(π)]i 6= [f(π)]j then 1
βn < |[f(P )]i − [f(P )]j | < βn.

The following lemma is a straightforward application of the Central Limit Theorem.

Lemma 4 For any ε > 0, there exists β such that limn→∞ Pr(Pn ∈ Pβ) > 1− ε.
For any given ε, in the rest of the proof we fix β to be a constant guaranteed by

Lemma 4. The next lemma will be frequently used in the proof.

Lemma 5 Fix an integer matrix A. There exists a constant βA that only depends on A,
such that if the following LP

min ‖~x‖1, s.t. A · ~x ≥ ~b (1)

has an integer solution, then the solution is no more than βA · ‖~b‖∞.

Proof: We apply the result by Cook et al. [1986] on the sensitivity analysis of ILPs. Let
A be a m∗ × n∗ integer matrix, which includes the constraints ~x ≥ ~0. Suppose LP (1)
has a (non-negative) integer solution. Then, it follows from Theorem 5 (ii) in [Cook
et al. 1986] that LP (1) has a (non-negative) integer solution ~z such that ‖~z − ~0‖∞ ≤
n∗ ·M(A) · (‖~b − ~0‖∞ + 2), where M(A) is the maximum of the absolute values of the
determinants of the square sub-matrices of A. Since A is fixed, the right hand side
becomes a constant, that is, ‖~z‖∞ = O(‖~b‖∞). Therefore, there exists βA such that
the optimal value for integer solutions of LP (1) is no more than ~1 · (~z)′ ≤ n∗‖~z‖∞ ≤
βA · ‖~b‖∞. �

We cannot directly apply Lemma 5 to ILPD because sometime ‖~b‖ is Θ(n). LetD′ 	 D
denote the strict orders that are in B′ but not in B. That is, (oi, oj) ∈ (D′ 	 D) if and
only if oi B′ oj and oi =D oj . We define the following ILP that is similar to ILPD to
check whether there is a way to break “almost tied” pairs of components so that d
is the winner. For any preorder D and any extension of D, denoted by D′, we define
ILPD′	D as follows.

min ‖~v‖1
s.t. ∀oi =D′ oj : (∆i −∆j) · ~v = [f(P )]j − [f(P )]i

∀(oi, oj) ∈ (D′ 	 D) : (∆i −∆j) · ~v ≥ [f(P )]j − [f(P )]i + 1
∀i : vi ≥ 0

(ILPD′	D)

We note that some constraints in ILPD′	D depend on D (not only depend on the pair-
wise comparisons in (D′ 	 D)). This will not cause confusion because we will always



indicate D in the subscript. It is easy to see that ILPD′	D has a solution ~v if and only
if the strategic entity can make the order between any pairs of oi, oj with oi =D oj to
be the one in D′ by applying l-th operation for vl times, and the total number of vote
operations is ‖~v‖1.

Below we firsts prove the theorem for CVO, then show how to extend the proof to
DVO and CWVO. The following two claims identify the profiles in Pβ for which CVO
is Θ(

√
n) and Θ(n), respectively, whose proofs are relegated to the appendix.

Claim 1 There exists N ∈ N and β′ > 1 such that for any n ≥ N , any P ∈ Pβ , if (1) d is
not the winner for P , and (2) there exists an extension D∗ of Dπ= Orderf (π) such that
g(D∗) = d and ILPD∗	Dπ has an integer solution, then 1

β′
√
n < CVO(P, d) < β′

√
n.

Claim 2 There exists β′ > 1 such that for any P ∈ Pβ , if (1) d is not the winner for
P , (2) there does not exist an extension D∗ of Dπ= Orderf (π) such that ILPD∗	Dπ has
an integer solution, and (3) there exists D such that g(D) = d and ILPD has an integer
solution, then 1

β′n < CVO(P, d) < β′n.

Lastly, for any P ∈ Pβ such that GDSR(f,g)(P ) 6= d, the only case not covered by
Claim 1 and Claim 2 is that there is no D with GDSR(f,g)(D) = d such that ILPD has
an integer solution. It follows from Lemma 3 that in this case CVO(P, d) =∞. We note
that β′ in Claim 1 and Claim 2 does not depend on n. Let β∗ be an arbitrary number
that is larger than the two β′s. This proves the theorem for CVO.

For DVO, we only need to change g(D∗) = d to g(D∗) 6= d in Claim 1, and change
g(D) = d to g(D) 6= d in Claim 2. For CWVO, CWVO(P ) is never 0 and we only need
to change g(D∗) = d to g(D∗) 6= GDSR(f,g)(P ) in Claim 1, and change g(D) = d to
g(D) 6= GDSR(f,g)(P ) in Claim 2. �

Remarks on the non-triviality of the proof. Lemma 4 is quite straightforward
and naturally corresponds to a random walk in multidimensional space. However, we
did not find an obvious connection between random walk theory and the observation
made in Theorem 7. The main difficulty in proving Theorem 7 is handling ties among
components of the total generalized score vector for GDSRs. Exact ties only happen
with negligible probability for randomly generated profile Pn, but it is not clear when
some components are close (but not exactly the same), how often the strategic entity
can make some components equivalent to achieve her goal. To tackle this difficulty, we
convert the vote manipulation problem to multiple ILPs and apply Lemma 5.

It is not hard to see that control by adding/deleting votes [Bartholdi et al. 1992],
margin of victory [Cary 2011; Magrino et al. 2011; Xia 2012], and minimum manipula-
tion coalition size [Pritchard and Wilson 2009] are vote operations. Therefore, we have
the following corollary of Theorem 7.

Corollary 2 For any integer GDSR, any distribution π over S, suppose n agents’ votes
are i.i.d. generated from π. The number of actions needed for constructive (or de-
structive) unweighted coalitional manipulation (or bribery, control by adding/deleting
votes), margin of victory, or minimum manipulation coalition size is one of the following
with probability 1 as n→∞. (1) 0, (2) Θ(

√
n), (3) Θ(n), and (4)∞.

For some cases the proof needs a minor modification. For example, for bribery it is only
possible to choose operation f(W )− f(V ) when some agents cast V in the profile. This
is handled by restricting the set of vote operations to {f(W ) − f(V ) : π(V ) > 0}, and
adding more constraints to the ILPs. We omit the definitions of some types of strategic
behavior in Corollary 2 and the formal proof due to the space constraint.



6. AN AXIOMATIC CHARACTERIZATION
A mechanism is anonymous, if it is insensitive to permutations over agents’ votes.

Definition 11 A set P of profiles is consistent, if for any P1, P2 ∈ P with r(P1) = r(P2),
we have P1∪P2 ∈ P. A mechanism r is locally consistent on a consistent set P if for any
P1, P2 ∈ P with r(P1) = r(P2), we have r(P1 ∪ P2) = r(P1) = r(P2).

Definition 12 For any natural number t, a mechanism r is t-consistent if there exists
a partition {P1, . . . ,Pt} of all profiles such that for all i ≤ t, r is locally consistent within
Pi. A voting rule r is finitely locally consistent if it is t-consistent for some finite t.

Finite local consistency naturally generalizes the consistency axiom in social choice,
which is the case for t = 1, and is a weak constraint because as we have shown, many
commonly studied mechanisms satisfy it. We feel that this is desirable because it does
not put too much constraint on the new mechanisms that can be discovered in the
GDSR framework. Meanwhile, GDSRs have a nice mathematical structure that facili-
tates further exploration. For example, the g function can be equivalently defined as a
decision tree for which there are many learning algorithms.

Theorem 8 Given an decision space, a mechanism is a GDSR if and only if it satisfies
anonymity and finite local consistency.

The proof is similar to the proof of the axiomatic characterization for generalized scor-
ing rules [Xia and Conitzer 2009] and can be found on Arxiv. Similar to generalized
scoring rules, finite local consistency implies homogeneity, which requires that for any
profile P and any natural number l, we have r(P ) = r(lP ). Therefore, any social choice
mechanisms that does not satisfy homogeneity is not a GDSR. Because Dodgson’s rule
does not satisfy homogeneity [Fishburn 1977; Brandt 2009], which means that they
are neither generalized scoring rule nor GDSR. We next show that the Monroe rule
does not satisfy homogeneity, which means that it is not a GDSR.

Example 7 Let m = 6 and k = 2, V = [a1 � a2 � others � a3], and V ∗ = [a3 �
a2 � others � a1]. Let P = (V, V, V ∗). The Monroe winner for P is {a1, a3}, where
a1 is assigned to both voters whose preferences are V and a3 is assigned to the voter
whose preferences are V ∗. However, the Monroe winner for 2P is {a1, a2}, where a1
is assigned to three voters whose preferences are V , and a2 is assigned to two voters
whose preferences are V ∗ and one voter whose preferences are V . This means that the
Monroe rule does not satisfy homogeneity and is not a GDSR. 2

7. FUTURE WORK
A natural (and ongoing) direction for future research is to design and deploy new
application-specific social choice mechanisms under the GDSR framework, and fur-
ther understand their statistical, computational, and axiomatic properties, including
for example statistical minimaxity, (in)approximability, and other natural axiomatic
properties such as monotonicity. How to incorporate GDSR framework and machine
learning algorithms is also an important and promising direction.
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