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Abstract— The most reliable way to diagnose cancer in the
current practice of medicine is through pathological exami-
nation of a biopsy which has a certain level of subjectivity.
To reduce this subjectivity and have a mathematical model for
diagnosing cancer tissues we consider the problem of automated
cancer diagnosis in the context of breast tissues. In this work we
present graph theoretical techniques that identify and compute
quantitative metrics for tissue characterization and classifica-
tion. We segment the digital images of histopatological tissue
samples using k-means algorithm. For each segmented image
we generate different cell-graphs using positional coordinates
of cells and surrounding matrix components. These cell-graphs
have 500-2000 cells(nodes) with 1000-10000 links depending
on the tissue and the type of cell-graph being used. Having
generated the graphs, we calculate a set of global metrics
from cell-graphs and use them as the feature set for learning.
We compare our technique, hierarchical cell graphs, with
other techniques based on intensity values of images, Delaunay
triangulation of the cells, the previous technique we proposed
for brain tissue images and with the hybrid approach that
we introduce in this paper. Among the compared techniques,
hierarchical-graph approach gives 81.8% accuracy whereaswe
obtain 61.0%, 54.1% and 75.9% accuracy with intensity-based
features, Delaunay triangulation and our previous technique,
respectively.

I. I NTRODUCTION

Breast cancer is the most common cancer and the second
leading cause of cancer death among American females.
The current incident rates predict that 1 in 8 women in the
United States will develop breast cancer in their lifetime.
Currently, long-term survival is approximately 70%. Early
diagnosis of breast cancer is crucial and the diagnosis and
staging for prognosis is based on histopathological exami-
nation and grading of surgically removed breast tissue and
axillary lymph nodes. Prognostic analysis of breast cancerin
individual patients currently depends on established clinical,
and laboratory parameters such as histopatological grading
and hormonal receptor status of individual tumor tissues.

Unfortunately, these parameters are only accurate in ap-
proximately 75-80% of the cases, particularly in Stage I
tumors. In this group of patients, despite being node negative
i.e. tumor confined to the breast with no spread to lymph
nodes, 20-30% will recur. Thus, it is important to be able to
predict which group of these patients will need chemotherapy
to prevent tumor recurrence. Current techniques for diag-
nosing and predicting the biological behavior of cancer in
individual patients are based predominantly on pathological
parameters. New molecular techniques are currently being
utilized to identify higher risk for specific subgroups of

cancer and are in great demand. Unfortunately, reliable
prognostic information is still not available in a significant
percentage of individuals with common types of cancer, such
as breast cancer.

A large set of automated cancer diagnosis tools exists in
literature which are based on learning some feature sets. Mor-
phological features such as area, perimeter, and roundness
of a nucleus are used in [7], [22], [12], [29], [31], [28],
[10], [13], [38], [41] for this purpose. Textural features such
as the angular second moment, inverse difference moment,
dissimilarity, and entropy derived from the co-occurrence
matrix are used for diagnosis in [7], [6], [12], [30], [14],
[13], [38]. To distinguish the healthy and cancerous tissues
these systems are trained by using artificial neural networks
[14], [13], [41], the k-nearest neighborhood algorithm [6],
[22], support vector machines [12], linear programming
[28], logistic regression [38], fuzzy [31], and genetic [10]
algorithms. Complimentary to the morphological and textural
features, a few of these studies use colorimetric features such
as the intensity, saturation, red, green, and blue components
of pixels [22], [41] and densitometric features such as the
number of low optical density pixels in an image [6],
[30], [14]. Another subset of these studies uses fractals that
describe the similarity levels of different structures found in a
tissue image over a range of scales [3], [5]. These studies use
the fractal dimensions as their features and use the k-nearest
neighborhood algorithm [5], neural networks, and logistic
regression [3] as their classifiers. Finally, the orientational
features are extracted by making use of Gabor filters that
respond to contrast edges and line-like features of a specific
orientation [2].

There are also some other mathematical diagnosis tools
that rely on gene expression [1], [16], [18], [21] and mass
spectroscopy [39] to detect a cancer tumor. However, these
tools require high technological hard-wired such as micro-
arrays [21], [32] or mass spectrometers [42].

There are other approaches using spatial dependency of
the cells rather than the intensity values. These approaches
construct a graph of cells from a tissue image and compute
graph theoretical features that quantify how the cells are
distributed over the tissue [20], [36], [11], [24]. In these
approaches, a graph of a tissue is defined by representing
nuclei as vertices and defining edges to capture relationships
between nuclei. In [36], [11] and [24], the Voronoi diagram
of the image is constituted and its Delaunay triangulation is
built. In these studies the graph-based features are defined



on the Delaunay triangulation graph or its corresponding
minimum spanning tree. Since the Delaunay triangulation
allows the existence of edges between only the adjacent
vertices, only the relationships between closely located nuclei
are represented in this method. Moreover, prior to graph
construction, this method should carry out the segmentation
for each nucleus.
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Fig. 1. Microscopic images of tissue samples surgically removed from
human breast tissues:(a) a benign tissue example,(b) an in-situ tissue
example,(c) an invasive tissue example.

Contributions: In this paper we try to capture patholo-
gists’ rule of thumbs. We model the tissues based on graph
theory and show that cell-graph mining can classify breast
tissue samples in different (dis)functional states such as
benign, in-situ and invasive. This paper extends our previous
work on brain tissues. There is an underlying architectural
difference between breast and brain tissue examples, there-
fore, a new set of features and new graph based modeling
techniques are needed. In this work we present different
graph based approaches, such as hierarchical graphs and
hybrid based learning and different sets of features to dif-
ferentiate between cancerous, benign and in-situ tissues.

Organization: The rest of the paper is organized as fol-
lows. In section 2 we explain our methodology for generating
cell-graphs of breast tissues. In section 3 we explain the
definitions of the metrics which are extracted from our
graphs and used as feature sets for learning. We present our
experiments and results in section 4, and we conclude our
discussion in section 5.

II. M ETHODOLOGY

Our technique consists of segmenting the image to extract
the cells, modelling the tissue by graphs according to the
location of the cells and then learning these graphs using
machine learning techniques. Each step is further discussed
in the following sections.

A. Image Segmentation

1) Segmentation: In order to form graphs on top of the
cells, first we need to segment the cells in tissue
images. However, image segmentation is still an open
question and there are several segmentation techniques
that are proposed for different types of images. K-
means algorithm, which clusters the pixels of images
according to their RGB values into clustering vectors,
gave satisfactory results for breast tissue images. The
clustering vectors are estimated as to minimize the
following error functionE,

E =

k
∑

j=1

∑

xn∈Sj

(xn − µj)
2

whereµj is the center ofjth cluster andxn’s are the
intensity values of the images. This step is depicted as
the transition from figure 2a to 2b.

2) Node Identification: The next step is to translate the
class information to node information. The image
segmentation procudes pixels that constitute a cell but
still the boundaries of the cells are not available. We
placed a grid on the resulting images of segmentation
to identify the cells. For each grid entry we calculated
the probability of being a cell as the ratio of cell pixels
to the total number of pixels in the grid. Then we
applied thresholding to decide whether this grid entry
is a cell or not.
Note that there are two parameters in this step, namely
grid size and threshold value. The grid size depends on
the actual cell size and therefore should be considered
independent from the rest of the work. Increasing
the threshold value will help to eliminate noise in
the image segmentation but increasing it beyond an
optimum value will result in the loss of cell informa-
tion. Therefore, we need a threshold value which can
identify the cells and eliminate the noise in the image.
This step can also be considered as downsampling of
the image. The result of node identification is given in
figure 2d.

B. Cell-Graph Generation

After the image segmentation, we have the locations of
the cells which are the centers of the grid entries. We build
our graphs on top of these grid entries. Formally a graph
is represented byG = (V, E) whereV is the vertex set of
the graph andE is the edge set of the graph. After image
segmentation step we have the vertex set of the graphs and
in cell-graph generation we form the edges of the graphs.

We constructed three different kinds of cell-graphs cap-
turing the pairwise distance relationship between the nodes.
These three different kinds of cell-graphs are explained in
the following sections.

1) Simple Cell-Graphs::In simple cell-graphs we set a
link between two nodes if the euclidean distance is less thana
threshold. The euclidean distance between two cells is given
by
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Fig. 2. The steps of our methodology. (a) Original tissue image is opened in RGB space. (b) The result of k-means segmentation, black points are part
of cells and white points are treated as background. (c) The application of grid and thresholding to the resulting segmentation. Appling a thresholding will
get rid of the noise in the segmentation and the center of gridentries will be used as the locations of cells. (d) The overall result of node identification. (e)
Simple cell-graphs are formed based on the location information of the cells. (f) A bigger grid is applied to the image to capture the cell clusters. Each
grid entry is then thresholded to get the clusters. After cluster identification, hierarchical graphs are build on cluster cells.

d(u, v) =
√

(ux − vx)2 + (uy − vy).

where ux and uy are x and y coordinates of nodeu
respectively.

These graphs form a relation between nodes if they are
close to each other.

2) Probabilistic Cell-Graphs::The probabilistic model is
a more general version of simple cell-graphs. In this model
we build a link between two nodes with a certain probability
which is given by given by

P (u, v) = d(u, v)−α for nodes u and v.

This kind of graphs introduce building a link between
two nodes which are not neccessarily close neighbors.d is
defined as the euclidean distance between the nodes as in
the case of simple cell-graphs. The use ofα introduces a
decaying property for building links. As the distance between
nodes increases, the probability of linking them decreases.
Note that probabilistic graphs do not necessarily form links
between two nodes even if the distance between the nodes
is small. Yet, it is more likely for the nodes that are close
to each other will be linked while the nodes that are farther
away will not be linked.

3) Hierarchical Cell-Graphs:: The previous two forms
of graphs capture the global distribution of the cells and

were particularly useful for brain tissue images. However,
there is an underlying architectural difference between the
brain and breast tissues. Breast tissues have lobular archi-
tecture whereas brain tissues do not have such higher level
structures. For breast tissues, the pairwise relationshipof
cells within the same gland as well as different glands are
therefore important. To capture the lobular architecture of
the breast tissues we need an hierarchical representation of
the tissues. We formed our hierarchical graphs similar to the
way we formed our cell-graphs. After the node identification
step we had our nodes (cells) of the graphs. In order to find
the clusters (lobes) of the tissues, we placed a grid on top
of these cells. We calculated the number of cells in the grid
and by dividing this number by the grid size, we calculated
the probability of being a cluster for each grid entry. After
obtaining the probability values for each grid entry, we set
a threshold value and considered the grid entries with a
probability greater than this threshold as a cluster. We then
formed our graphs on these clusters. This step can actually be
considered as further downsampling of the image to capture
the cell clusters as depicted in figure 2e.

Note that the presence of a link between nodes does not
specify what kind of relationship exists between the nodes
(cells); it simply indicates that a relationship of some sort is



proposed to exist, and that it is dependent on the distance
between cells. Surprisingly, this measure alone is sufficient to
reveal important, diagnostic structural differences in human
tissues.

C. Cell-Graph Mining

In order to learn the differences between the graphs we
need to find a way to extract the properties (metrics) of these
graphs. The metrics that are computed for each graph are
explained in section III. After calculating our metrics prior
to learning, the metrics are scaled since some metrics are
too large and some of them are too small therefore effecting
the learning significantly. We scaled each metric to the range
[−1, 1] for a better comparasion.

We have used support vector machines (SVM) as our
main classifier. The SVM algorithm creates the optimal
separating hyperplane between data points such that the data
points of different classes fall into the opposite sides of this
hyperplane. If there is no hyperplane that separates these
two classes (i.e., if the data is not linearly separable), this
algorithm creates a hyperplane that leads to the least error.

Parameters of the optimal separating hyperplane are de-
rived by solving a quadratic programming optimization
problem with linear equality and inequality constraints; this
optimization problem maximizes the margin. In case of a
nonseparable data set, the slack variables are introduced to
minimize the error. An important feature of support vector
machines is the use of kernel functions. The kernel function
transforms the input space to a new space and allows the
algorithm to find the optimal separating hyperplane in this
new space. The use of nonlinear kernel functions allows
using non-linearity without explicitly requiring a non-linear
algorithm.

We have used SVM classifier with a radial basis kernel

K(x, y) = eγ‖x−y‖2

.

We applied grid search to find out the best parameters
for the SVM. After finding these parameters we trained our
training set with these parameters and then tested it on the
test set which was disjoint to the training set.

III. M ETRICS

In order to have a quantitative representation of the graphs,
we extracted some metrics from the graphs. We use several
different topological properties defined on the entire graph
(i.e. global graph metrics). These cell-graph features areas
simple as the number of neighboring cells which corresponds
to the degree of a node.

1) The simplest metric is thenumber of nodes in the
graph. The degree of a node is defined as the number
of its edges. Using the distribution of the node degrees,
we compute theaverage degreeas a global metric.
A cancerous cell cluster or tissue has typically larger
values for these metrics. On the other hand, it is not
always the indicator for cancer as in the case of in-situ
cell clusters or tissues.

2) Another graph metric is theclustering coefficientof a
nodeCi, which is defined asCi = (2Ei)/(k(k + 1)),
where k is the number of neighbors of the node
i and Ei is the number of existing links between
its neighbors (Dorogovtsev and Mendes, 2002). This
metric quantifies the connectivity information in the
neighborhood of a node. We use the average clustering
coefficient as a global metric.

3) Thepath length between two nodes is defined as their
shortest path length in the graph, taking the weight of
each link as a unit length.

4) Given shortest path lengths between a node i and all of
the reachable nodes around it, theeccentricity and the
closenessof the node i are defined as the maximum and
the average of these shortest path lengths respectively.
The maximum value of the eccentricity, also known
as thediameter of a graph, is another metric for the
classifier. This set of metrics reflects the centrality of
the node.

5) Central points of the graph is defined as the points
having an eccentricity equal to the radius. We used this
metric for the learning as well.

6) The hop plot value reflects the size of a neighborhood
between any two nodes within a hop. For hop h, the
hop plot value is defined as the number of node pairs
such that the path length between these node pairs is
less than or equal to h hops. Using the hop plot value
distributions, two global features are computed. The
first one is thehop-plot exponent, which is computed
as the slope of the hop plot values as a function of h in
log-log scale. The second global feature is theeffective

diameter, which is defined asε =
N2

(N + 2E)
1

H

where

N and E are the number of nodes and edges, and H is
the hop plot exponent.

7) We also computed some global graph metrics which
are not directly computed from the distributions of the
local graph metrics. For example the ratio of the size
of the giant connected component over the size of the
entire graph is one of the distinguishing features in the
learning step. In graph theory, thegiant connected
component of a graph is defined as the largest set
of the nodes where all of the nodes in this set are
reachable from each other.

8) Other global graph metrics are thepercentages of the
isolated and the end nodesin the entire graph. A
node of a graph is called isolated point if it has no
edges, i.e., if it has a degree of 0. A node of a graph
is called end point if it has only one edge.

IV. EXPERIMENTS

A. Data Set Preparation

The tissues are randomly selected from the archived
Mount Sinai School of Medicine (MSSM) Pathology De-
partment archives. For each subject, a group of representative
slides are first chosen by the pathologist. The subject iden-
tifier (i.e. the access number on slide labels) is coded and



then the identifiers are removed after diagnostic tabulation.
That is, the coded data is kept, hence, there is not any direct
linked back to the subjects. These cases are reviewed by
breast pathologist Dr. Nagi in collaboration with Shabnam
Jaffer MD. at MSSM to reach a consensus.

This selection is made uniformly random, although pref-
erence is given to cases from the last 5 years. This allows
access to more recent cases which are managed with modern
clinical, radiological, surgical and pathological techniques.
All patient populations, regardless of age, sex, or race,
are included in the set. Patient reports are available to
the pathologist on a pathology database. First selection is
performed based on diagnostic categories, such asall patients
diagnosed with invasive duct carcinoma from 1999 to date.
After initial selection, individual cases are examined under
the microscope to confirm the diagnosis, and technical ade-
quacy of the material. This is performed by two independent
pathologists to further ensure reliability and accuracy. After
a glass slide is chosen for the study, it will be numerically
coded, and patient identifiers will be removed. The coded
tally of individual cases is secured in the pathologist’s office.
Digital photomicrographs are obtained in a standardized
fashion with regards to magnification and illumination.

Three major diagnostic groups are be formed and an-
alyzed. The first group consists of normal breast tissues.
These are obtained from surgical pathology material. The
second group consists of benign reactive processes, such
as hyperplasia, radial scar or inflammatory changes. Florid
hyperplasia may simulate duct carcinoma in situ based on
cellularity. However, histopathologically they are usually eas-
ily discernable from neoplasms. The rationale for including
this category is to test the computer algorithms and prove
that high cellularity alone is not mistaken for a neoplastic
process using the model that is proposed. Other benign
conditions such as sclerosing adenosis will also be tested
on the computer model to ensure that a low power pattern
is not confused with invasive carcinoma. The third group is
infiltrating carcinomas. The definition and grading of these
tumors is performed according to the published guidelines
of the modified Bloom Richardson criteria.

We conduct our experiments on the data set that comprises
the images of cancerous and benign breast tissues. This
data set consists of both invasive and noninvasive (ductal
carcinoma in situ [DCIS]) cancerous tissues. Similar to the
brain tissue data set, this data set contains the tissues of
patients that were randomly chosen from the Pathology
Department archives in Mount Sinai School of Medicine and
each of these tissues was stained with hematoxylin and eosin
technique. A Nikon Coolscope Digital Camera/Scanner was
used to take the images of breast tissue samples. Images were
taken in the RGB color space prior to color quantization. The
magnification of images is100 × 14. The images are taken
using a 10 microscope objective lens with another lens at
the eye end. In our experiments, we use tissue images with
a resolution of960 × 960.

Our data set contains images of 446 breast tissue samples
that are removed from 36 different patients. We split this

data set into the training and test sets each of which consists
of 18 patients; the patients of the training and test sets are
completely different. In this data set, some patients have
tissue samples of more than one tissue type (for example,
the same patient might have both invasive cancerous and
benign tissue samples). In the training set, we use 84 invasive
cancerous tissue images of 10 patients, 38 non-invasive
cancerous (DCIS) tissue images of 5 patients, and 82 benign
tissue images of 10 patients.

In the test set, the tissue and patient distribution is as
follows: 118 invasive cancerous tissue images of 9 patients,
55 DCIS tissue images of 6 patients, and 69 benign tissue
images of 9 patients.

B. Results and Interpratation

We have calculated the accuracy of intensity-based ap-
proach, Delaunay-based approach, simple cell-graphs, hi-
erarchical cell-graphs and hybrid-based approach and then
compared them to each other in table III.

Intensity-based learning: In the intensity-based approach
[37], [43], [44], [45] features are extracted from the gray-
level or color histogram of pixels. At the cellular level, the
intensity histogram of pixels surrounded by the boundary
of a nucleus is employed to define features. For example
in [36] using gray-level histograms, the sum and mean of
the optical densities of the pixels located in a nucleus are
computed and defined as the intensity-based features of the
nucleus. Likewise we extracted intensity-based features by
employing the RGB values of pixels in a tissue. For each
color channel, we computed the mean, standard deviation,
skewness and kurtosis of the pixel values of an image. The
skewness of a channel is a measure of the asymmetry of
the data around the sample mean and the kurtosis of each
channel is a mesaure of how outlier-prone that channel is.
Skewness is given by:

y =
E(x − µ)k

δk
.

where µ is the mean of that channel,δ is the standard
deviation,E(t) is the expected value of the quantityt and
k = 3. The kurtosis is given by the same formula with ak
value of 4.

Delaunay triangulation: In order to quantify the spatial
distribution of nuclei, Voronoi diagrams and their Delaunay
triangulations are proposed in [46], [47] and [48]. On a tissue
image, the Voronoi diagram constitutes convex polygons for
each nucleus. For a particular nucleus, every point in its
polygon is closer to itself than to another nucleus in the
tissue. The dual graph of the Voronoi diagram is the Delau-
nay triangulation. The Voronoi diagram of a sample tissue
image and its Delaunay triangulation are illustrated in figure
3. In this approach, we build the Delaunay triangulation on
cell-clusters that we find in node identification step. Then
we evaluate the metrics explained in section III for these
graphs. These metrics are then given as the feature set to the
classifier.

The choice of the parameters for graph generations affects
the learning ratio significantly. For hierarchical graphs,we
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Fig. 3. (a)The Voronoi cells of the tissue. (b)The dual of theVoronoi
diagram, Delaunay triangulation.

TABLE I

HIERARCHICAL CELL-GRAPH RESULTS

Link Grid Size
Threshold 4 5 8 10 16

1 60.1 64.3 68.9 76.4 69.5
2 67.0 66.0 65.0 81.8 68.0
3 59.6 70.0 73.9 75.9 70.0
4 57.6 60.6 74.9 70.0 69.5
5 68.5 66.5 70.4 69.5 69.5
6 61.6 60.6 65.0 70.4 69.5
7 64.0 58.6 64.0 66.0 69.5
8 60.6 71.4 63.1 66.0 69.5
9 58.6 57.6 63.5 66.0 69.5
10 54.2 53.7 65.5 66.0 69.5

TABLE II

PROBABILISTIC CELL-GRAPHS

Link 5 6 7 8 9
Threshold

Benign 92.0±3 88.7±4 89.2±4 91.6±2 91.1±3
InSitu 50.9±4 54.9±6 55.1±5 50.2±4 47.8±7

Invasive 79.2±4 75.9±4 74.6±7 77.1±4 78.1±3
Overall 74.5±2 73.2±3 72.6±4 73.1±1 72.9±2

obtain the best result, 81.8%, when the grid size is 10 and
link threshold is 2. On the other hand, we have a learning
ratio of 54.2% when the grid size is 4 and the link threshold
is 10. In table I we see that increasing the link threshold value
also increases the learning ratio up to some point. Increasing
the link threshold beyond this value decreases the learning
ratio, since the graphs start having cliques.

Table II shows the accuracy of the classifier with varying
link values for probabilistic cell-graphs. We run our prob-
abilistic cell-graph algorithm for 15 times to get a good
estimate of the accuracy. Note that we do not need to run
any of the other techniques more than one time since they
are not probabilistic.

In table III we give the comparative results of the tech-
niques discussed in the paper. Inten., Delaun, Prob. and Hier.
are used as abbreviations for intensity, Delaunay, probabilis-
tic cell-graphs, and hierarchical cell-graphs respectively.

From table III we see that intensity-based approach
achieves a learning ratio of 61.0%. Delaunay triangulation

TABLE III

COMPARISON OF THE TECHNIQUES

Inten. Delaun. Prob. Simple Hier. Hybrid
Benign 85.3 80.9 90.5 84.7 82.9 90.9
InSitu 50.9 16.3 51.8 51.6 75.6 57.3

Invasive 51.7 56.7 77.0 85.6 83.3 86.3
Overall 61.0 54.1 73.4 75.8 81.8 79.1

TABLE IV

DETAILED COMPARISIONS

Intensity Delaunay Hierarchical
Prediction Prediction Prediction

Act Ben InS Inv Ben InS Inv Ben InS Inv
Ben 85.3 10.3 4.4 80.9 10.3 8.8 82.9 7.3 9.8
InS 16.4 50.9 32.7 49.1 16.4 34.5 5.5 75.6 18.9
Inv 14.4 33.9 51.7 27.1 16.1 56.8 8.3 8.3 83.3

of the cells produces worse results than the intensity-based
approach even though it embeds the spatial distribution of
the cells in learning. Simple cell-graphs, however, embeds
the spatial distribution of the cells better than the Delaunay
triangulation and achieves a 75.93%±2.53 learning ratio on
average for link thresholds varying between 1 and 10. Prob-
abilistic cell-graphs do not change the results significantly
compared to the simple cell-graphs and achieve a learning
ratio of 73.4%±1.24. The learning ratio of hierarchical
graphs is dependent on the choice of the grid size and the
link threshold. A good choice of these metrics is small link
threshold and a fairly big grid size to find the clusters.
For hierarchical graphs, after some point increasing the link
threshold does not change the learning ratio as can be seen
in I. This is because we obtain a complete graph where each
node has a link to the other nodes. We have used a grid
size of 10 which is able to capture the cell clusters. Using
hierarchical graphs we obtained a learning ratio of 81.8%.

In hybrid-based approach we have combined the intensity
features, the metrics calculated from simple cell-graphs and
hierarchical cell-graphs and used this set as the feature set of
our classifier. This hybrid approach is calculated for a grid
size of 10 and the average value for this technique is 79.1%.

The over all learning ratio suggests that Hierarchical-
graphs perform better than the other techniques presented in
this paper. Besides, the learning ratio for in-situ case is 75.6%
for hierarchical graphs and the next better result is 57.3%.
This is because of the capability of hierarchical-graphs to
capture lobular structures. In table IV we have also presented
the confustion matrices of the techinques. In that table Ben,
InS, Inv and Act are used as abbreviations for benign, in-situ,
invasive, and actual (true) class. We see that hierarchicalcell-
graphs have false positive and false negative values smaller
than 10%.

V. CONCLUSION

Previously, we used cell-graphs to model and classify brain
tissue samples which present a diffusive structure. In this
work we extend and enhance the cell-graph approach to mod-
eling and classification of breast tissue samples which has a
lobular/glandular architecture, thus differ from brain tissues



significantly in architecture. To capture this difference we
introduce hierarchical graphs and obtaine the best learning
ratio compared to the other techniques which is 81.8%.

Cell-graphs enable us to identify and compute a rich
set of features that represent the two dimensional structure
information of breast tissues. The feature sets are input toa
support vector machine for classification of benign, invasive
and noninvasive (ductal carcinoma in situ) cancerous tissues.
We show that accuracy of classification depends significantly
on the construction of cell-graphs which needs to capture the
characteristics of underlying native tissue. A computational
comparison of our approach to the related work in the
literature shows that hierarchical cell-graphs are much more
accurate for breast tissues. However, we believe that accuracy
can be improved further by increasing the data size and by
improving the image segmentation.
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