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Abstract

Background: Cell cooperation is a critical event during tissue development. We present the first precise metrics to quantify
the interaction between mesenchymal stem cells (MSCs) and extra cellular matrix (ECM). In particular, we describe
cooperative collagen alignment process with respect to the spatio-temporal organization and function of mesenchymal
stem cells in three dimensions.

Methodology/Principal Findings: We defined two precise metrics: Collagen Alignment Index and Cell Dissatisfaction Level,
for quantitatively tracking type I collagen and fibrillogenesis remodeling by mesenchymal stem cells over time.
Computation of these metrics was based on graph theory and vector calculus. The cells and their three dimensional type I
collagen microenvironment were modeled by three dimensional cell-graphs and collagen fiber organization was calculated
from gradient vectors. With the enhancement of mesenchymal stem cell differentiation, acceleration through different
phases was quantitatively demonstrated. The phases were clustered in a statistically significant manner based on collagen
organization, with late phases of remodeling by untreated cells clustering strongly with early phases of remodeling by
differentiating cells. The experiments were repeated three times to conclude that the metrics could successfully identify
critical phases of collagen remodeling that were dependent upon cooperativity within the cell population.

Conclusions/Significance: Definition of early metrics that are able to predict long-term functionality by linking engineered
tissue structure to function is an important step toward optimizing biomaterials for the purposes of regenerative medicine.
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Introduction

Natural and engineered tissues are a collection of cells arranged

within a structural scaffold of extracellular matrix (ECM) proteins

that provide biochemical and mechanical cues to direct function.

This function is therefore dependent upon the spatio-temporal

resolution of matrix proteins, cells and signaling molecules. 3D

extracellular matrices in vitro and in vivo affect the structural,

mechanical and biochemical make-up of the cellular micro-

environment and are crucial for a bidirectional interplay to exist

between the cell and tissue during development [1,2]. For this

reason, they are often used in functional tissue engineering.

However, the mechanisms that define the 3D interface between

cells and the surrounding matrix and how cells cooperate to affect

that matrix have yet to be determined.

The bidirectional remodeling of the ECM during morphoge-

netic events is required for structure development and function.

For example, during blood vessel formation endothelial cells

initiate neovascularization by unfolding soluble fibronectin (FN)

and depositing a pericellular network of fibrils that support their

intracellular cytoskeleton [3]. This fibrillogenesis is necessary for

tubule formation and its inhibition prevents proper lumen

formation and polarization. Additionally, both engineered and

natural alignment of collagen fibers define cell morphology,

organization and function in engineered tissues [4]. These changes

in the architecture of the ECM are sensed by cellular adhesions

and propagated through the cytoskeleton and signaling cascades to

affect nuclear organization, chromatin structure and gene

expression [5]. Mesenchymal stem cells (MSC) use the ECM to

direct and maintain their self renewal and differentiation potential

in vivo. Recapitulation of this control in vitro is the ‘‘gold

standard’’ for MSC tissue engineers.

Using multiphoton optical microscopy and second harmonic

generation (SHG) we can non-invasively image type I collagen

fibers in 3D. SHG microscopy visualizes the nano-periodic, non-

centrosymmetric structure of type I collagen fibers with the use of

high intensity light and does not require labeling of the collagen

network [6–8]. Tracking of SHG signal allows for the analysis of

type I collagen fibrillogenesis, represented by fibril alignment and

consolidation over time [9,10]. When encapsulated within a 3D
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type I collagen microenvironment, cells initially contract to

compact the matrix and subsequently remodel the disordered,

and entangled fibrillar network created following gelation [11–13].

Quantitatively understanding the interplay between cell popula-

tion and the dynamics of the local microenvironment is critical to

developing mechanistic hypotheses governing the role of the cell/

matrix interface in tissue homeostasis, development and repair. To

create a quantitative method to achieve this aim we have created a

tool based upon the hypothesis that cells within developing tissues

must cooperate (through coordinated push and pull forces) to align

and remodel their local microenvironment.

3D confocal imaging techniques have been a powerful tool for

cell biologists and engineers providing spatial information

regarding the location of specific structures within cells and

tissues. Critical to the throughput and effectiveness of imaging

studies, however, is the development of methods for quantitative

and automated analysis of multi-spectral images over time. The

translation of these informative but inherently qualitative images

into quantitative metrics is necessary to guide tissue engineering

design and the rigorous testing of mechanistic hypotheses in 3D.

Developing methods to efficiently move from biological

hypothesis to successful in vivo application, requires rigorous

methods of analyzing the spatio-temporal function of tissues.

Modeling functional, temporal and spatial networks presents itself

as a powerful tool for the testing of these hypotheses and

improving the throughput of biomaterial optimization. Models

inherently provide quantitative analysis that provides feedback

loops to inform engineering design [14–16]. From the single cell

level up to the level of developing tissue and organization

dynamics, developing models that quantitatively capture the

principles guiding each tier of decision making is an emerging

field that stands to accelerate tissue engineering efforts.

In [17,18] the authors work has clearly shown the importance of

the ECM on stem cell fate decisions but their work has focused on

directing stem cell fate decisions where tools that allows us to

measure in 3D over time ‘‘how’’ and ‘‘when’’ stem cells interact

with their environment to alter their own fate are still in need.

To this point, efforts at quantifying the microstructure of type I

collagen fibers in native tissue as well as engineered constructs

have based their results on 2D images including scanning [19] and

transmission [20,21] electron microscopy, histological samples

[22] and synthetic data [23]. While electron microscopy provides

high resolution images they are less precise than confocal

fluorescence images as they represent metal replicas of static

tissues. Current methods of extracting quantitative metrics from

these types of images include localized vector analysis [21], Fourier

transform [24], mean intercept length and line fraction deviation

methods [23]. These methods provide bulk material properties

that describe fiber alignment, concentration, anisotropy but do not

quantify the dynamic changes in collagen microstructure and

organization with time. Additionally, current technologies exam-

ine collagen alignment in isolation, and thus fail to capture the

relationship between changing structure and cellular organization.

The coordination of cells and the surrounding matrix defines tissue

function and therefore it is the dynamic interaction between these

two components that provides critical mechanisms in tissue

development.

In this work we have developed a quantitative method of

analyzing the bidirectional cell/matrix interface. We provided a

method of probing 3D structure in its native form over time and

linking matrix dynamics with cellular organization and function

using graph theory. In our previous work we have developed a

modeling and mining methodology based on graph theory (called

the cell-graphs) to study tissue organization and its corresponding

functional state in the context of automated cancer diagnosis for

brain [25], breast [26], and bone [27] tissues. Most recently, we

used cell-graph approach to study MSC organization [28] over

time.

This study extends our previous work to 3D cellular

environment to define and compute two novel metrics, namely

Collagen Alignment Index and Cell Dissatisfaction Level. These

metrics could track and quantify type I collagen remodeling and

fibrillogenesis with respect to mesenchymal stem cell organization

over time.

We compare our techniques developed to physics based

mechanical models [29] in which each pair of neighboring cells

(identified using a Delaunay triangulation) is attached by a spring.

Two main differences are (1) cell-graph based establishment of

neighborhoods and pairwise relationships (i.e., edges), (2) replacing

the ‘‘springs’’ with weighted edges where weights are calculated

directly from images of collagen fibers.

Our results are verified on multiple experiments and provide the

first quantitative support to the hypothesis that continuity between

extracellular and intracellular environments is required for stem

cell fate determination.

Results

A novel metric ‘‘Collagen Alignment Index’’ is defined
and computed to quantify the intimate cooperative
relationship that exists between a stem cell and its
developing microenvironment

In this work, we present a model for quantifying the dynamics of

cell/ECM interaction based upon the hypothesis that cells within

developing tissues must cooperate (through coordinated push and

pull forces) to align and remodel their local microenvironment. We

present two key metrics that quantify the intimate cooperative

relationship that exists between a stem cell and its developing

microenvironment. From this work we can define a model of

mesenchymal stem cell (MSC) remodeling over time, Figure 1, in

which MSC remodel the disorganized type I collagen in their local

environment over time through cooperative pulling and alignment

of the collagen fibers. Furthermore, alignment is accelerated when

MSC are induced to differentiate through treatment with the

MEK inhibitor, PD98059. In this work we introduce a novel

metric, the Collagen Alignment Index (CAI) which peaks at 900,

representing complete alignment between two cells, after 2 days as

shown in Figure 1.

MSC embedded in 3D type I collagen gels were used as a model

of stem cell osteogenic differentiation and tissue remodeling [30].

In this model, the cells were seeded at 1|106 cells per mL in

2mg/mL type I collagen. Over the course of three days, the gels

underwent extensive compaction accompanied by remodeling of

the type I collagen microstructure. After seven days, the cells

began expressing osteogenic genes and eventually deposit a

calcified matrix, hallmarks of in vitro osteogenic differentiation

[30]. Furthermore, previous work found that the addition of the

MEK inhibitor, PD98059, accelerates this differentiation event

and induces significant changes in observed collagen remodeling.

CAI (Collagen Alignment Index) measures pulling between cells

and alignment of collagen fibers as two cells cooperate to create

order in their random and disorganized microenvironment. The

computation of this metric requires (i) obtaining the relative

density and position of fibrillar type I collagen in ECM, and (ii)

modeling of cell-to-cell interactions.

For the former, we collected 3D multiphoton confocal images of

cell position (estimated by location of fluorescent nuclei) for 0, 0.5,

1, 2 and 3 days after gel formation and the relative density and

3D Collagen Quantitation
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position of fibrillar type I collagen (by second harmonic generation

(SHG) microscopy), Figure 2. For the latter, the image stacks of the

nuclei were segmented and reconstructed in 3D. We constructed

cell-graphs to connect cells (nodes) in 3D space based upon 3D

Euclidean distances. Links (edges) were added between cells based

upon a distance threshold set at 55 mm, approximated by two

rounded cell diameters, Figure 2. The 3D space was partitioned

using Voronoi diagrams to ensure that each cell-graph node,

Figure 3(a), and each cell-graph edge resided in a unique 3D

compartment Figure 3(b). The gradient vector of each pixel was

then computed within each compartment. In general, the gradient

vector points in the direction of the maximum change in the

intensity value and the magnitude of the gradient vector gives the

value of that change. Given the gradient vectors and the cell-graph

edges, the angle between the two, denoted by h, was found as in

Figure 4 and CAI metric was calculated as histograms of the

angles h , Figure 5. Therefore, as the gradient points in the

direction of the maximum intensity change, a h of 90 degrees is

representative of perfect alignment: collagen fibers running

perpendicular to a cell graph edge running between two adjacent

cells.

Our results obtained over three independent experiments,

indicate that CAI metric can (i) track type I collagen remodeling

and fibrillogenesis with respect to mesenchymal stem cell

organization over time, and can (ii) extract critical phases of

early cell-mediated collagen remodeling and demonstrated

acceleration through these phases with the induction of

differentiation.

Differentiating MSC accelerate their progression through
three distinct phases of type I collagen fibrillogenesis

The normalized histograms i.e., probability density functions

(pdfs) of the h values defined above suggested a relationship

between the treated group at hour 12 and the untreated group at

day 2, Figure 5. We used the Kolmogorov-Smirnov test (KS test)to

verify that the pdfs were coming from the same distribution.

Since the KS test is more accurate near the center of

distributions, the left and the right tails of the distributions were

not considered. After limiting the pdfs within the range of [60,120]

(recall that perfect alignment is quantified by a h value of 900), the

KS test accepted the hypothesis that these two distributions

originated from the same distribution with a p-value of 0.1070. All

other pdf pairs were also compared but the KS test did not point

out any other significant inter/intra relationships between tissue

samples over three independent experiments.

Singular value decomposition (SVD) and k-means statistical tests

demonstrated that MSC in type I collagen gels progress through

three stages during early compaction events (I, II and III), Table 1.

Just after encapsulation MSC have yet to exert an organizational

force on their type I collagen matrix. Phase I represented this

disorganization through a broad and random distribution of h. As

the MSC interacted with their microenvironment they compacted

the hydrogel and organized the collagen fibers, Figure 5 (insets).

Quantification of h demonstrated that this organization was first

achieved through alignment of type I collagen fibers parallel to the

cell-graph edge. Distribution of h narrowed to reach a peak at 900

indicative of a net gradient vector perpendicular to the edge. The

distribution of h re-broadened and increased complexity was

observed in the types of angles that were found with respect to the

edges Figure 5. Untreated MSC progress from Phase I to Phase II

within 12 hours and Phase III was reached by day two. Time 0 and

day 3 clustered together indicating statistically similar distributions

of h and were therefore both classified as Phase I.

Interaction with the extracellular environment drives MSC

differentiation events. PD980598, a MEK inhibitor, was used to

enhance the osteogenic potential of MSC in type I collagen

hydrogels, [30]. Over the same time course SHG images were taken

and reconstructed, cell-graphs were built, and gradient vector analysis

was completed. Statistical comparisons between the pdfs of h for

untreated and treated (PD98059) gels demonstrated that each gel set

moved through statistically similar phases. The rate with which the

treated gels progressed through these phases, however, was altered.

Differentiating cells quickly progressed to Phase III (as defined by the

untreated gels) and then slowly reorganized to reach the final Phase I.

The treated gels came out of Phase III much slower than untreated,

moving through Phase II after Phase III and finally to Phase I, as

shown in Figure 1. The collagen gels used in tissue engineering are

magnitudes less stiff than even the softest tissues in the body. This

requires intense remodeling by stem cells, particularly in cases for

tissue engineered products but is also very relevant in wound healing,

so that they can replicate that tissue without diminishing the integrity

of the tissue. For this reason the alignment of fibers in a parallel

fashion and then the complex overlay of groups of such fibers would

be required to begin to replicate the properties of in vivo tissue.

Collagen compaction results in better material properties and

therefore compaction of collagen based products presents a natural

way to replicate the complexity of the fibrous in vivo structure. From

our analysis, we saw that type I collagen gels progress through the

following stages: (i) Phase 1: Initial organization directly around the

cell (ii) Cells beginning to make contacts with nearest neighbors

resulting in the parallel fibers between cells and finally (iii) Phase 3

where as cells become more compact in space their interactions with

neighbors become more complex. The CAI (Collagen Alignment

Figure 1. This schematic describes a conceptual model for MSC
mediated collagen alignment during early phases of hydrogel
compaction in 3D culture developed from results presented
here. MSC interact and engage their type I collagen microenvironment
to organize it over time. This process occurs via three distinct and
phases, I, II and III. Untreated gels progress through these phases as
cells first begin to interact with their surrounding collagen indepen-
dently and then engage with cells in their immediate environment to
cooperatively pull, and align the collagen matrix. They peak here at
Collagen Alignment Index CAI approaching to 1. As the cells continue
to interact they loose this directionality and begin to cooperate in more
complex ways with cells surrounding them resulting in a reentry into
early clusters of collagen organization (IIb and Ib). Intermediate phases
can be indicative of different interactions as depicted above. When
induced to differentiate through treatment with the MEK inhibitor
PD98059 (treated), MSC accelerate through these early phases of
remodeling to efficiently direct their cooperativity and slowly reorga-
nize. Plots are indicative of the cooperativity metric Collagen Alignment
Index, solid line (untreated) and dashed line (treated). Inset images
represent second harmonic generation images of the type I collagen
matrix indicative of each stage of remodeling and schematics are given
to represent the hypothesized cooperation occurring between cells.
doi:10.1371/journal.pone.0012783.g001

3D Collagen Quantitation

PLoS ONE | www.plosone.org 3 September 2010 | Volume 5 | Issue 9 | e12783



Indenx) metric is a quantitation of these values and lets us put any

given tissue within a range of tissue development over time.

A novel feature ‘‘Cell Dissatisfaction Level’’ quantifies the
microenvironment dynamics and predicts homeostasis

Type I collagen is organized during hydrogel compaction by

interactions between neighboring cells as well as directly by

individual cells. While the CAI metric captures impact of cell-to-

cell interactions on the microenvironment (computed over cell-

graph edges), here we introduce a new metric computed for an

individual cell to complement it.

Formally, the gradient vector points in the direction of the

maximum change in the intensity value and the magnitude of the

gradient vector gives the value of that change. The gradient vector

represents the net direction and magnitude of the force exerted by

the cell onto the collagen in its immediate 3D neighborhood

Figure 4. Gradient vector analysis was performed on a node by

Figure 2. General methodology for quantifying collagen alignment and the structural organization of the tissue. First row: one optical
slice of a 3D second harmonic generation multiphoton confocal image (Scale bar 20mm). Corresponding confocal images of the cell nuclei were
segmented using the Otsu Thresholding algorithm. Connected pixels were found in this segmented image and each connected component was
labeled as an individual cell nuclei. Using these segmented confocal images of nuclei, we reconstructed and visualized the tissue on top of the
collagen in 3D (Second row). For each nucleus, the center of mass was found and assigned as the x,y,z coordinates of that nucleus. Using the nuclei
locations, cell-graphs that capture the spatial relationship between the nuclei were constructed and visualized (Third row). The collagen alignment
around every edge of the graph was quantified and the Collagen Alignment Index that measures the quality of the alignment is assigned to each
edge. Cell-graph edges that have an alignment greater than a given threshold (in this case 0.6) were drawn thicker to highlight areas of enhanced
remodeling in 3D (Fourth row).
doi:10.1371/journal.pone.0012783.g002
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node (cell by cell) basis. Thus, for each tissue sample, 3D space is

partitioned (using Voronoi partition) into compartments that

included exactly one unique node (cell) Figure 3(a). Similar to CAI

metric, for each pixel within each compartment, the gradient

vector was calculated.

In contrast with CAI metric where we built histograms, all the

gradient vectors within a compartment were summed to calculate

a net gradient vector to be assigned to the cell in the particular

Voronoi cell. Thus, at the end of this step each cell in the tissue is

assigned a direction indicating ‘‘net’’ pulling of ECM. Increased

local organization in the area of the node resulted in a larger value

for the net gradient vector quantifying directional interaction

between the cell and its microenvironment.

The net gradient vector of a cell (node) is then written as a linear

combination of the cell-graph edge vectors incident to node which

produces a system of linear equations. The solution of this system

assigns each cell-graph edge a weight called Cell Dissatisfaction Level

(CDL) to quantify the dynamic remodeling ‘forces’ exerted by

individual cells on their local microenvironment Figure 6.

Tissue satisfaction is reached upon homeostasis when the forces

exerted by cells in a local area are balanced. The global Cell

Dissatisfaction Level of the tissue was found by summing the

weights projected onto each cell graph edge. In a perfect stability

of the microenvironment, edge weights should cancel out to

minimize the unbalanced pull forces.

We observed that MSC in type I collagen gels slowly progress

from a dissatisfied state towards a more satisfied state (decrease in

dissatisfaction) over time as fibrillogenesis and reorganization

occurs. When treated to differentiate MSC accelerate their

progression towards a more ‘satisfied’ state, Figure 6. By filtering

out the weights of the cell-graphs that are less than a certain

threshold, local microenvironment where fibrillogenesis and

reorganization has reached a certain degree can be found and

visualized as depicted in last row of Figure 2.

Discussion

The main aim of this work is to provide precise metrics to

quantify the MSC-ECM interactions that govern collagen

alignment, remodeling and differentiation. We introduce two

such metrics: Collagen Alignment Index (CAI) and Cell

Dissatisfaction Level (CDL). Both metrics are computed over 3D

images. While the former directly quantifies physical forces applied

to collagen fibers in the ECM between a pair of cells, the latter

determines when the dynamic microenvironment will reach to a

state of equilibrium: homeostasis.

We used human mesenchymal stem cells (MSC) embedded in

3D type I collagen gels as a model of stem cell osteogenic

differentiation and tissue remodeling [30]. Using this model we

traced the dynamics of cell/ECM interactions during differenti-

ation and remodeling events. A MEK inhibitor, PD980598, was

used to enhance the osteogenic potential of MSC in type I collagen

hydrogels and over the same time course SHG images were taken.

These images were processed, the cell-graphs were formed and

gradient vector analysis is completed. A weighted, normalized

histogram of the angle between a possible communication link and

the collagen fibrils was calculated. Statistical analysis of these

histograms for untreated and treated (PD98059) were performed.

Our analysis extracted critical phases of early cell-mediated

collagen remodeling and demonstrated acceleration through these

Figure 3. Edge-based and Node-based Voronoi partitioning. Two different Voronoi construction techniques were used in this work, done
both from a cell-graph node perspective and from a cell-graph edge perspective. In Figure 3(a), a sample Voronoi diagram using the cell coordinates
as the seed points is shown where blue (node with edges) and red (node without edges) circles are the cell nodes. Blue lines correspond to cell graph
edges while dashed red lines correspond to the Voronoi compartments. In this original state of the Voronoi diagram, each cell-graph edge was
shared by two separate Voronoi compartments. In Figure 3(b), to capture the information between cells the method was altered to set the center of
the edges as the seed points. This construction ensures that each cell-graph edge is encapsulated in only one Voronoi compartment. To capture the
information between cells the method was altered to set the center of the edge as the seed point. This construction ensures that each cell-graph
edge is encapsulated in only one Voronoi compartment. These compartments were projected onto the corresponding SHG image to assign each
pixel of type I collagen signal to a given graph node (A) or edge (B).
doi:10.1371/journal.pone.0012783.g003
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phases with the induction of differentiation. We further see that

each gel set moved through statistically similar phases. The rate

with which the treated gels progressed through these phases

however, was altered.

We established links between cells to model cell-to-cell

interaction in a graph theoretical sense using the cell-graph

methodology. The cell-graph methodology represents each cell

with a vertex (node) and establishes a link between a pair of nodes

if there is a biologically sound hypothesis that the pair

communicates with each other through chemical signals, ECM

etc. An edge can be established deterministically (if the cell

membranes are in physical contact) or probabilistically (as a

function of the distance between the nodes).

Using cell-graphs, the structural organization of tissue samples

are captured. Cell-graphs previously used to distinguish between

different functional states in 2D histopathological slides of brain,

breast and bone tissues with up to 98 and 84 and 90 percent

accuracy [25–27]. Cell-Graphs are the generalizations of (Vor-

onoi) Delaunay graphs to arbitrary edge functions and have two

main advantages over Delaunay triangulations [31]. First,

Delaunay triangulations are planar graphs and therefore do not

allow the crossing of edges. Second, the result of Delaunay

triangulation is a single connected graph. There is no evidence to

justify these two assumptions. Cell-graphs remedy these two

shortcomings of Delaunay graphs and therefore model the spatial

distribution of the cells and temporal evolution of the tissue more

precisely. Nevertheless Voronoi construction has its advantages as

well. On a tissue image, the Voronoi diagram partitions the image

into convex polygons such that each polygon contains exactly one

seed point (also referred as generating point) and every point in a

given polygon is closer to its seed point than to any other seed

point in the tissue. Voronoi diagrams have been used to estimate

the boundaries of cells in a tissue when membrane staining is not

present [32,33].

A careful analysis of the probability density functions of each

sample in Figure 2 suggests that there is a relationship between the

second time point of treated and fourth time point of untreated

sample. The implication of this observation is that treated samples

mature faster than the untreated ones and a high collagen

alignment exists during the progression of the tissue. The

Kolmogorov-Smirnov test is used to decide if two datasets (i.e.,

the second time point of treated and fourth time point of untreated

sample) are coming from the same distribution. We used the KS-

test since it makes no assumption about the distribution of data

and it is a non-parametric statistical test.

The generality of the KS-test comes at the cost of being less

accurate than others if the specific data meets all the assumptions

of the other test in hand. For example, Student’s t-test may be

more sensitive if the data follows a standart normal distribution.

Since we did not want to make an assumption of that sort, KS-test

proved to be the more accurate one. In general, there are three

limitations of the KS-test. First, the distributions are expected to be

continuous. Second, the test is more sensitive near the center of

distribution than at the tails and third the distribution must be fully

specified. The distribution of h values runs from 0 to 180. To meet

the assumptions of the KS-test, angles between ½60, 120� were used

as inputs. A good collagen alignment results in angles close to 900

as discussed before. Therefore clipping the histogram does not

disturb the calculation of the Collagen Alignment Index (CAI) and

is consistent with our previous analysis.

Fibrillar collagens (types I, II, III, V, XI) form a basic triple

helical structure that can self-assemble into highly organized

fibrils. Given this structure, these collagens provide significant

tensile strength and a structural frame for tissues, including bone,

skin, blood vessels and intestine. Type I collagen is by far the most

prevalent collagen within the bone matrix and assembles

spontaneously in the extracellular space in staggered fibrils.

Mutations within the collagen I gene, that result in the improper

assembly of fibrils, lead to osteogenesis imperfecta, characterized

by extreme bone fragility.

Collagen fibers in bone are organized at 90 degree angles to

each other to create a plywood-like material, lending tensile

strength to the tissue. The self-assembly of staggered collagen

fibers yields a consistent 60nm repeating unit that is visible in

electron microscopy images of mature collagen fibers. It is this

non-centrosymmetric property of the collagen fibers that results in

strong second harmonic signal.

To capture both the nuclei information and the collagen

information 406 magnification is used during imaging from

microscopy. At this magnification segmentation of the collagen

organization is not possible. We therefore used the gradient

information of each image to assess the collagen fibril formation.

Voronoi diagrams of tissue samples were constructed to find the

boundaries of cells. For each pixel in each Voronoi compartment,

the gradient vector is calculated. The gradient of an image and the

edges in that image are closely related. In our case, the gradients

give information about the collagen fibrils in the SHG channel.

For each pixel in each Voronoi compartment, we sum the gradient

magnitude and assign it as the net pull by the collagen to the cell

located in that compartment.

Once these forces are projected onto the cell-graph edges, the

tissue sample will be represented as directed weighted graphs

where the weights are the norms of each projection vectors. These

directed, weighted cell-graphs capture both the spatial information

of the cells and the force applied by the collagen to cells. The

directed weighted cell-graphs can then be used as an in silico

Figure 4. Gradient vector analysis for quantification of type I
collagen structure. Given a segmented image and voronoi construc-
tion we can quantify type I collagen alignment with respect to either
the graph edge or node. Two cells, A, B are depicted in 3D space. The
coordinates of these cells are given as A~(x1, y1, z1), B~(x2, y2, z2).
The cell-graph edge was therefore represented as the vector
~ee~½(x2{x1), (y2{y1), (z2{z1)�. The red line gives the boundaries of
the edge-based Voronoi diagram. For each pixel in this compartment
the gradient vector that measures the direction of the maximum
intensity change is calculated and the angle h between the gradient
vector and the cell-graph edge was calculated. Using the distribution of
these angles, or the sum of all the gradient vectors we assessed
direction and magnitude of collagen organization in 3D space.
doi:10.1371/journal.pone.0012783.g004
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model of the spatial distribution of the cells and the collagen

alignment between cells.

The exact distribution of the collagen alignment angle is

dependent on the topology of the graph. Our cell-graph

construction technique has one parameter, namely the link

threshold, that gives the maximum allowed distance for two cells

to communicate with each other. The higher this edge threshold

is, the more cell-graph edges are introduced in the construction.

The edge lengths cannot be smaller than the length of the shorter

axis of cell membrane. We performed a parametric search and

repeated our experiments within the range of 10 to 180 mm to find

that a specific edge length between 55, 60 mm gives the observed

faster maturation.

Our conclusion is as follows: Using the methods developed

through this work we have demonstrated metrics that describe,

track and quantify both local and global mesenchymal stem cell-

mediated type I collagen fibrillogenesis and remodelling. These

metrics are used to assess the dynamic bidirectional cell/matrix

interface in their native form over time. As a result in silico

representations of matrix dynamics linked with cellular organiza-

tion and function are obtained.

Our methods represent the type I collagen microenvironment

by cell-graphs that capture the structural properties of the tissues.

Tissue samples are partitioned into meaningful subspaces to

capture the possible communication link and its neighborhood

between two cells. Type I collagen organization is quantified in

this region and assigned as edge weights between a pair of cells to

further model the collagen organization as well as structural

properties of the tissues.

Modeling the interaction between cells and their local

microenvironment provides a powerful quantitative and analytic

tool for assessing function of engineered tissues as well as for

understanding the basic science of tissue development, homeostasis

and repair. We present here metrics to define and quantify this

process which will allow for the testing of hypotheses within

dynamic, 3D engineered tissue constructs.

Materials and Methods

Our methodology as depicted in Figure 7, has following steps:

(1) growing hMSC, (2) preparation of the three-dimensional

collagen I gels, (3) imaging and image analysis of the 3D gels, (4)

building cell-graphs to model cell-to-cell interactions, (5) calcula-

tion of the gradient vectors, and (6) computing the metrics. The

first four steps are based on our previous work [28] and necessary

for the computation of the Collagen Alignment Index and Cell

Dissatisfaction Level. In the following subsections we explain each

of the steps in more detail.

Cell Culture
Cryopreserved hMSC (Lonza) were grown according to

manufacturer’s instructions. hMSC were cultured in Dulbecco’s

Modification of Eagle’s Medium 16 (DMEM) supplemented with

10% fetal bovine serum (FBS) and fungizone/penicillin/strepto-

mycin (FPS) [10,000 units/mL]. Medium was changed every three

days and cultures were incubated at 370C in a humidified

atmosphere containing 95% air and 5% CO2. Cells were

detached using trypsin-EDTA and passaged into fresh culture

flasks upon reaching confluence. hMSC were used between

passages 6 and 8. In preparation for incorporation into 3D

constructs, cells were washed with phosphate saline buffer Ph 7.4

(PBS), detached with trypsin-EDTA, collected, and counted. ERK

activity was controlled through the inhibition of its upstream

activator MEK using PD98059 dissolved in DMSO (Calbiochem).

Cells were pre-incubated with PD98059 at a concentration of

50 mM for 15 min and then encapsulated within a collagen

hydrogel for 3D culture as described below. Constructs were

grown in PD98059 supplemented medium for the given time

points. The final DMSO concentration never exceeded 0.1% and

the same amount of the DMSO vehicle was added to control

samples. All reagents were purchased from Fisher Scientific unless

otherwise noted.

3D Collagen I Gel Culture
Three-dimensional collagen I gels were prepared by mixing cells

with the following reagents: DMEM (14%), FBS (10%), 56Conc.

DMEM (16%), 0.1N NaOH (10%) and 4mg/mL collagen I (50%)

(MP Biomedicals). The final collagen concentration is 2mg/mL

within each construct. Constructs of a volume of 1.0mL were

made in 12-well plates and the cellular density was kept at

1.06106 cells per mL ECM. The constructs were incubated at

370C for 30 minutes, released from the wells and incubated in

DMEM for 24 hours.

Fluorescence Imaging
Constructs were washed with PBS (phosphate saline buffer Ph 7.4)

followed by 30 minute incubation at 40C in 3% paraformaldehyde.

The constructs were then washed with PBS and incubated at 40C for

30 minutes in cell blocking solution (0.25% Tween20, 1% Bovine

Serum Albumin in PBS). Collagen constructs were incubated for

45 minutes in a 1:500 dilution of phalloidin (Invitrogen) and

10 minutes at room temperature in SYTOX Green Dye (Invitrogen)

Figure 5. Quantification of MSC cooperativity during type I collagen fibrillogenesis. The distribution of the angles between the gradient
vectors and cell-graph edges are plotted for untreated and treated (shown as PD) samples at each time point imaged. Histograms plot the frequency
of each angle found within the corresponding set of images weighted according to the gradient magnitudes. The area under the curve between 60
and 120 degrees (red shaded area) is assigned as the Collagen Alignment Index for that sample and shown in the middle of the curve. This metric
attains its maximum value at day 2 in the untreated tissue sample whereas in the treated tissue samples this value takes its maximum value as early
as hour 12. Using these distributions, the samples were clustered into three groups by k-means algorithm. The first and the last tissue samples of
both the untreated and treated tissues grouped in one cluster, day 2 of untreated and hour 12 of treated example were grouped in the second
cluster and all the other samples clustered as a third. This analysis was performed on distinct biological samples, n = 3.
doi:10.1371/journal.pone.0012783.g005

Table 1. Clustering of treated and untreated samples.

Tissue Type

Time points (days) untreated treated

0 I I

0.5 II III

1 II II

2 III II

3 I I

Singular value decomposition (SVD) and k-means statistical tests demonstrated
that MSC in type I collagen gels progress through three stages during early
compaction events I, II and III.
doi:10.1371/journal.pone.0012783.t001
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at a final concentration of 50nM in cell blocking solution. The

samples were stored at 40C in PBS until imaging. 3D confocal images

were taken using a Zeiss LSM 51 and ImageJ (NIH) was used to

convert the files into.tiff format for segmentation.

Second Harmonic Generation (SHG)
Collagen I constructs were harvested at days 0, 0.5, 1, 2 and 3 and

second harmonic micrographs were obtained using a Zeiss LSM

510 two photon confocal microscope (Zeiss Inc., Thornwood, NY).

820nm light was shown onto the specimen using a two-photon laser

and reflected light is collected at about half the wavelength, 480nm.

Images were taken at a 406magnification. Corresponding cellular

images were taken as stated above and merged with the SHG

images using Image J (NIH, Bethesda, MD).

Nuclei Detection and Visualization
3D confocal images were segmented using the Otsu Thresh-

olding algorithm [34] using the ITK software [35]. Otsu

thresholding algorithm assumes there are two classes of pixels in

the observed image and finds a threshold value t that will

automatically separate the foreground pixels from the background

pixels. The algorithm uses the zeroth and first order statistics of the

input image histogram to find the optimum threshold value. Given

v1, v2 as the probabilities of observing class 1 and 2 (background

and foreground) and s1 and s2 as the corresponding variances of

the intensities values in class 1, class 2 respectively, Otsu algorithm

searches for the threshold value that minimizes the intra-class

variance defined as in equation (1),

s2
w(t)~v1(t)s2

1(t)zv2(t)s2
2(t): ð1Þ

Otsu exhaustively searches a threshold value that minimizes the

intra-class variance s2
w(t).

After finding the optimum threshold value, intensity values of

each pixel were compared against the threshold and pixels with

intensity values higher than the threshold value were assigned as

foreground pixels. The connected foreground pixels were found and

the center of mass of these nuclei was calculated and the coordinates

of the center were stored. The result of the segmentation was

visualized in Figure 2 using the Visualization Toolkit VTK [36].

Cell-Graph Formation
After identifying the cells in a tissue, a graph was embedded to

capture the spatial and structural properties of the tissue. Formally, a

graph is represented by G~(V , E) where V is the vertex set and E is

Figure 6. MSC in treated type I collagen gels exhibit accelerated satisfaction. Node-based Voronoi diagrams were constructed as in
Figure 3(a) and gradient vectors calculated for each pixel within the compartment. Using node-based voronoi construction, collagen alignment
around an individual cell was captured. The gradient vectors were summed and assigned as the net force to the nucleus in the respective Voronoi
compartment. To find the magnitude of these individual forces, the net gradient vector was projected onto the cell-graph edges using the minimum
norm projection method. The magnitudes of these projections on each cell-graph edge were assigned as the weight of that edge. Using these
weights the overall tissue structure and collagen formation in the tissue were represented by a weighted graph, Figure 2. The weights of each edge
are summed and the resulting sum is the Global Dissatisfaction Level (GDL) of the sample, normalized to image size. The global dissatisfaction of the
treated samples decreases more rapidly when compared to untreated controls.
doi:10.1371/journal.pone.0012783.g006

3D Collagen Quantitation

PLoS ONE | www.plosone.org 9 September 2010 | Volume 5 | Issue 9 | e12783



the edge set of the graph. In our construction, each cell in a tissue

constituted a vertex in cell-graphs. An edge ~eeij~½(xj{xi),
(yj{yi), (zj{zi)� where xi, xj , yi, yj , zi, zj , are the coordinates of

the ith and jth nodes, was introduced if nodes ui and uj are ‘‘close’’ to

each other. In other words, a communication was hypothesized by

setting a link between two nodes if the euclidean distance between

them was less than a threshold. The Euclidean distance between two

cells was simply given by equation (2)

d(ui, uj)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(uix{ujx)2z(uiy{ujy)2z(uiz{ujz)2

q
, ð2Þ

where uix, uiy, uiz refer to x, y, and z coordinates of node ui,

respectively.

The link threshold, gives the maximum allowed distance for two

cells to communicate with each other. The higher this edge

threshold is, the more cell-graph edges are introduced in the

construction. The edge lengths cannot be smaller than the length

of the shorter axis of cell membrane. We performed a parametric

search and repeated our experiments within the range of 10 to

180nm to find that a specific edge length between 55, 60nm gives

the observed faster maturation.

Computing Collagen Alignment Index
This study develops a new methodology to calculate the Collagen

Alignment Index (CAI) to quantify the 3D spatial organization of

MSC and its type I collagen microenvironment during differenti-

ation and remodeling. The algorithm describing the steps for

computing CAI is shown in algorithm 7 at the end of the paper.

In order to model cooperative pulling between a pair of cells

and alignment of the collagen fibers, we partitioned the 3D space

into disjoint compartments using Voronoi diagrams. The Voronoi

partitioning ensures that each cell-graph edge resides in a unique

compartment as depicted in Figure 3(b). The midpoint of each

cell-graph edge was input as a ‘‘seed point’’ to Voronoi diagram

construction which partitioned the tissue space into convex

polygons such that each polygon contained exactly one seed point

and every other point in a given polygon was closer to its seed

point than to any another seed point in the tissue. Each such

polygon constitutes a Voronoi cell in 3D.

For every pixel in a given Voronoi cell, the gradient vector and its

magnitude were calculated. The gradient vector of a pixel points in

the direction of the greatest rate of change in the intensity and the

magnitude is the amount of the change. The distribution of angles

between each gradient vector and the cell-graph edge was

calculated. The angle h between two vectors~ee and~gg is given by

h~ cos{1 ~ee:~gg

E~eeEE~ggE

� �
: ð3Þ

The angle h describes the direction of the primary type I

collagen organization found within that space with respect to the

hypothesized cell communication link as depicted in Figure 4.

Figure 7. Outline of the algorithm to compute Collagen Alignment Index (CAI). After segmenting the nuclei, cell-graph are built capturing
the spatial distribution. Voronoi diagrams are built and the gradient vectors in each Voronoi compartment are calculated. A distribution of the angles
between the cell-graph edges and the gradient vectors is calculated to find the CAI metric.
doi:10.1371/journal.pone.0012783.g007
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The distribution of h values weighted by the magnitude of the

gradient vectors was drawn and a histogram was formed. This

histogram was then normalized by the total gradient magnitude.

This normalization ensured that the histogram was a probability

density function. That is, given an angle, the histogram gave the

probability of observing that angle with respect to the communi-

cation link between cells. This distribution of h provides

information as to the global alignment and organization of the

collagen fibrils with respect to the nearest cells. For example a

perpendicular gradient vector to an image edge (i.e., collagen

fibril) indicates a perfect linear alignment and the distribution has

a high peak at 900.

Computing Cell Dissatisfaction Level
A cell-graph edge eij is incident to two nodes, ui and uj . After

projecting the collagen forces onto cell-graph edges, each edge was

under two different forces: one exerted by node ui and another one

by node uj . These two force vectors are acting along the same cell-

graph edge. For each cell-graph edge, the vectoral sum of these

two forces were found and its magnitude was assigned to the edge

as the edge’s weight. This weight was referred as the dissatisfaction

of the collagen alignment from a local perspective. From a global

perspective, the total dissatisfaction of the tissue was found by

summing each weight dissatisfaction values of the edges.

~gg~

g1

g2

g3

2
64

3
75~a1

e11

e12
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2
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75za2
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e22
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ek2
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2
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~
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3
77775 ð5Þ
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The net pull of ECM by each node was projected onto cell-

graph edges. Note that these forces are not necessarily parallel to

any of the edge vectors. Moreover, for a given node u, the cell-

graph edges incident to u do not necessarily define an orthonormal

space. That is, the cell-graph edges are not unit length and they

are not perpendicular to each other. This complicates the

projection of the net pull force. The net gradient vector of a cell

can be written as a linear combination of the cell-graph edge

vectors emanating from node u as in equation (4) where ~gg is the

net-force vector at node u and eij is the jth component of the ith

edge. Since there is possibly more than 3 cell graph edges, this

linear system is underdefined and have infinitely many solutions in

most cases. To overcome this problem, we obtained the minimum

norm solution that is addressed at the end of this section (equation

(7)) when the system is underdefined.

Equation (4) can be rewritten in a more compact form as in (5).

The solution of this system assigns each cell-graph edge a weight

given by ai. This quantitative value was assigned as the Cell

Dissatisfaction Level (CDL) corresponding to that edge and

quantifies the dynamic remodeling ‘forces’ exerted by individual

cells on their local microenvironment. Tissue satisfaction is

reached upon homeostasis when the forces exerted by cells in a

local area are balanced. The Global Dissatisfaction Level (GDL)

of the tissue was found by summing the weights projected onto

each cell graph edge, and presented in Figure 6. MSC in type I

collagen gels slowly progressed from a dissatisfied state towards a

more satisfied state (decrease in dissatisfaction) over time as

fibrillogenesis and reorganization occurs. When treated to

differentiate, MSC accelerated their progression towards a more

‘satisfied’ state, Figure 6. By filtering out the weights of the cell-

graphs that are less than a certain threshold, local microenvi-

ronment where fibrillogenesis and reorganization has reached a

certain degree can be identified and visualized as depicted in last

row of Figure 2.

Projections
The gradient vectors were summed to find the net pull direction

that has the most intensity change in a compartment. For each

cell, the net pull vector was written as a linear combination of the

cell-graph edge vectors as in equation (4) where eij is the jth

component of the ith edge. The solution to equation (6) was unique

only if node u has exactly three edges (i.e., the degree of node is

exactly 3) that did not constitute a plane. If the degree of node was

not equal to 3 then special cases were addressed as discussed

below.

Less than 3 Edges. In the case of a node having less than

three edges (ie a node with 1 outgoing edge or a node with 2

outgoing edges), the net gradient vector cannot be represented as a

summation of projections onto the cell-graph edges. In this case, a

hypothetical edge, eh is introduced to make the system solvable.

When there is only 1 edge missing, a new edge that is not in the

same plane as the other two is introduced. The newly introduced

edge is the cross product of the existing two cell-graph edges, that

is~eeh~~ee1|~ee2. After the introduction of the third edge the system is

solved by E{1~gg~~xx.

When a given node has only one edge e1, a similar methodology

is performed as in the previous case. Two hypothetical edges are

introduced to make the system solvable. The first edge is chosen

such that it is perpendicular to the existing edge e1. The choice of

this perpendicular line is arbitrary as there are infinitely many

perpendicular lines to e1. After introducing this new edge e2, total

number of edges incident to this node is now two and only one

edge is missing. To make the system solvable the cross product is

obtained and assigned as the third edge, e3, as in the previous case.

All these edges are perpendicular to each other and therefore the

system is solvable now. The solution vector ~xx is obtained by

inverting the matrix E and multiplying it with g as in the previous

case.

More than 3 Edges. Another special case occurs when a

node u has more than 3 edges incident to that node. The equation

system in (6) becomes underdefined. That is, the net pull exerted

by the collagen can be projected to the cell-graph edges in

infinitely many ways. This is because rank(E)ƒ3 no matter how

many more edges u has. There are two possible ways to overcome

this issue: either restrict the number of edges a node can obtain or

fix one of the infinitely many solutions by some constraints. A

common constraint is to use the solution vector x with the

minimum norm. The most commonly used vector norm is the L2-

norm which is defined as DxD2~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1zx2
2zx2

3 . . . x2
n

q
. The solution

vector with the minimum norm is referred to as the minimum

norm solution and can be obtained by

~xx~ET (E � ET ){1~gg: ð7Þ
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Statistical Analysis
We used the Kolmogorov-Smirnov test (KS test) to verify our

observation that the pdfs of the h values for the treated group at

hour 12 and the untreated group at day 2 were coming from the

same distribution (see Figure 5). KS-test calculates the empirical

cumulative distribution functions, ECDFs, for each data set.

ECDF for a given a dataset Y~y1, y2 . . . yN is defined as

EN~ni=N where ni is the number of points less than yi and yi are

ordered from smallest to largest value. The maximum difference of

two ECDFs is zero when the supplied samples are coming from

the exact same distribution.

We used the kstest2 function of the Matlab software with a

confidence interval of %5. Only the histogram values in [60,120]

range are used.
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