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Introduction to Combinatorial Voting

We recall from Section 2.3 that one major direction in Computational Social Choice

is to investigate the computational complexity of winner determination for some

common voting rules, and then design heuristic, fixed-parameter tractable, or ap-

proximation algorithms for voting rules for which the winner is hard to compute.

In those situations, the computational complexity mainly comes from the choice of

voting rule.

However, in many real life group decision making problems, the computational

complexity comes from the extremely large number of alternatives. In such cases

it may take an unbearably long time to compute the winner even for simple voting

methods such as Borda. Perhaps the most natural and prominent voting setting

in real-life with an extremely large number of alternatives is combinatorial voting,

a.k.a. voting in multi-issue domains. In combinatorial voting, the set of alternatives

has a combinatorial (namely, multi-issue) structure. That is, there are multiple issues

(or attributes, or characteristics) and each alternative can be uniquely characterized

by a vector of the values these issues take. For example, consider a situation where

the inhabitants of a county vote to determine a government plan. The plan is com-
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posed of multiple sub-plans for several interrelated issues, such as transportation,

environment, and health (Brams et al., 1998). Another example is voting by com-

mittees, in which the voters select a subset of objects (Barbera et al., 1991), where

each object can be seen as a binary issue. In such situations, a voters’ preferences

over one issue may well depend on the values of other issues. For example, a voter

may prefer creating a natural reserve if a highway is built, but if the highway is not

built, she may prefer not creating a reserve.

In the remainder of this dissertation (Chapter 8–12), we will focus on the design

and analysis of voting rules when the set of alternatives has a multi-issue structure. In

this chapter, we give the formal definitions and notation that will be used throughout

these chapters.

Definition 8.0.1 (Combinatorial voting). Let I � �X1, . . . , Xp� denote a set of p �

2 issues, where for each i � p, Xi takes a value in a local domain Di, where �Di� � 2.1

Combinatorial voting refers to the voting setting where the set of alternatives is

X � D1 � � � � �Dp. X is called a multi-issue domain or combinatorial domain.

Example 8.0.2. A group of people must make a joint decision on the menu for

dinner (the caterer can only serve a single menu to everyone). The menu is composed

of two issues: the main course (M) and the wine (W). There are three choices for

the main course: beef (b), fish (f), or salad (s). The wine can be either red wine (r),

white wine (w), or pink wine (p). The set of alternatives is a multi-issue domain:

X � �b, f, s� � �r, w, p�.

We call that the set of alternatives C studied in previous chapters constitutes an

unstructured domain, because it does not need to have a multi-issue structure. In the

above definition, we use X (instead of C) to emphasize that the set of alternatives

1 This is the standard assumption for studying voting in multi-issue domains, because otherwise
either the domain can be simplified (by removing issues that can only take one value), or it has no
multi-issue structure (when there is only one issue).
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has a multi-issue structure. Following convention, for any i � p we let D�i �

D1 � � � � �Di�1 �Di�1 � � � � �Dp.

A special case of multi-issue domains consists of the domains where all variables

are binary, that is, for all i � p, Di � �0i, 1i�. Such multi-issue domains are called

multi-binary-issue domains. Even in multi-binary-issue domains, the number of al-

ternatives is 2p, which is already exponentially large. Moreover, we recall that the

voting setting we defined in Chapter 2 requires a voter to submit a linear order over

the set of alternatives. This requirement causes the major problem in combinato-

rial voting, which is that it is infeasible for a voter to give a full ranking over an

exponentially large number of alternatives. Therefore, in combinatorial voting, the

voters need to use another voting language to represent their preferences, and then

we can design novel voting rules to aggregate voters’ preferences represented by such

a voting language.

An obvious solution is the following: we can simply ask voters to report only

a (small) part of their preference relation and apply a voting rule that needs this

information only. For example, we can ask the voters to report their most-preferred

alternatives, and then apply the plurality rule. The voting language used in this case

is the set of all alternatives instead of the set of all linear orders over the alternatives.

One problem with this type of solution is the following: as soon as the number of

alternative is large (2p � n), the voters are likely to be unhappy about only expressing

a small portion of their preferences. Moreover, the result of voting is likely to be

completely insignificant or even catastrophic. For instance, with 5 voters and 6

binary issues, it is very likely that all 5 voters vote for different alternatives (since

there are 26 � 64 alternatives), and the winner under the plurality rule might be

disliked by all but one voter. In fact, this phenomenon is a type of multiple-election

paradox, which we will discuss in more detail in the next section.

Even though the above (plurality) solution itself does not work very well, it
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reveals the following two important high-level criteria for voting rules in multi-issue

domains.

The first criterion: The quality of the voting language, which includes compactness

and expressiveness.

The second criterion: The quality of the voting rule after the votes have been

collected. Here the quality is measured by computational efficiency, satisfia-

bility of axiomatic properties (see Section 2.2), resistance to multiple-election

paradoxes, etc.

The compactness of a voting language can be measured by the number of bits that

is used to represent a voter’s preferences. For example, Θ�p � 2p� bits are necessary

and sufficient to represent the voting language that consists of all linear orders over

X , because log��2p�!� is Θ�p � 2p�. Measuring the expressiveness of a voting language

is more complicated. We consider the following two dimensions.

The first dimension of expressiveness: the general usability of the language.

That is, the percentage of voters who are comfortable using this language to

express their preferences. For example, if we only ask the voters to report their

top-ranked alternative, no voter will feel ill at ease to do so. However, as we

will see in the next section, voters are not always comfortable expressing their

preferences in issue-by-issue voting and sequential voting.

The second dimension of expressiveness: the informativeness of the language.

That is, how much of the voters’ preferences are expressed by the language. For

example, the top-ranked alternative only represents a tiny portion of the voter’s

preferences. The languages used in issue-by-issue voting rules and sequential

voting rules both allow voters to express much more of their preferences.
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8.1 Multiple-Election Paradoxes

Combinatorial voting has been extensively studied by economists. Most of previous

work has focused on letting voters vote on the issues separately, in the following way.

For each issue (simultaneously, not sequentially), each voter reports her preferences

for that issue, and then, a local rule is used to select the winning value that the

issue will take. This voting process is called issue-by-issue or seat-by-seat voting.2

Recently, Ahn and Oliveros (2011) studied a Bayesian game of combinatorial voting,

and showed the existence equilibrium under some conditions. We will not discuss

the Bayesian setting in this dissertation.

Issue-by-issue voting has some drawbacks. First, a voter may feel uncomfortable

expressing her preferences over one issue independently of the values that the other

issues take. This means that, even though the voting language used in issue-by-issue

voting can express more of a voter’s preferences than the voting language that is used

in plurality, it lack usability. That is, only voters whose preferences are separable

(that is, for any issue i, regardless of the values for the other issues, the voter’s pref-

erences over issue i are always the same) are comfortable expressing their preferences

in issue-by-issue voting (Kadane, 1972; Schwartz, 1977). Second, multiple-election

paradoxes arise in issue-by-issue voting (Brams et al., 1998; Scarsini, 1998; Lacy and

Niou, 2000), which we will discuss below in more detail.

Brams et al. (1998) showed that for multi-binary-issue domains, there exists a

profile where the winner under issue-by-issue voting (where all local voting rules are

majority rules) receives zero votes (that is, it is never ranked in the top position by

any voter). Scarsini (1998) showed an even stronger paradox: there exists a profile

2 The names “issue-by-issue” and “seat-by-seat” are a little bit misleading. It may sound like
there is an ordering over issues, according to which the voters vote over issues sequentially. Even
though the election can be organized in this sequential way, effectively these issue-wise elections
are conducted in parallel in issue-by-issue voting, because the voters do not learn the outcomes of
other issues before deciding on an issue.
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where any alternative that is “close” to the winner in terms of Hamming distance

under issue-by-issue voting receives zero votes. These paradoxes exist even when the

voters’ preferences are separable.

We are more interested in the paradoxes demonstrated by Lacy and Niou (2000)

for issue-by-issue voting when the voters’ preferences are non-separable. Of course

in such cases the voters may feel ill at ease reporting their preferences over a single

issue without knowing the values of the other issues. In Lacy and Niou (2000), it is

assumed that voters vote according to their top-ranked alternative. That is, when

a voter is asked to report her preferences over issue Xi, she will report the value

of the Xi component in her top-ranked alternative. This behavior in some sense

corresponds to very optimistic voters, and Lacy and Niou argued that when a voter

does not know the votes of the other voters, she is likely to vote in this way. They

illustrated the paradoxes in the following example.

Example 8.1.1. Suppose there are three voters and the multi-issue domain is com-

posed of three binary issues. The top-ranked alternatives of the three voters are 110,

101, and 011, respectively; and all voters rank 111 in their bottom positions. Now,

by voting over each issue separately in parallel using the majority rule, the winner is

111, which is the least-preferred alternative for all voters.

The above example illustrates the following three types of multiple-election para-

doxes for issue-by-issue voting:

First type of paradox: the winner is a Condorcet loser (who loses to all the

other alternatives in their pairwise elections).

Second type of paradox: the winner is Pareto-dominated by another alter-

native (that is, that alternative is preferred to the winner by all voters).
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Third type of paradox: the winner is ranked in a very low position in all

voters’ true preferences.

8.2 CP-nets

We have seen so far that none of the approaches mentioned above works well. One

common deficiency of them is that the voting languages are not expressive enough.

We have seen that the voting language used by plurality has a high usability (meaning

that all voters are comfortable using it), but it lacks informativeness (meaning that

it only represents a tiny portion of the voters’ preferences). The language used by

issue-by-issue voting is much less usable, because only voters whose preferences are

separable are comfortable with reporting their preferences in issue-by-issue voting,

and only a tiny fraction of the linear orders are separable (Hodge, 2006). But in gen-

eral it is much more informative when the voters’ preferences are separable. However,

none of these languages model the preferential dependence among the issues.

Fortunately, a new language for preference representation in multi-issue domains,

called conditional preference networks, or CP-nets, that captures the dependence

of voters’ preferences among individual issues, was recently proposed in Artificial

Intelligence (Boutilier et al., 2004). Next, we first give the formal definition of CP-

nets, then discuss how to use them as the voting language for sequential voting.

The definition of a CP-net is similar to that of a Bayesian network (Pearl, 1988).

We first give the formal definitions, and the present an example.

Definition 8.2.1. A CP-net N over X consists of two parts:

(a) A directed graph G � �I, E�.

(b) A set of conditional linear preferences �i
�d

over Di, for each setting �d of the

parents of Xi in G. Let CPT �Xi� be the set of the conditional preferences of a

voter on Di; this is called a conditional preference table (CPT).
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A CP-net N captures dependencies across issues in the following sense. N induces

a partial preorder �N over the alternatives X , representing the voter’s preferences,

as follows: for any ai, bi � Di, any setting �d of the set of parents of Xi (denoted by

ParG�Xi�), and any setting �z of I��ParG�Xi� � �Xi��, �ai, �d, �z� �N �bi, �d, �z� if and

only if ai �
i
�d
bi. In words, the preferences over issue Xi only depend on the setting

of the parents of Xi (but not on any other issues). For any 1 � i � p, CPT�Xi�

specifies conditional preferences over Xi. Now, if we obtain an alternative �d� from �d

by only changing the value of the ith issue of �d, we can look up CPT�Xi� to conclude

whether the voter prefers �d� to �d, or vice versa. In general, however, from the CP-net,

we will not always be able to conclude which of two alternatives a voter prefers, if

the alternatives differ on two or more issues. This is why N usually induces a partial

preorder rather than a linear order.

When the graph of N is acyclic, �N is transitive and asymmetric, that is, a strict

partial order (Boutilier et al., 2004). Let O 	 X1 
 � � � 
 Xp. We say that a CP-net

N is compatible with (or, follows) O, if the following is true: if Xi is a parent of Xj

in the graph, then this implies that i � j. That is, preferences over any issue only

depend on the values of earlier issues in O. A CP-net is separable if there are no

edges in its graph, which means that there are no preferential dependencies among

issues.

Example 8.2.2. Let X be the multi-issue domain defined in Example 8.0.2. We

define a CP-net N as follows: M (the main course) is the parent of W (the wine),

and the CPTs consist of the following conditional preferences: CPT �M� 	 �b � f �

s�, CPT �W� 	 �b : r � p � w, f : w � p � r, s : p � w � r�, where b : r � p � w

is interpreted as follows: “when M is b, then, r is the most preferred value for W,

p is the second most preferred value, and w is the least preferred value.” N and its

induced partial order �N are illustrated in Figure 8.1. N is compatible with M 
 W.
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N is not separable.

M W

CPT �M�
b � f � s

CPT �W�
b : r � p � w

f : w � p � r

s : p � w � r

br bp bw

fw fp fr

sp sw sr

(a) A CP-net N . (b) The partial order induced by N .

Figure 8.1: A CP-net N and its induced partial order.

When all issues are binary, a CP-net N can be visualized as a hypercube with

directed edges in p-dimensional space (Domshlak and Brafman, 2002), in the follow-

ing way. Each vertex is an alternative, each dimension corresponds to an issue, and

any two adjacent vertices differ in only one component (issue). That is, for any i � p

and any �d
�i � D

�i, there is a directed edge connecting �0i, �d
�i� and �1i, �d

�i�, and the

direction of the edge is from �0i, �d
�i� to �1i, �d

�i� if and only if �0i, �d
�i� �N �1i, �d

�i�.

Example 8.2.3. Let p � 3 and let N be a CP-net defined as follows: the directed

graph of N has an edge from X1 to X2 and an edge from X2 to X3; the CPTs are

CPT �X1� � �01 � 11�, CPT �X2� � �01 : 02 � 12, 11 : 12 � 02�, CPT �X3� � �02 :

03 � 13, 12 : 13 � 03�. N is illustrated as a hypercube in Figure 8.2 (for simplicity,

in the figure, a vertex abc represents the alternative a1b2c3, for example, the vertex

000 represents the alternative 010203).

A linear order V over X extends a CP-net N , denoted by V � N , if it extends

the partial order that N induces. (This is merely saying that V is consistent with

the preferences implied by the CP-net N .) V is separable if it extends a separable
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X1 X2 X3

000 001

010 011

100 101

110 111

Figure 8.2: The hypercube representation of the CP-net in Example 8.2.3.

CP-net. Given an ordering O over issues, V is O-legal if it extends a CP-net that is

compatible with O. The set of all O-legal linear orders is denoted by Legal�O�.

To present our results, we will frequently use notations that represent the projec-

tion of a vote/CP-net/profile to an issue Xi (that is, the voter’s local preferences over

Xi), given the setting of all parents of Xi. These notations are defined as follows.

For any issue Xi, any setting �d of ParG�Xi�, and any linear order V that extends

N , we let V �Xi:�d
and N �Xi:�d

denote the the projection of V (or, equivalently N ) to

Xi, given �d. That is, each of these notations evaluates to the linear order �i
�d

in

the CPT associated with Xi. For example, let N be the CP-net defined in Exam-

ple 8.2.2. N �W:b � r � p � w. For any O-legal profile P , P �
Xi:�d

is the profile over

Di that is composed of the projections of each vote in P on Xi, given �d. That is,

P �
Xi:�d

� �V1�Xi:�d
, . . . , Vn�Xi:�d

� � �N1�Xi:�d
, . . . ,Nn�Xi:�d

�, where P � �V1, . . . , Vn�, and

for any 1 � i � p, Vi extends Ni.

Let O � X1 � � � � � Xp. The lexicographic extension of an O-compatible CP-net

N w.r.t. O, denoted by LexO�N �, is an O-legal linear order V over X such that for

any 1 � i � p, any �di � D1	� � �	Di�1, any ai, bi � Di, and any �y, �z � Di�1	� � �	Dp, if

ai �N �
Xi:

�di

bi, then ��di, ai, �y� �V ��di, bi, �z�. Intuitively, in the lexicographic extension

of N , X1 is the most important issue, X2 is the next-most important issue, and
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so on; a desirable change to an earlier issue always outweighs any changes to later

issues. We note that the lexicographic extension of any CP-net is unique w.r.t. the

order O. Again, the subscript “O” is sometimes omitted when there is no risk of

confusion. We say that V � L�X � is lexicographic if it is the lexicographic extension

of a CP-net N . For example, let N be the CP-net defined in Example 8.2.2. We

have Lex�N � � br � bp � bw � fw � fp � fr � sp � sw � sr. A profile P is

O-legal/separable/lexicographic, if each of its votes is in Legal�O�/ is separable/ is

lexicographic.

8.3 Sequential Voting

One natural approach to combinatorial voting is sequential voting. Let O denote be

an ordering over the issues. W.l.o.g. O � X1 � X2 � � � � � Xp. Sequential voting

selects the winner in p rounds. In round i, the voters report their preferences over the

ith issue in O, based on which the winning value is selected by applying a local voting

rule, and this winning value is then announced to all the voters. The idea of sequential

voting is not new. For example, Lacy and Niou (2000) suggested to use sequential

voting to circumvent multiple-election paradoxes. But, again, in the sequential voting

process they proposed, voters are sometimes ill at ease reporting their preferences

over issues, and the voters are still assumed to behave optimistically.3 Moreover,

Lacy and Niou argued that the sequential voting process “takes too long,” because

the voters must wait for the results of previous issues to be announced before moving

to the subsequent issues. They argued that “the cost to voters of going to the polls

and the cost to governments of keeping polls open for several days will likely prevent

the use of sequential voting schemes” (Lacy and Niou, 2000).

In fact, the voters do not need to go to voting booths multiple times. It suffices

3 Lacy and Niou (2000) also suggested to let voters vote strategically and sequentially, and showed
that the outcome will always be the Condorcet winner whenever one exists. This is the strategic
sequential voting procedure that will be discussed in Chapter 11.
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for them to report in one shot all their local preferences over single issues, given

all (relevant) valuations of the previous issues. That is, to apply sequential voting

w.r.t. the order O over issues, it suffices for the voters to use an O-compatible CP-

net to represent their preferences. Of course the voters need to report more of their

preferences, and some of them are not used for the voting rule to decide the winner.

This is not a big problem as long as the language is compact (as we will see later

in this section). Similarly to the situation in issue-by-issue voting (where only the

voters with separable preferences are comfortable with reporting their preferences), in

sequential voting we have a similar criterion: if a voter’s preferences are O-legal, then

she is comfortable with reporting their preferences; otherwise she is not comfortable

with reporting her preferences.

The ground-breaking systematic method for analyzing sequential voting was pro-

posed by Lang (2007), who focused on the profiles where voters are comfortable

reporting their preferences (that is, O-legal profiles), and defined sequential voting

rules on top of these profiles.

Definition 8.3.1. (Lang, 2007) Given a vector of local rules �r1, . . . , rp�, where

for each 1 � i � p, ri is a voting rule on Di, the sequential composition of

r1, . . . , rp w.r.t. O, denoted by SeqO�r1, . . . , rp�, is defined for all O-legal profiles

as follows: SeqO�r1, . . . , rp��P � � �d1, . . . , dp� � X , so that for any 1 � i � p,

di � ri�P �Xi:d1���di�1
�.

The sequential composition of local correspondences rc
1, . . . , r

c
p, denoted by

SeqO�r
c
1, . . . , r

c
p�, is defined in a similar way: for any O-legal profile P ,

�d � SeqO�r
c
1, . . . , r

c
p��P � if and only if for each i � p, we have that di � rc

i �P �Xi:d1...di�1
�.

The subscript “O” in SeqO is sometimes omitted when there is no risk of confu-

sion. We note that when a voter’s preferences are O-legal, she only needs to submit

an O-compatible CP-net instead of reporting the entire O-legal linear order. Hence,
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the voting language used by a sequential rule is essentially the set of all O-compatible

CP-nets. Similarly, the voting language used in issue-by-issue voting is essentially

the set of all separable CP-nets (where there are no edges in the graph). We note that

if the voters’ profile is separable, then sequential voting rules become issue-by-issue

voting rules. In that sense, sequential voting rules are extensions of issue-by-issue

voting rules.

To examine the compactness of the set of all O-compatible CP-nets as a voting

language, let us calculate the size of an O-compatible CP-net (which is the sum of

the sizes of all CPTs). It is easy to see that the size of a CP-net largely depends on

how many parents each issue has in the graph. In fact, the size of a CP-net is

p�

i�1

�

Xj�ParG�Xi�

�Dj� log��Di�!�

Therefore, if both the number of members in each local domain and the number

of parents for each issue are small, then the size of the CP-net is polynomial in

the number of issues (for comparison, we recall that in multi-issue domains we need

Θ�p � 2p� bits to represent a linear order, which is exponential in the number of

issues); on the other hand, in the worst case the size of an O-compatible CP-net

is exponentially large in the number of issues. However, in practice it is reasonable

to expect that all local domains are small, and the voters’ preferences over each

issue only depends on a few other issues. Hence, we can expect in practice that

O-compatible CP-nets are a compact language. Obviously O-compatible CP-nets,

as a voting language, are more expressive than the language used by issue-by-issue

voting (that is, separable CP-nets), simply because separable CP-nets are special

cases of O-compatible CP-nets. In fact, it has been shown that the ratio between

the number of O-legal linear orders and the number of separable linear orders is
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Ω� 2p

�
πp

� (Lang and Xia, 2009), which in some sense shows quantitatively how much

more usable O-compatible CP-nets are, compared to separable CP-nets. Table 8.1

provides a comparison of plurality, common voting rules that require voters to report

linear orders (e.g., Borda), issue-by-issue voting rules, sequential voting rules, the

framework introduced in Chapter 9, and the MLE approach taken in Chapter 10, in

terms of the following three aspects: (1) computational efficiency of computing the

winner, (2) compactness of the voting language, and (3) expressiveness of the voting

language, which includes general usability and informativeness.

Table 8.1: Comparing voting rules and languages for combinatorial voting.

Voting method
Computational

efficiency
Compactness

Expressiveness
General usability Informativeness

Plurality High High High Low

Borda, etc. Low Low High High

Issue-by-issue High High Low Medium

Sequential voting High Usually high Medium Medium

H-composition
in Chapter 9

Low–High
(depends on the voters’

common preference

structure)

Usually high High Medium

MLE approach
in Chapter 10

Low–High
(depends on the

probabilistic model)

Usually high High Medium

For (truthful) sequential voting, multiple-election paradoxes are alleviated (Lacy

and Niou, 2000; Lang and Xia, 2009), though they return when voters vote strategi-

cally, as we will see in Chapter 11. One natural question to ask is whether sequential

voting rules satisfy some other desired axiomatic properties for voting rules (see Sec-

tion 2.2). Not surprisingly, the answer depends on whether the local voting rules

satisfy these axiomatic properties. Lang and Xia (2009) asked the following two

questions for any axiomatic property Y .
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1. If the sequential voting rule satisfies Y , is it true that all its local voting rules

also satisfy Y ? This corresponds to the “Global to local” column in Table 8.2.

2. If all local voting rules satisfy Y , is it true that their sequential composition

also satisfies Y ? This corresponds to the “Local to global” column in Table 8.2.

The answers for some of the axiomatic properties described in Section 2.2 are sum-

marized in Table 8.2.4

Table 8.2: Local vs. global for sequential rules (Lang and Xia, 2009).

Criteria Global to local Local to global
Anonymity Y Y
Neutrality Y N

Consistency Y Y
Participation Y N

Pareto efficiency Y N
(Strong) monotonicity Y Y

For neutrality and Pareto efficiency, Xia and Lang (2009) showed that the ex-

istence of voting correspondences that satisfy neutrality (respectively, Pareto ef-

ficiency) can be characterized by the structure of the multi-issue domain: if the

multi-issue domain is composed of two binary variables, then there exists a voting

correspondence that satisfies neutrality (respectively, Pareto efficiency); otherwise

no voting correspondence satisfies neutrality (respectively, Pareto efficiency).5

Nevertheless, we may still argue that in order for voters to feel comfortable ex-

pressing their preferences, sequential voting is quite restrictive at two levels: first,

at the individual voters’ level, sequential voting requires that a voter’s preferences

must be represented by an acyclic CP-net. Second, at the profile level, it requires

4 Since sequential voting rules are defined for O-legal profiles, the definitions of neutrality, Pareto
efficiency, and monotonicity are slightly different. See Lang and Xia (2009).

5 Again, here the definitions of neutrality and efficiency are slightly different from the definitions
in Section 2.2.
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that all voters’ preferences are compatible with the same ordering O. To overcome

these restrictions, we need to consider even more expressive voting languages. One

option is the set of all (possibly cyclic) CP-nets. Obviously it is more expressive,

because it is a superset of the set of all acyclic CP-nets. Chapters 9 and 10 aim at

designing new voting rules for combinatorial voting where the voters use (possibly

cyclic) CP-nets to represent their preferences. In Chapter 9, we will further show

how much more general (possibly cyclic) CP-nets are, by showing the ratio between

the number of O-legal votes and the number of all linear orders over X (note that

any voter should be comfortable with using a possibly cyclic CP-net to represent

her preferences, in the sense that for any linear order, a possibly cyclic CP-net can

be constructed such that the linear order extends this CP-net). Then, we propose

an extension of sequential voting rules to aggregate (possibly cyclic) CP-nets, which

we call hypercubewise composition (H-composition). We will analyze its normative

and computational aspects. This framework was further studied by Li et al. (2011)

and Conitzer et al. (2011b). In Chapter 10, we extend Condorcet’s MLE model to

combinatorial voting.

Chapters 11 and 12 investigate game-theoretic aspects of combinatorial voting.

In Chapter 11 we study the sequential voting game mentioned by Lacy and Niou

(2000), that is, the game where voters cast votes strategically on one issue after

another, following some ordering over the issues. We call this type of voting games

the strategic sequential voting procedure (SSP). Lacy and Niou (2000) proved that

strategic sequential voting6 always selects the Condorcet winner whenever one exists,

but they did not examine whether there are any multiple-election paradoxes for

SSP. In Chapter 11 we show that all three types of multiple-election paradoxes still

arise in strategic sequential voting. Moreover, changing the ordering of the issues

according to which the voters vote on them cannot avoid at least the first and the

6 They called it sophisticated sequential voting, following the convention of Farquharson (1969).
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third paradoxes. Then, in Chapter 12, we will see how to restrict voters’ preferences

over multi-issue domains to obtain strategy-proof voting rules.

At the end of this chapter, let me briefly mention some other work in preference

aggregation over multi-issue domains. Rossi et al. (2004) studied aggregating voters’

preferences represented by partial CP-nets, which allows voters to be “indifferent”

with between the values of some issues. Gonzales et al. (2008) studied aggregating

preferences represented by another compact language called GAI-networks. Xia et al.

(2007a) slightly extended sequential voting rules by removing the constraint that

the order O is fixed before the voting process. However, the above two levels of

restrictions for sequential voting rules still exist. Recently, Conitzer et al. (2009a)

studied the agenda control problem in sequential voting—that is, the chair gets to

choose the over in which the issues are voted on, and investigated its computational

complexity.

8.4 Summary

In this chapter, we introduced the notation used in this dissertation for combinatorial

voting, multiple-election paradoxes, CP-nets, sequential voting rules, and important

criteria for designing new voting rules in combinatorial domains. We also evaluated

voting rules proposed in previous work by these criteria, and the result is summarized

in Table 8.1. We observed that all previous approach either used voting languages

that lack expressivity, or is computationally intractable.
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