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ABSTRACT
Epilepsy surgergy outcome strongly depends on the local-
ization of epileptic focus. The analysis of ictal EEG (scalp
or intracranial) is a gold standard for definition of localiza-
tion of epileptic focus. In order to automate visual analysis
of large amounts of EEG data, we examine the correlations
among electrodes captured by linear, nonlinear and multi-
linear data analysis techniques. We study the performance
of these statistical tools to understand the complex structure
of epilepsy seizure and localize seizure origin. Our analysis
results on four patients with temporal lobe epilepsy reveal
that multiway (Tucker3 [1]) and nonlinear multiway (Ker-
nelized Tucker3) analysis techniques are capable of captur-
ing epileptic focus precisely when validated with clinical
findings whereas linear and nonlinear analysis techniques
(SVD, Kernel PCA) fail to localize seizure origin.
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1 Introduction

Epilepsy is manifested as spontaneous clinical seizures as
a result of paroxysmal, abnormally synchronous neuronal
activity. The localization of the initial seizure discharge
defines the region generating that abnormal activity; con-
versely, electrical manifestations should uniquely define
and elucidate mechanisms of the underlying abnormal neu-
ronal function and structure. Localization and electrical
characteristics of spontaneous epileptic seizures in terms
of visually identified and quantified parameters (distribu-
tion, morphology, energy, frequency, propagation and ter-
mination locations and latencies) and quantified measures
of signals are the goals of our studies. In refractory epilep-
tic patients, detection and localization of seizures’ origin is
important for epilepsy surgery outcome.

1.1 Related Work

The majority of the research devoted to automated detec-
tion of epileptic events concentrates around spike detec-
tion techniques. These studies essentially differ in how
they characterize epileptic spikes and waves. While some
focus on features like amplitude, width and slope, oth-
ers integrate this information with the state of EEG and
build expert systems [2, 3, 4]. Some studies, on the other
hand, describe epileptic spikes and waves in terms of the
information obtained by Fourier Transformation (FT) [5]
or Wavelet Transformation [6, 7]. Complex structure of
epilepsy has also often attempted to be explained by non-
linear dynamics characterizing brain activity [8, 9].

In order to have a broader understanding of the
structure of epileptic events, we will explore how lin-
ear, multi-linear and nonlinear statistical tools perform on
EEG recordings of epileptic patients. Multi-linear mod-
els have been previously applied in the analysis of both
EEG and event related potential (ERP) of EEG recordings.
PARAFAC (Parallel Factor Analysis), one of the most pop-
ular multiway techniques, has been proved to be an effi-
cient tool on EEG analysis [10]. EEG recordings have
been transformed into three-way data containing frequency,
time and channel information. Similar approach has been
employed in an application of variety of PARAFAC algo-
rithms on ERP data, which have been transformed into
a multiway dataset by wavelet decomposition [11]. An-
other application [12], studying the effect of a new drug
on brain activity, also uses multi-linear models on EEG.
Results demonstrate that significant information has been
successfully extracted from a complex drug dataset by us-
ing a multi-linear model (Tucker3), rather than two-way
models such as Principal Component Analysis (PCA). To
our knowledge, multiway models have not been applied for
exploratory analysis of epilepsy. Nonlinear analysis using
kernel methods have been performed on epileptic EEG data
in the context of seizure prediction. These methods employ
supervised learning methods [13] and focus on classifica-



tion of epilepsy periods. On the other hand, we study unsu-
pervised learning models, which explore data without any
prior training phase.

We are particularly interested in localization of
epileptic focus. Although most spike detection techniques
are based on single channel data, context knowledge from
16-channel EEG data has been incorporated in building a
detection system for epileptic sharp waves in [4]. Sharp
wave source localization on multichannel EEG data has
also been applied to determine the areas of interest with
epileptic activity in [14] and then visual inspection is used
to find out clusters. Recently, Independent Component
Analysis (ICA), is combined with spatio-temporal cluster-
ing methods to identify average location and time series of
significant clusters of dipoles on MEG data [15].

1.2 Our Approach and Contributions

The main goal of this work is to understand the character-
istics of epilepsy seizures by exploring the nature of the re-
lationship, which arises between electrodes during seizure
and use this information to localize seizure origins.

• We demonstrate that rank reduction is possible on
EEG data arranged as either two-way matrices or
three-way tensors. We choose the factors or combi-
nation of factors that account for around90% of the
variance for both two-way and three-way methods. In
each factor, the electrodes with large coefficients are
observed to be correlated during epilepsy seizure.

• We transform EEG recordings of epilepsy patients
into three-way data with modes of time samples,
scales and electrodes using wavelet decomposition
based on Mexican-hat wavelet.

• We examine if epilepsy data have (i) linear (ii) multi-
linear (iii) nonlinear structure. We apply data analysis
techniques that capture the above three cases: (i) SVD
(ii) Tucker3 (iii) Kernel PCA and Kernelized Tucker3.

• We compare the performance of data analysis meth-
ods in terms of identifying seizure origin in epilepsy
patients. We demonstrate that multiway analysis tech-
niques, i.e., Tucker3 and Kernelized Tucker3, localize
seizures more precisely while linear/nonlinear meth-
ods on two-way data spread epileptic focus over large
regions.

This paper is organized as follows. Section 2 and Sec-
tion 3 give a brief overview about data analysis techniques
used throughout the paper. Section 4 describes how we
process EEG recordings and construct matrices and tensors
using epileptic EEG data. In Section 5, we discuss and
compare the results of analysis methods with clinical find-
ings.

Figure 1. Tucker3 Decomposition, where tensor A is de-
composed into component matrices X, Y, Z and core tensor
G. Tensor E contains the error term for each entry in A.

2 Linear/ Multi-linear Analysis

Data are often represented in the form of matrices,
AεRd1xd2 , constructed from rows and columns. Multi-
way datasets (tensors), on the other hand, are high-order
datasets, which are in the form ofAεRd1xd2x..dr , where
number of modes is equal tor ≥ 3.

We consider one of the most common techniques in
multiway analysis literature, i.e., Tucker3. This method is
the generalization of Singular Value Decomposition (SVD)
to high-order datasets. It gives us a substantially smaller set
representing the original data. Compared to SVD, it gen-
erates component matrices containing singular vectors for
each mode. On the other hand, Tucker3 represents the rela-
tionships between the modes with a core tensor as opposed
to the presence of diagonal core matrix in SVD.

2.1 Tucker3

Tucker3 model decomposes a tensorAεRmxnxl into three
component matrices and a core tensor G, which shows the
relationships between different modes. Tucker3 decompo-
sition of A is expressed as in equation 1.

Aijk =
R1∑

r1=1

R2∑
r2=1

R3∑
r3=1

Gr1r2r3Xir1Yjr2Zkr3 + Eijk (1)

whereR1, R2 andR3 indicate the number of components
extracted from mode 1, mode 2 and mode 3, respectively.
XεRnxR1 , Y εRmxR2 andZεRlxR3 are the component ma-
trices,GεRR1xR2xR3 is the core tensor andEijk is the error
term (Figure 1).

Tucker3 is the most flexible model among multiway
analysis techniques. Although it suffers from core rota-
tions, which result in non-unique solutions [16], Tucker3
model may be preferred over other multiway analysis meth-
ods such as PARAFAC because of its flexibility in extract-
ing different number of components from each mode.

3 Nonlinear Analysis using Kernel Functions

It is not always possible to explore linear patterns in data.
Data may contain nonlinear structure, which cannot be dis-
covered by well-studied techniques capable of detecting



Gaussian RBF k(x, z) = exp(
−||x−z||2

c
)

Polynomial of degree d k(x, z) = (xT z + θ)
d

Sigmoidal k(x, z) = tanh(κ(xT z) + θ)

Table 1. Common Kernel Functions

linear relations. One way to alter a linear pattern detec-
tion algorithm to a nonlinear one is to add attributes, which
are nonlinear functions of input data. Any kernel method
consists of two steps. First step is the mapping of input
data to feature space through some kernel function (Table
1). Equation 2, as an example, illustrates what additional
attributes are added when input data, x, are mapped to fea-
ture space using a second-degree polynomial kernel func-
tion. The idea of mapping is quite useful but explicit map-
ping to feature space is computationally inefficient. The
famous solution to this problem is the ”kernel trick” ap-
proach [17]. Second step is the application of a classical
learning algorithm on the data mapped to the feature space.

x = (x1, x2) → φ(x) = (x1, x2, x1x2, x1
2, x2

2) (2)

Kernel Principal Component Analysis (Kernel PCA)
[18] is an unsupervised learning method capable of finding
nonlinear patterns in two-way data. Similar to other kernel
methods, Kernel PCA applies two steps. The initial step is
the mapping of input data to a higher dimensional feature
space using a kernel function and the following step is the
application of the well-known PCA model, which is quite
similar to SVD in principle.

3.1 Kernelized Tucker3

Although multiway analysis methods are powerful enough
to capture multi-linear structure of data, which cannot be
discovered by linear detection models, their power is lim-
ited to a subset of nonlinear structures (multi-linearity ad-
dresses only some specific sort of nonlinearity). We want
to point out that multiway datasets may possess more com-
plex structures than multi-linearity. This structure cannot
be captured by classical nonlinear analysis techniques be-
cause current nonlinear methods are limited to two-way
data.

We introduce a novel technique, which combines ker-
nel methods with Tucker3 model on three-way tensors. The
idea originates from indirect fitting approach, which refers
to algorithms applied on cross-product or covariance ma-
trices [19].

Let AεRmxnxl be a three-way tensor. First, second
and third modes represent variables (e.g. electrodes), first-
class features (e.g. frequency) and second class features
(e.g. time samples) respectively. Our goal is to capture
the structure among variables given first and second class
features. We form two different kernel tensorsK1 andK2

to find the structure in the first mode of tensor A:
Let Ai be theith slice, thenith slice of K, Ki, is

computed asKi = φ(Ai) ∗ φ(Ai)t, whereφ is the kernel

Figure 2. Kernel Tensor Construction. Top figure illustrates
how kernel matrix is computed for each slice of A along
mode 3. Each of these kernel matrices are treated as the
slices of a kernel tensor,K1. Similarly, in the figure at the
bottom, kernel matrices are computed for each slice of A
along mode 2 to form kernel tensorK2.

function. Kernel matrices are all centered. We then com-
puteK1 andK2 by slicing tensor A along second and third
mode, respectively as shown in Figure 2. After the compu-
tation ofK1 andK2, next step is to fit Tucker3 model to
these kernel tensors for exploratory analysis.

4 Data Construction and Analysis

Complex structure of epilepsy has not been characterized
with linear/nonlinear relations yet. We explore the perfor-
mance of linear, multi-linear and nonlinear analysis tech-
niques in extracting information from epilepsy data. We
are specifically interested in the success of these techniques
in localization of seizure origin. We focus on the portion of
the data, which corresponds to seizure period of each pa-
tient since it has been shown that strong correlation arises
between electrodes when a seizure develops [20].

4.1 Two-way Data Analysis

We apply 2-way linear (SVD) and 2-way nonlinear (Ker-
nel PCA) methods on two types of matrices. First type
of dataset contains information from time domain of each
electrode. We compute instantaneous signal power for each
time sample from each electrode. We then construct a ma-
trix, T, where each entryTij represents the instantaneous
power ofjth time sample for theith electrode. Second type
of data contains signal power at different frequencies. We
use Fast Fourier Transformation (FFT) to find frequency
content of the signal and then form matrix F, where each
entryFij represent the signal power atjth frequency com-
ponent atith electrode (Figure 3).

We perform SVD and Kernel PCA1 on the two matri-
ces given in Figure 3. In Kernel PCA, we apply Gaussian
RBF (Radial Basis Function) kernel with a parameter deter-

1All kernel matrices are centered in Kernel PCA.



Figure 3. Data Construction. We construct two types of
matrices, T and F, for two-way linear (SVD) and two-way
nonlinear (Kernel PCA) analysis. Data are also arranged as
a three-way tensor, A with modes electrodes x scale x time
samples for multiway data analysis.

mined using each patient’s data2. Singular vectors for SVD
or eigenvectors for Kernel PCA are selected such that they
explain around90% of the variance. For each component,
we choose the electrodes with large (≥ 0.45) correlation
values with that component.

4.2 Three-way Data Analysis

Even though FT is a widely used technique for frequency
spectrum analysis, it is not sufficient to represent informa-
tion content of non-stationary signals, e.g., EEG. FT as-
sumes that all frequencies identified in frequency spectrum
are available during the whole time duration. However, it is
not the case for non-stationary signals. We use wavelet de-
composition that is capable of identifying which frequency
component is available during which time periods. Similar
to [10, 11], we construct our dataset as three-way data, A,
where each entryAijk represents the power of wavelet co-
efficient atith electrode forjth scale (contains frequency
information [11]) atkth time sample.

The data are transformed using a Mexican-hat wavelet
with a central frequency of 0.25 in the frequency band
of 1-35Hz. Other studies, which have previously applied
wavelet decomposition techniques on EEG data to form
multiway datasets, have used complex Morlet wavelet [11].
However, we make use of Mexican-hat as a mother wavelet
since we aim to capture epileptic events and Mexican-hat
wavelet has been particularly shown to fit epileptic events
well [6].

Our datasets contain single seizure period for each
patient. After computing wavelet coefficients, we apply
downsampling using a certain downsampling factor due to
memory problems encountered while fitting Tucker3 model
to large datasets. Another approach would be indirect fit-
ting of Tucker3. Indirect-fitting would be computationally
more efficient than direct fitting of Tucker3 model in our
case because with indirect fitting, Tucker3 model is ap-
plied on much smaller tensors. Since we apply Kernelized

2As Gaussian kernel parameter, c, we use the estimate for standard
deviation of the data recorded on each electrode.

Tucker3 on tensors constructed using indirect fitting, we do
not downsample the data.

We make use of PLS-Toolbox [21] for Tucker3 anal-
ysis and work in MATLAB environment. In order to
determine the right number of components for Tucker3
model, we examine the core elements and look into how
much variation each component combination explains [21].
For Kernelized Tucker3, Gaussian kernel parameters cho-
sen for Kernel PCA are used while forming kernel matrix
slices. Similar to two-way analysis, we choose the elec-
trodes with large (≥ 0.45) correlation values for each factor
in the component matrix corresponding toelectrodesmode.

5 Results and Interpretation

We studied 4 patients with temporal lobe epilepsy with dif-
ferent pathology substrates. Patient 1 had right temporal
lobe epilepsy with a cavernoma on the right temporal pole.
Patient 2 and 3 had right temporal lobe epilepsy with tem-
poral tumor. Patient 4 had right temporal epilepsy with
mesial temporal sclerosis. All patients were investigated
for intractable partial epilepsy at Marmara and Yeditepe
University Epilepsy Centers. Ictal EEG recordings were
done with long term video EEG monitoring with scalp
electrodes. The data analyzed with referentially or bipolar
recorded surface EEG obtained with a nominal band pass
of 1-35 Hz, a time scale of 30 mm per second and an op-
timal display of gain will be used for visual analyses of
seizure characteristics. The recording of EEG with refer-
ential electrode Cz was used for computational analyses.

For each patient, we evaluate the performance of

• Linear Techniques on 2-way data: SVD on matrix T
and SVD on matrix F (Figure 3),

• Nonlinear Techniques on 2-way data: Kernel PCA on
matrix T and Kernel PCA on matrix F,

• Multiway Techniques on 3-way data: Tucker3 on ten-
sor A, Kernelized Tucker3 on tensorsK1 and K2

(Figure 2, 3).

We determine a set of electrodes (Figure 4), which
are highly-correlated with significant components extracted
using computational analysis techniques (Table 2). These
electrodes are compared with clinical findings given in Ta-
ble 3. Results demonstrate that Tucker3 and Kernelized
Tucker3 both define the location of seizure origin precisely
and close to clinical findings for all 4 patients. On the other
hand, linear and nonlinear techniques on 2-way data, distin-
guish electrodes spread over a larger region around epilep-
tic focus and therefore, provide less precise results.

Kernelized Tucker3 is computationally more expen-
sive than Tucker3 because in addition to Tucker3 modeling,
it also involves kernel function calculations. Therefore, our
results suggest that Tucker3 is the model, which captures
epileptic focus both precisely and efficiently.



SVD on T SVD on F Tucker3 on A KPCA on T KPCA on F K. Tucker3 onK1 K. Tucker3 onK2

PATIENT 1 F7, T3, T5, T3, T5, O1, F7, T3, F8, T5, O1, F8, FP1, FP2, T5, F7, T3, F8, F7, T3, F8

F8, T4 F8, T4 T4 T4, T6 T4, T6, O1 T4 T4, F4

PATIENT 2 FP2, T4 FP2, T4, C4, FP2, F4, F8, FP1, FP2, C4, FP1, FP2, T3, FP1, FP2, T4 FP2, F8, C4,
T5 C4, T4, T6 T4, T6 C4, T4, T6 T4, T6

P4, O2

PATIENT 3 FP1, FP2, T4, FP1, FP2, T4, FP1, FP2, T3, FP1, FP2, F8, FP1, FP2, F8, FP1, FP2, F8, FP1, FP2, T3,
T6, P4 T6, P4 T6, T4, F4, P4 T6, T4, P4 T6, T4, P4 F4,F7, T3 T6, T4, P4

PATIENT 4 T6 T6 F7, F8, T6 FP1, FP2, T3, FP1, FP2, T3, F7, F8, T6, F7, F8, T6

F4, C4, T4, P4, T6 T3

T6, P4

Table 2. Comparison of Results. Electrodes which are found to be highly-correlated with significant factors explaining at least
90% of the variance in data.

Figure 4. 10-20 System of Electrode Placement

Epileptic Focus
PATIENT 1 F8, T4

PATIENT 2 T4,C4, T6, P4

PATIENT 3 T4, C4, P4, F4

PATIENT 4 F8, T4, T6, P4

Table 3. Clinically Determined Seizure Origins

6 Discussion and Future Work

A successful outcome of epilepsy surgery depends on the
localization of the epileptic tissue which is structurally and
functionally abnormal. The availability of reliable meth-
ods of seizure prediction and localization could enhance the
quality and safety of patients with epilepsy; facilitate im-
plementation of short-term interventions to abort a seizure.
Efforts to predict have gathered momentum over the past
decade with the ready availability of high-speed computer
processing and the application of sophisticated mathemati-
cal techniques to biological processes [22].

In studies of EEG, there is now a generally accepted
understanding that low dimensional chaos per se is not
likely to be manifest in most EEG datasets [23]. This
understanding has led to a considerably more sophisti-
cated view of nonlinearities in EEG and to the develop-

ment of methods of detecting such effects. In particu-
lar, work over the past 5 years or so by several groups
[24, 25, 26, 27, 28, 29] has focused on a variety of nonlinear
measures, mostly based on correlation integrals [30]. Un-
like previous work, these more recent investigations do not
claim to detect chaos in EEG. Rather they take an empirical
approach seeking to correlate values of nonlinear measures
with disease states either in space or in time. Our analy-
sis results strongly support this approach by showing that
multi-linear analysis techniques (Tucker3) and nonlinear
multiway methods (Kernelized Tucker3), which both use
space, time and frequency information of EEG recordings,
reveal the localization of epileptic focus most precisely.

In our study, potential criticism is the number and ho-
mogeneity of the patients. In future studies, we will inves-
tigate more patients with the same etiological pathologies.
From computational point of view, we will examine how
well Tucker3, high-order generalization of SVD, performs
compared to Multi-linear ICA, which is the generalization
of ICA to multiway data.
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