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Abstract— The most reliable way to diagnose cancer in the cancer and are in great demand. Unfortunately, reliable
current practice of medicine is through pathological exami  prognostic information is still not available in a signifita

nation of a biopsy which has a certain level of subjectivity. s ;
To reduce this subjectivity and have a mathematical model fo ggrg?;;il?i;;ér;?lwduals with common types of cancer, such

diagnosing cancer tissues we consider the problem of autoreal . . ) .
cancer diagnosis in the context of breast tissues. In this wiowe A large set of automated cancer diagnosis tools exists in
present graph theoretical techniques that identify and copute  literature which are based on learning some feature sets. Mo
quantitative metrics for tissue characterization and clasifica- phological features such as area, perimeter, and roundness

tion. We segment the digital [mages of histopatological t:sue of a nucleus are used in [7], [22], [12], [29], [31], [28]
samples using k-means algorithm. For each segmented image ' ’ ’ ' ’ ’

we generate different cell-graphs using positional coordiates [10], [13], [38], [41] for this purpos_e. Textur_al featuresch
of cells and surrounding matrix components. These cell-ghs ~ as the angular second moment, inverse difference moment,
have 500-2000 cells(nodes) with 1000-10000 links depenglin dissimilarity, and entropy derived from the co-occurrence
on the tissue and the type of cell-graph being used. Having matrix are used for diagnosis in [7], [6], [12], [30], [14],
generated the graphs, we calculate a set of global metrics 1131 138]. To distinguish the healthy and cancerous tissue
from cell-graphs and use them as the feature set for learning . . e
We compare our technique, hierarchical cell graphs, with these systems are trained by using artificial neura! netsvork
other techniques based on intensity values of images, Delaay  [14], [13], [41], the k-nearest neighborhood algorithm, [6]
triangulation of the cells, the previous technique we propsed [22], support vector machines [12], linear programming
for brain tissue images and with the hybrid approach that [28], logistic regression [38], fuzzy [31], and genetic J10
we introduce in this paper. Among the compared techniques,  5q5rithms, Complimentary to the morphological and teatur
hierarchical-graph approach gives 81.8% accuracy whereawe features, a few of these studies use colorimetric featwes s
obtain 61.0%, 54.1% and 75.9% accuracy with intensity-base s ) ;
features, Delaunay triangulation and our previous technigie, ~ @s the intensity, saturation, red, green, and blue comggsnen
respectively. of pixels [22], [41] and densitometric features such as the
number of low optical density pixels in an image [6],
[30], [14]. Another subset of these studies uses fractals th
Breast cancer is the most common cancer and the secasekscribe the similarity levels of different structuresridun a
leading cause of cancer death among American femal@ssue image over a range of scales [3], [5]. These studis us
The current incident rates predict that 1 in 8 women in théhe fractal dimensions as their features and use the k-steare
United States will develop breast cancer in their lifetimeneighborhood algorithm [5], neural networks, and logistic
Currently, long-term survival is approximately 70%. Earlyregression [3] as their classifiers. Finally, the orieotzsi
diagnosis of breast cancer is crucial and the diagnosis afehtures are extracted by making use of Gabor filters that
staging for prognosis is based on histopathological examiespond to contrast edges and line-like features of a specifi
nation and grading of surgically removed breast tissue aratientation [2].
axillary lymph nodes. Prognostic analysis of breast caimcer There are also some other mathematical diagnosis tools
individual patients currently depends on establishedadin that rely on gene expression [1], [16], [18], [21] and mass
and laboratory parameters such as histopatological ggadispectroscopy [39] to detect a cancer tumor. However, these
and hormonal receptor status of individual tumor tissues. tools require high technological hard-wired such as micro-
Unfortunately, these parameters are only accurate in aprrays [21], [32] or mass spectrometers [42].
proximately 75-80% of the cases, particularly in Stage | There are other approaches using spatial dependency of
tumors. In this group of patients, despite being node negatithe cells rather than the intensity values. These apprgache
i.e. tumor confined to the breast with no spread to lymphonstruct a graph of cells from a tissue image and compute
nodes, 20-30% will recur. Thus, it is important to be able tgraph theoretical features that quantify how the cells are
predict which group of these patients will need chemotheraglistributed over the tissue [20], [36], [11], [24]. In these
to prevent tumor recurrence. Current techniques for diagpproaches, a graph of a tissue is defined by representing
nosing and predicting the biological behavior of cancer imuclei as vertices and defining edges to capture relatipashi
individual patients are based predominantly on patholidgicbetween nuclei. In [36], [11] and [24], the Voronoi diagram
parameters. New molecular techniques are currently being the image is constituted and its Delaunay triangulatfon i
utilized to identify higher risk for specific subgroups ofbuilt. In these studies the graph-based features are defined

I. INTRODUCTION



on the Delaunay triangulation graph or its corresponding. Image Segmentation
minimum spanning tree. Since the Delaunay triangulation
allows the existence of edges between only the adjacent
vertices, only the relationships between closely locatesdeai

are represented in this method. Moreover, prior to graph
construction, this method should carry out the segmemtatio

for each nucleus.

1) Segmentation: In order to form graphs on top of the
cells, first we need to segment the cells in tissue
images. However, image segmentation is still an open
guestion and there are several segmentation techniques
that are proposed for different types of images. K-
means algorithm, which clusters the pixels of images
according to their RGB values into clustering vectors,
gave satisfactory results for breast tissue images. The
clustering vectors are estimated as to minimize the
following error functionF,

k
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wherey; is the center ofjth cluster andr,,’s are the
intensity values of the images. This step is depicted as
the transition from figure 2a to 2b.

2) Node Identification: The next step is to translate the
class information to node information. The image
segmentation procudes pixels that constitute a cell but
still the boundaries of the cells are not available. We
placed a grid on the resulting images of segmentation
to identify the cells. For each grid entry we calculated
the probability of being a cell as the ratio of cell pixels
to the total number of pixels in the grid. Then we
applied thresholding to decide whether this grid entry

© is a cell or not.
Fig. 1. Microscopic images of tissue samples surgically aeed from Note that there are two parameters in this step, namely
human breast tissue¢a) a benign tissue examplgp) an in-situ tissue grid size and threshold value. The grid size depends on
example,(c) an invasive tissue example. the actual cell size and therefore should be considered
independent from the rest of the work. Increasing
Contributions: In this paper we try to capture patholo- the threshold value will help to eliminate noise in

giStS' rule of thumbs. We model the tissues based on graph the image Segmentation but increasing it beyond an
theory and show that cell-graph mining can classify breast  optimum value will result in the loss of cell informa-
tissue samples in different (dis)functional states such as  tjon. Therefore, we need a threshold value which can
benign, in-situ and invasive. This paper extends our presio identify the cells and eliminate the noise in the image.
work on brain tissues. There is an Underlying architectural This Step can also be considered as downsamp”ng of
difference between breast and brain tissue examples,-there  the image. The result of node identification is given in
fore, a new set of features and new graph based modeling figure 2d.
techniques are needed. In this work we present different
graph based approaches, such as hierarchical graphs @ndcell-Graph Generation
hybrid based learning and different sets of features to dif- ) ) _
ferentiate between cancerous, benign and in-situ tissues. After the image segmentation, we have the locations of
Organization: The rest of the paper is organized as folthe cells which are the centers_of the_grld entries. We build
lows. In section 2 we explain our methodology for generatin§ur 9raphs on top of these grid entries. Formally a graph
cell-graphs of breast tissues. In section 3 we explain tHg represented by: = (V, ) whereV' is the vertex set of
definitions of the metrics which are extracted from oufn€ graph andt is the edge set of the graph. After image
graphs and used as feature sets for learning. We present §§gmentation step we have the vertex set of the graphs and
experiments and results in section 4, and we conclude off Cell-graph generation we form the edges of the graphs.

discussion in section 5. We constructed three different kinds of cell-graphs cap-
turing the pairwise distance relationship between the sode
Il. METHODOLOGY These three different kinds of cell-graphs are explained in

Our technique consists of segmenting the image to extraitte following sections.
the cells, modelling the tissue by graphs according to the 1) Simple Cell-Graphs::In simple cell-graphs we set a
location of the cells and then learning these graphs usidigk between two nodes if the euclidean distance is lessdhan
machine learning techniques. Each step is further disdussthreshold. The euclidean distance between two cells igive
in the following sections. by



(d)

Fig. 2. The steps of our methodology. (a) Original tissuegen&s opened in RGB space. (b) The result of k-means segriventatack points are part
of cells and white points are treated as background. (c) Ppécation of grid and thresholding to the resulting segtaton. Appling a thresholding will

get rid of the noise in the segmentation and the center ofegrtdes will be used as the locations of cells. (d) The oVeeslult of node identification. (e)
Simple cell-graphs are formed based on the location infomaof the cells. (f) A bigger grid is applied to the image tapture the cell clusters. Each
grid entry is then thresholded to get the clusters. Aftesteluidentification, hierarchical graphs are build on dussells.

d(u,v) = \/(ux — )2 4 (uy — vy). were particularly useful for brain tissue images. However,
there is an underlying architectural difference between th
brain and breast tissues. Breast tissues have lobular-archi
. . tecture whereas brain tissues do not have such higher level
These graphs form a relation between nodes if they are ) o 'gher.
structures. For breast tissues, the pairwise relationship
close to each other. L .
cells within the same gland as well as different glands are

2) Probabilistic Ce_II-Graphs::The probabilistic mo_del 'S therefore important. To capture the lobular architectufre o
a more general version of simple cell-graphs. In this mod?l

we build a link between two nodes with a certain brobabilit he breast tissues we need an hierarchical representdtion o
o . P ){he tissues. We formed our hierarchical graphs similar ¢o th
which is given by given by

way we formed our cell-graphs. After the node identification
P(u,v) = d(u,v)”* for nodes u and v. step we had our nodes (cells) of the graphs. In order to find
the clusters (lobes) of the tissues, we placed a grid on top

This kind of graphs introduce building a link between J _
two nodes which are not neccessarily close neighbbis. of these cells. We calculated the number of cells in the grid
by dividing this number by the grid size, we calculated

defined as the euclidean distance between the nodes asamj - . .
the case of simple cell-graphs. The usecofntroduces a the probability of being a cluster for each grid entry. After

decaying property for building links. As the distance begwe obtaining the probability values for each grid entry, we set

nodes increases, the probability of linking them decrease’ thres_hold value and cqn5|dered the grid entries with a
Note that probabilistic graphs do not necessarily formdinkProbability greater than this threshold as a cluster. Wa the
between two nodes even if the distance between the nod@5Med our graphs on these clusters. This step can actually b
is small. Yet, it is more likely for the nodes that are closéPnsidered as further downsampling of the image to capture
to each other will be linked while the nodes that are farthef'® Cell clusters as depicted in figure 2e.
away will not be linked. Note that the presence of a link between nodes does not
3) Hierarchical Cell-Graphs:: The previous two forms specify what kind of relationship exists between the nodes
of graphs capture the global distribution of the cells andcells); it simply indicates that a relationship of sometssr

where u, and u, are x and y coordinates of node:
respectively.



proposed to exist, and that it is dependent on the distance2) Another graph metric is thelustering coefficientof a

between cells. Surprisingly, this measure alone is suiffi¢ie
reveal important, diagnostic structural differences imian
tissues.

C. Cell-Graph Mining

In order to learn the differences between the graphs we
need to find a way to extract the properties (metrics) of these
graphs. The metrics that are computed for each graph are3)

explained in section Ill. After calculating our metrics qri

to learning, the metrics are scaled since some metrics are
too large and some of them are too small therefore effecting 4)
the learning significantly. We scaled each metric to the eang

[—1, 1] for a better comparasion.

We have used support vector machines (SVM) as our
main classifier. The SVM algorithm creates the optimal
separating hyperplane between data points such that the dat

points of different classes fall into the opposite sideshis t

hyperplane. If there is no hyperplane that separates these
two classes (i.e., if the data is not linearly separable} th 5)
algorithm creates a hyperplane that leads to the least. error
Parameters of the optimal separating hyperplane are de-
rived by solving a quadratic programming optimization )

problem with linear equality and inequality constraintsst

optimization problem maximizes the margin. In case of a
nonseparable data set, the slack variables are introdoced t
minimize the error. An important feature of support vector
machines is the use of kernel functions. The kernel function
transforms the input space to a new space and allows the
algorithm to find the optimal separating hyperplane in this
new space. The use of nonlinear kernel functions allows

using non-linearity without explicitly requiring a noméar
algorithm.

We have used SVM classifier with a radial basis kernel

K(z,y) = ele=vl?,

We applied grid search to find out the best parameters
for the SVM. After finding these parameters we trained our
training set with these parameters and then tested it on the

test set which was disjoint to the training set.

IIl. M ETRICS

In order to have a quantitative representation of the graphs
we extracted some metrics from the graphs. We use severaB)
different topological properties defined on the entire brap
(i.e. global graph metrics). These cell-graph featuresaare
simple as the number of neighboring cells which corresponds

to the degree of a node.
1) The simplest metric is thaumber of nodesin the

graph. The degree of a node is defined as the number

nodeC;, which is defined a&; = (2F;)/(k(k + 1)),
where k is the number of neighbors of the node
i and FE; is the number of existing links between
its neighbors (Dorogovtsev and Mendes, 2002). This
metric quantifies the connectivity information in the
neighborhood of a node. We use the average clustering
coefficient as a global metric.
Thepath length between two nodes is defined as their
shortest path length in the graph, taking the weight of
each link as a unit length.
Given shortest path lengths between a node i and all of
the reachable nodes around it, gecentricity and the
closenessf the node i are defined as the maximum and
the average of these shortest path lengths respectively.
The maximum value of the eccentricity, also known
as thediameter of a graph, is another metric for the
classifier. This set of metrics reflects the centrality of
the node.
Central points of the graph is defined as the points
having an eccentricity equal to the radius. We used this
metric for the learning as well.
The hop plot value reflects the size of a neighborhood
between any two nodes within a hop. For hop h, the
hop plot value is defined as the number of node pairs
such that the path length between these node pairs is
less than or equal to h hops. Using the hop plot value
distributions, two global features are computed. The
first one is thehop-plot exponent which is computed
as the slope of the hop plot values as a function of h in
log-log scale. The second global featurQe iseffective
diameter, which is defined as = —— where

(N +2E)w"
N and E are the number of nodes and edges, and H is
the hop plot exponent.
We also computed some global graph metrics which
are not directly computed from the distributions of the
local graph metrics. For example the ratio of the size
of the giant connected component over the size of the
entire graph is one of the distinguishing features in the
learning step. In graph theory, ttggant connected
component of a graph is defined as the largest set
of the nodes where all of the nodes in this set are
reachable from each other.
Other global graph metrics are thercentages of the
isolated and the end nodesn the entire graph. A
node of a graph is called isolated point if it has no
edges, i.e., if it has a degree of 0. A node of a graph
is called end point if it has only one edge.

IV. EXPERIMENTS

of its edges. Using the distribution of the node degreed- Data Set Preparation

we compute theaverage degreeas a global metric.

The tissues are randomly selected from the archived

A cancerous cell cluster or tissue has typically largeMount Sinai School of Medicine (MSSM) Pathology De-
values for these metrics. On the other hand, it is nqtartment archives. For each subject, a group of represantat
always the indicator for cancer as in the case of in-sitglides are first chosen by the pathologist. The subject iden-

cell clusters or tissues.

tifier (i.e. the access number on slide labels) is coded and



then the identifiers are removed after diagnostic tabulatiodata set into the training and test sets each of which caensist
That is, the coded data is kept, hence, there is not any diraaft 18 patients; the patients of the training and test sets are
linked back to the subjects. These cases are reviewed bgmpletely different. In this data set, some patients have
breast pathologist Dr. Nagi in collaboration with Shabnanissue samples of more than one tissue type (for example,
Jaffer MD. at MSSM to reach a consensus. the same patient might have both invasive cancerous and
This selection is made uniformly random, although prefbenign tissue samples). In the training set, we use 84 weasi
erence is given to cases from the last 5 years. This alloveancerous tissue images of 10 patients, 38 non-invasive
access to more recent cases which are managed with modeamcerous (DCIS) tissue images of 5 patients, and 82 benign
clinical, radiological, surgical and pathological teatunés. tissue images of 10 patients.
All patient populations, regardless of age, sex, or race, In the test set, the tissue and patient distribution is as
are included in the set. Patient reports are available follows: 118 invasive cancerous tissue images of 9 patients
the pathologist on a pathology database. First selection % DCIS tissue images of 6 patients, and 69 benign tissue
performed based on diagnostic categories, suctil @atients images of 9 patients.
diagnpsp_d with in_vasi\_/e QL_Jct carcinoma from 19_99 to datgs Results and Interpratation
After initial selection, individual cases are examined emnd

the microscope to confirm the diagnosis, and technical ade-We have calculated the accuracy of intensity-based ap-

guacy of the material. This is performed by two independerﬂroacﬁ’ IIDeIa|l|Jnay-k;]aseddaﬁpgo_?jcg, Si:jnple cell-%rapr:js,thhi-
pathologists to further ensure reliability and accuracigeA erarchical cell-graphs and nybrid-based approach an en

a glass slide is chosen for the study, it will be numericall)?ompared them to each other in table Ill.

. . e . Intensity-based learning:In the intensity-based approach
coded, and patient identifiers will be removed. The code
tally of individual cases is secured in the pathologistficef &7], [43], [44], [45] features are extracted from the gray-

Digital photomicrographs are obtained in a standardizelgvel or color histogram of pixels. At the cellular levelgth

fashion with regards to magnification and illumination. intensity histogram of pixels surrounded by the boundary

: . ) of a nucleus is employed to define features. For example
Three major diagnostic groups are be formed and an- . :
in [36] using gray-level histograms, the sum and mean of

alyzed. The first group consists of normal breast tissues. : 2 ; .
Y group e optical densities of the pixels located in a nucleus are

These are obtained from surgical pathology material. The : ) .
second group consists of be?wign rpeactiveg)érocesses Succ%mputed and defined as the intensity-based features of the
as hyperplasia, radial scar or inflammatory changes. Florm"deusf Likewise we extracted _|nten§|ty-ba_lsed featuges b
. : . L employing the RGB values of pixels in a tissue. For each
hyperplasia may simulate duct carcinoma in situ based %r(])lor channel, we computed the mean, standard deviation
cellularity. However, histopathologically they are udyalas- ' P ' '

S . g . skewness and kurtosis of the pixel values of an image. The
ily discernable from neoplasms. The rationale for inclgdin .
skewness of a channel is a measure of the asymmetry of

this category is to test the computer algorithms and proy :
egory 1S K . put g P .tﬁe data around the sample mean and the kurtosis of each
that high cellularity alone is not mistaken for a neoplastic

; . .channel is a mesaure of how outlier-prone that channel is.

process using the model that is proposed. Other beni - i
" . Lo ewness is given by:
conditions such as sclerosing adenosis will also be testé
on the computer model to ensure that a low power pattern _ Bl - )"
is not confused with invasive carcinoma. The third group is v= ok '
infiltrating carcinomas. The definition and grading of thesevhere 1 is the mean of that channed, is the standard
tumors is performed according to the published guidelinageviation, E(t) is the expected value of the quantityand
of the modified Bloom Richardson criteria. k = 3. The kurtosis is given by the same formula with: a
We conduct our experiments on the data set that compriseslue of 4.
the images of cancerous and benign breast tissues. ThiDelaunay triangulation: In order to quantify the spatial
data set consists of both invasive and noninvasive (ductdistribution of nuclei, Voronoi diagrams and their Delayna
carcinoma in situ [DCIS]) cancerous tissues. Similar to th&iangulations are proposed in [46], [47] and [48]. On autéss
brain tissue data set, this data set contains the tissuesimfage, the Voronoi diagram constitutes convex polygons for
patients that were randomly chosen from the Pathologyach nucleus. For a particular nucleus, every point in its
Department archives in Mount Sinai School of Medicine angolygon is closer to itself than to another nucleus in the
each of these tissues was stained with hematoxylin and eosissue. The dual graph of the Voronoi diagram is the Delau-
technique. A Nikon Coolscope Digital Camera/Scanner wasay triangulation. The Voronoi diagram of a sample tissue
used to take the images of breast tissue samples. Images wiemage and its Delaunay triangulation are illustrated inrégu
taken in the RGB color space prior to color quantization. Th8. In this approach, we build the Delaunay triangulation on
magpnification of images i300 x 14. The images are taken cell-clusters that we find in node identification step. Then
using a 10 microscope objective lens with another lens ae evaluate the metrics explained in section Il for these
the eye end. In our experiments, we use tissue images wijinaphs. These metrics are then given as the feature set to the
a resolution 0060 x 960. classifier.
Our data set contains images of 446 breast tissue sampleShe choice of the parameters for graph generations affects

that are removed from 36 different patients. We split thishe learning ratio significantly. For hierarchical graphs



TABLE Il
AR Q ] COMPARISON OF THE TECHNIQUES
\ : ) Inten. | Delaun. | Prob. | Simple | Hier. | Hybrid
NI S el | | Benign 85.3 80.9 90.5 84.7 82.9 90.9
: BN InSitu_|| 509 | 163 | 51.8 | 51.6 | 756 | 57.3
] P aa =l Invasive || 51.7 56.7 77.0 85.6 83.3 86.3
% it Overall || 61.0 | 541 | 734 | 758 | 81.8 | 791
N Ss A
[RED = % i TABLE IV
VA s . ; DETAILED COMPARISIONS
(b) : ____
Intensity Delaunay Hierarchical
Prediction Prediction Prediction
Fig. 3. (a)The Voronoi cells of the tissue. (b)The dual of Waronoi Act Ben [ InS Inv Ben [ InS Inv Ben [ InS | Inv
diagram, Delaunay triangulation. Ben || 853 | 10.3 | 4.4 80.9 | 10.3 | 88 829 73 | 9.8
InS || 16.4 | 509 | 32.7 || 491 | 164 | 345 || 55 | 756 | 18.9
TABLE | nv 144339 | 517|271 | 161 | 568 || 83 | 83 | 833

HIERARCHICAL CELL-GRAPHRESULTS

of the cells produces worse results than the intensity¢base

Link Grid Si . SR
Thrg;hom Z £ ”8 & 10 T 16 approach even though it embeds the spatial distribution of
1 60.1 | 64.3 | 689 | 76.4 | 69.5 the cells in learning. Simple cell-graphs, however, embeds
2 67.0| 66.0 | 650] 81.8 | 68.0 the spatial distribution of the cells better than the De&un
3 59.6 | 70.0 | 73.9 | 75.9 | 70.0 tri lati d achi 75 0353 | . Hi
y =761 606 7491 700 1 695 riangulation and achieves a 75. earning ratio on
5 685 | 665 | 704 | 695 695 average for link thresholds varying between 1 and 10. Prob-
6 61.6 | 60.6 | 65.0 | 70.4 | 69.5 abilistic cell-graphs do not change the results signifiyant
7 64.0 | 58.6 | 64.0 | 66.0 | 69.5 ; _ ; ;
3 et B B compared to the simple cell graphs anq ach|eye a Ie{;\rnlng
5 E56 1 576 6351 660 | 695 ratio of 73.4%t1.24. The learning ratio of hierarchical
10 542 | 53.7 | 65.5| 66.0 | 69.5 graphs is dependent on the choice of the grid size and the

link threshold. A good choice of these metrics is small link
threshold and a fairly big grid size to find the clusters.
For hierarchical graphs, after some point increasing thie li
threshold does not change the learning ratio as can be seen
in I. This is because we obtain a complete graph where each

TABLE Il
PROBABILISTIC CELL-GRAPHS

Link 5 6 7 8 9 i )
Threshold node has a link to the other nodes. We have used a grid
Benign || 92.0E3 | 88.744 | 89.2E4 | 91.6E2 | 91.1E3 size of 10 which is able to capture the cell clusters. Using
I'”S”_U gg-ij ?g-ii ?ii? ?gﬁj ‘Y‘Zﬁ; hierarchical graphs we obtained a learning ratio of 81.8%.
nvasive . . . . . . . . .
Overal T 74502 T 73203 T 72604 T 731 72000 In hybrid-based approach we have combined the intensity

features, the metrics calculated from simple cell-grapit a
hierarchical cell-graphs and used this set as the feattig se
our classifier. This hybrid approach is calculated for a grid
obtain the best result, 81.8%, when the grid size is 10 argize of 10 and the average value for this technique is 79.1%.
link threshold is 2. On the other hand, we have a learning The over all learning ratio suggests that Hierarchical-
ratio of 54.2% when the grid size is 4 and the link thresholdgraphs perform better than the other techniques presemted i
is 10. In table | we see that increasing the link thresholde@al this paper. Besides, the learning ratio for in-situ cas&is%
also increases the learning ratio up to some point. Inangasifor hierarchical graphs and the next better result is 57.3%.
the link threshold beyond this value decreases the learninthis is because of the capability of hierarchical-graphs to
ratio, since the graphs start having cliques. capture lobular structures. In table IV we have also present

Table Il shows the accuracy of the classifier with varyinghe confustion matrices of the techinques. In that table, Ben
link values for probabilistic cell-graphs. We run our prob-4nS, Inv and Act are used as abbreviations for benign, in-sit
abilistic cell-graph algorithm for 15 times to get a goodnvasive, and actual (true) class. We see that hierarcbédal
estimate of the accuracy. Note that we do not need to rwraphs have false positive and false negative values smalle
any of the other techniques more than one time since thélyan 10%.
are not probabilistic.

In table Il we give the comparative results of the tech- V. CONCLUSION
niques discussed in the paper. Inten., Delaun, Prob. and Hie Previously, we used cell-graphs to model and classify brain
are used as abbreviations for intensity, Delaunay, prdibabi tissue samples which present a diffusive structure. In this
tic cell-graphs, and hierarchical cell-graphs respebtive work we extend and enhance the cell-graph approach to mod-

From table 1l we see that intensity-based approachling and classification of breast tissue samples which has a
achieves a learning ratio of 61.0%. Delaunay triangulatiolobular/glandular architecture, thus differ from braissties



significantly in architecture. To capture this difference w [15]
introduce hierarchical graphs and obtaine the best legrnin
ratio compared to the other techniques which is 81.8%. 4
Cell-graphs enable us to identify and compute a rich
set of features that represent the two dimensional streictur
information of breast tissues. The feature sets are inpat toy; 7
support vector machine for classification of benign, invasi
and noninvasive (ductal carcinoma in situ) cancerouséssu
We show that accuracy of classification depends signifigantl
on the construction of cell-graphs which needs to capture tius]
characteristics of underlying native tissue. A computeio
comparison of our approach to the related work in the
literature shows that hierarchical cell-graphs are muchemo
accurate for breast tissues. However, we believe that acgur [19]
can be improved further by increasing the data size and by
improving the image segmentation. [20]
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