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ABSTRACT
Summary: This work reports a novel computational method based
on augmented cell-graphs (ACG), which are constructed from low-
magnification tissue images for the mathematical diagnosis of brain
cancer (malignant glioma). An ACG is a simple, undirected, weighted
and complete graph in which a node represents a cell cluster and an
edge between a pair of nodes defines a binary relationship between
them. Both the nodes and the edges of an ACG are assigned weights
to capture more information about the topology of the tissue. In this
work, the experiments are conducted on a dataset that is comprised of
646 human brain biopsy samples from 60 different patients. It is shown
that the ACG approach yields sensitivity of 97.53% and specificities of
93.33 and 98.15% (for the inflamed and healthy, respectively) at the
tissue level in glioma diagnosis.
Contact: demir@cs.rpi.edu

1 INTRODUCTION
Histology considers formation and structure of a tissue at the micro-
scopic level and provides computational tools for the diagnosis of
diseases including cancer.

There are a number of bio-computational methods proposed to
diagnose cancer by automatically capturing the histological changes
in a tissue. The automated diagnosis techniques not only decrease
the inter-observer variability, but also facilitate large-scale cancer
screening by assisting pathologists.

In automated cancer diagnosis, one of the most important steps
is the feature (i.e. metric) extraction which aims at identifying and
quantifying the properties of a single cell or an entire tissue. In lit-
erature, there are four different approaches to feature extraction:
morphological (Blekas et al., 1998; Spyridonos et al., 2001; Street
et al., 1993; Thiran and Macq, 1996; Wolberg et al., 1995), tex-
tural (Albregtsen et al., 2000; Esgiar et al., 1998, 2002; Hamilton
et al., 1997; Smolle, 2000), intensity-based (Schnorrenberg et al.,
1996; Weyn et al., 1998; Wiltgen et al., 2003; Zhou et al., 2002),
and topological (Choi et al., 1997; Keenan et al., 2000; Weyn et al.,
1999). Although these approaches yield promising results, they all
need to address (1) the difficulty of determining the exact locations
of cells/nuclei in the biopsy image, and/or (2) the sensitivity to the
noise that arises from the stain artifacts in the image.

In this work, we report a novel computational method based on
the augmented cell-graphs (ACG) of cancer which enables us to
define a new set of features. An ACG is a simple (i.e. no self loops),
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undirected, weighted, and complete (i.e. with an edge between every
pair of nodes) graph obtained from the histopathological image of
a tissue. In an ACG, a node represents a cell cluster and an edge
between a pair of nodes defines a binary relationship between them.
Both the nodes and the edges of an ACG are assigned weights to cap-
ture more information about the topology of the tissue. In this work,
we define the node weight as the size of the cluster corresponding to
a node, and the edge weight as the Euclidean distance between the
end points of an edge.

The ACG approach is based on the distinctive topological proper-
ties of self-organizing malignant cells rather than the exact location
of each cell. In this approach, the nodes correspond to cell clusters
rather than individual cells. Thus, the ACG approach eliminates
the need for the exact loci of the cells, and the coarse loci of the
cells would suffice. Furthermore, the ACG approach neither uses the
intensity values of the pixels directly in the feature extraction nor it
is sensitive to the gray-scale dependencies between the pixels. Thus,
it is likely to be immune to the noise inherit in a histopathological
image.

There are other topological approaches for the analysis of histo-
pathological images. In Choi et al. (1997), Keenan et al. (2000) and
Weyn et al. (1999), Voronoi diagrams and their Delaunay triangula-
tions are suggested to capture the topological information between
the adjacent cells. Thus, these approaches focus on local-edges only.
In the ACG approach, the definition of an edge enables capture of the
spatial information beyond adjacent cells. In Gunduz et al. (2004),
cell-graphs are constructed also by defining edges between a pair
of non-adjacent cells with a certain probability. While this approach
remedies the local-edges-only issue, it may miss some edges that
can be important for automated diagnosis owing to the probabilistic
assignment of edges in the cell-graph. Furthermore, in Gunduz et al.
(2004), no distinction is made (e.g. no weights are assigned) between
nodes and edges once they are established. We distinguish the ACGs
presented in this work from the simple cell-graphs used in Gunduz
et al. (2004) and Demir et al. (2005) since an ACG defines edges
between all pairs of nodes, and assigns weights to each node and
edge to reflect their contribution to the topology of the tissue.

On an ACG, we compute global metrics defined over the entire
graph (quantifying the properties of the entire tissue sample) and
show that the ACG approach improves the accuracy of automated
cancer diagnosis. The dataset used in this work consists of 646
brain biopsy samples of 60 different patients. It contains three dif-
ferent types of tissue samples as shown in Figure 1: (1) a brain
tumor (i.e. malignant glioma), (2) a healthy tissue, and (3) a tissue
sample of a benign inflammatory process. Remark that the cancer-
ous samples are easily distinguished from the healthy ones even with
untrained eyes (as shown in Fig. 1a and b, respectively). However, it
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(a) (b)
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Fig. 1. Exemplary microscopic images of tissue samples surgically removed from human brain: (a) a brain tumor sample (i.e. malignant glioma), (b) a healthy
tissue sample, and (c) a tissue sample of a benign inflammatory process.

is not a straightforward differentiation between the cancerous tissues
and benign inflammatory processes1 (as shown in Fig. 1a and c,
respectively).

Despite such visual similarity of the cancerous and inflamed biopsy
samples, we demonstrate that the ACG approach yields sensitivity of
97.53% and specificities of 93.33 and 98.15% (for the inflamed and
the healthy, respectively) in the cancer diagnosis at the tissue level.
In comparison to results obtained on the same dataset using similar
global metrics computed on simple cell-graphs (Demir et al., 2005),
the ACG approach leads to statistically significant improvement in
the accuracy and sensitivity.

2 METHODOLOGY
The ACG approach contains three steps: segmentation, feature extraction,
and diagnosis, as illustrated in Figure 2.

2.1 Segmentation
In the segmentation step, we construct the nodes of the cell-graph by identi-
fying the cell clusters in the biopsy image. Since we utilize the cell clusters

1Herein referred to as ‘inflamed tissues’.

instead of individual cells, only the coarse locations of the cell clusters are
necessary.

In the first part of the segmentation, we classify the pixels of the image
as ‘cell’ or ‘background’. For this, we first learn how to classify them using
the k-means algorithm (Haralick, 1979). The k-means algorithm clusters the
pixels of the training samples into k clustering vectors. Subsequently, a human
expert assigns each of these clustering vectors either ‘cell’ or ‘background’
class. Once learned, the clustering vectors together with their class assign-
ments are used in the classification of the pixels in the other images. In this
part, we have the control parameter of k. The value of this parameter should
be selected large enough to represent the different parts of a biopsy sample.
On the other hand, unlike other parameters used in the cell-graph approach,
the selection of this parameter is limited to the human perception; the human
expert should be able to reproducibly distinguish the different clusters and
successfully assign the corresponding classes to these clusters. Considering
this trade-off, we set the value of this parameter to be 16 in our work.

In the second part of the segmentation, we identify the nodes of the cell-
graph making use of the pixel classification. After classifying the pixels, we
convert the values of the pixels of ‘cell’ and ‘background’ classes to 1 and
0, respectively. Then, we place a grid on the resulting image. For each grid
entry, we compute the ratio of the ‘cell’ pixels in the grid entry. The grid
entries with ratios greater than a node threshold are identified to be the nodes
of the graph and the ratio of each identified node will be used as the weight
of its corresponding node.
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Fig. 2. The summary of three-step methodology: segmentation, feature
extraction and diagnosis.

In the second part, we have two free parameters: grid size and node
threshold. The grid size determines the size of the cell clusters and, depending
on its value, a cell cluster can typically represent a single cell, a part of a cell
or a bunch of cells. Together with the grid size, the node threshold determ-
ines the cellular density of the graph. Larger values of the threshold result in
sparser graphs. Smaller values of this parameter make the segmentation more
sensitive to the noise that arises from the stain artifacts and the misassignment
of pixels in the first part of the segmentation. In our experiments, we optimize
the values of these parameters using k-fold cross-validation. We will discuss
the details of the parameter selection in Section 3.2.

2.2 Feature extraction
In the feature extraction step, we first generate an ACG by defining an edge
between each pair of nodes and assigning the Euclidean distance between its
end points as the weight of that edge.2 Since an ACG is a complete graph,
there is an edge between every pair of nodes, thus we can avoid several
control parameters used in the previous work (Gunduz et al., 2004; Demir
et al., 2005) for establishing edges.

Next, we define the graph metrics and compute them on the ACGs. In this
work, we use 7 such global metrics:

(1) The average degree: For weighted graphs, the degree of a node is
defined as the sum of the weights of the edges that belong to this
node. In this work, we normalize the calculated degree dividing it by
the sum of degrees of all nodes.

(2) The average eccentricity: The eccentricity of a node is the length of
the maximum of the shortest paths between the node and every other
node reachable from it. In this work, we compute the shortest path
lengths considering the edge weights.

2The importance of the edge increases with decreasing Euclidean distance.
We construct our weighted graphs according to this principle, since some
graph algorithms (e.g. shortest path algorithms) require associating smaller
weights to shorter edges which correspond to closer nodes.

(3) The average node weight: We compute the node weights as the ratio
of the ‘cell’ pixels in the cell clusters in the segmentation step.

(4) The most frequent edge weight: We group the edges according to the
integral part of their weights and use the most frequent integral part
observed in the ACG as a global metric.

(5) The other three global metrics are related to the spectral decomposition
of the graph, i.e. the set of the eigenvalues of the graph. In graph theory,
the graph spectrum is closely related to the topological properties of the
graph (Cvetkovic et al., 1978). In this work, we use three metrics that
characterize the ∼30 eigenvalues with the largest absolute values in
the spectrum. The first metric is the spectral radius; it is defined as the
largest absolute value of the eigenvalues in the spectrum. Similarly, we
use the second largest absolute value of the eigenvalues in the spectrum
as the second metric. The last metric is the eigen exponent which is
defined as the slope of the sorted eigenvalues as a function of their
orders in log-log scale (Faloutsos et al., 1999); in this work, we use
the slope between the third largest and its next largest 30 eigenvalues.

2.3 Diagnosis
The last step is the classification of the tissues according to their histological
properties. For this, we employ the global metrics explained in Section 2.2
as the feature set and an artificial neural network as the classifier. Neural
networks are non-linear models that capture complex interactions among the
input data and they tolerate the noisy and irrelevant information (Bishop,
1995). In this work, we use a back-propagation multilayer perceptron (MLP)
with a single hidden layer. In the MLP we use, the input layer consists of
the global metrics derived from ACGs and the output layer consists of three
nodes each of which corresponds to a tissue class (i.e. cancerous, inflamed or
healthy). The number of hidden units in the hidden layer is a free parameter
and we optimize this parameter again by using k-fold cross-validation.

3 EXPERIMENTS

3.1 Dataset preparation
We conduct our experiments on a dataset consisting of 646 micro-
scopic images of brain biopsy samples of 60 different patients
each of which has a malignant glioma (a type of brain cancer), a
benign inflammatory process or a healthy tissue. These 60 patients
are randomly chosen from Pathology Department archives in the
Mount Sinai School of Medicine.3 The number of patients with
the cancerous, inflamed, and healthy tissue samples is 41, 9 and
14, respectively; for 4 patients, we have both the cancerous and
healthy tissue samples. These tissue samples consist of 5–6 µm thick
tissue section stained with the hematoxylin and eosin technique.

We take the images of these tissue samples by using a Nikon Cool-
scope Digital Camera. The images are taken in the RGB color space
with a magnification of 100×. Prior to segmentation, the RGB values
of the pixels are converted to their corresponding values in the La*b*
color space since this space is a uniform color space that provides
separate color and detail information (Wyszecki and Stiles, 2000).
The images used in the dataset consist of 480 × 480 pixels.

We divide this dataset into training and test sets. To reflect the
real-life situation in the patient distribution of the test set, we use
half of the patients of each type in the test set and the rest in the
training set. For the test set, the number of the biopsy images of each

3All patients were adults with both sexes included. Prior to obtaining digital
images of the tissues, the identifiers were removed and slides were numer-
ically recoded corresponding to diagnostic categories by the pathologist;
therefore, the personal identifiers cannot be retraced by the other members
of our team.

ii9



C.Demir et al.

patient is ∼8 (varying between 6 and 10). For the training set, we
still use ∼8 biopsy images for each cancerous patient. We use larger
amounts of biopsy samples for the healthy and the inflamed since it
might be harder for a neural network to learn the rarer classes, if the
number of training samples of each class varies significantly between
the different classes. Additionally, since the number of available
inflamed tissues is less than those of healthy and cancerous samples,
we replicate the inflamed samples in the training set. In summary,
we use 163 cancerous tissues of 20 patients, 150 inflamed tissues
of 5 patients (the dataset included 75 inflamed tissues prior to the
replication), and 156 healthy tissues of 7 patients in the training
set. In the test set, we use 166 cancerous tissues of 21 patients,
32 inflamed tissues of 4 patients, and 54 healthy tissues of 7 patients.

This dataset consists of some dependent biopsy samples; the
samples of the same patient are not independent. It would result in
over-optimistic accuracies results for the test set, if different biopsy
samples of the same patient were both used in training and testing.
To avoid such over-optimistic results, we use the biopsy samples of
entirely different patients in training and test sets. Furthermore, we
optimize the free parameters on the cross-validation sets (within the
training set) without considering the accuracy of the test set.

3.2 Parameter selection
We have selected the free parameters (the grid size, node threshold,
and number of hidden units) by using 30-fold cross-validation. In
k-fold cross-validation, the training set is randomly partitioned into
k non-overlapping subsets; the k − 1 of them are used to train the
classifier, and the remaining one is used to estimate the performance
of the classifier. This is repeated k times as all distinct subsets are
used in estimating the performance. The classifier performance is
estimated as the average of the performances obtained in separate
k trials.

In Figures 3 and 4, we illustrate the dependency of the classification
accuracy (obtained using 30-fold cross-validation) on the value of
the grid size for two different exemplary node thresholds (0.25 and
0.50, respectively); in these figures, we illustrate the accuracies for
different numbers of hidden units, namely 4, 8, 12, and 16. These
figures demonstrate that the better classification results are obtained
for the smaller grid sizes. For the grid sizes below a threshold (e.g.
grid values of 4 and 6 in our experiments), the results are very close to
each other. Especially for larger node thresholds (e.g. for the value of
0.50), the accuracy decrease with the increasing grid size is obvious
(in Fig. 4).

In Table 1, we report the classification results of smaller grid sizes
that are obtained when 16 hidden units are used; we report the aver-
age accuracy obtained on the cross-validation sets and its standard
deviation. For these results, we also perform the t-test on the dif-
ference between the classification accuracy obtained for different
parameter sets (we use the t-test with a significance level of 0.05).
The t-test demonstrates that there is no significant difference between
the accuracy of the following parameter sets: {4, 0.25}, {4, 0.50},
{6, 0.25}, {6, 0.50}, and {8, 0.50}, where the first element in each
set is the grid size and the second is the node threshold.

We also investigate the effects of the node threshold selection.
For this, we fix the grid size as 4 [one of the grid sizes that yields
best accuracy results on cross-validation sets (Table 1)]. For different
values of the node threshold (ranging between 0.25 and 0.99), the
classification accuracies obtained using 30-fold cross-validation are
shown in Figure 5. This figure exhibits that, for the smaller values of
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Fig. 3. The dependency of the classification accuracy of the cross-validation
sets on the selection of the grid size for different numbers of hidden units in
a MLP. (Here the node threshold selected is 0.25.)
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Fig. 4. The dependency of the classification accuracy of the cross-validation
sets on the selection of the grid size for different numbers of hidden units in
a MLP. (Here the node threshold selected is 0.50.)

Table 1. Average classification accuracies obtained on the cross-validation
sets and their standard deviations, for smaller grid sizes

Grid size Accuracy on CV
Node threshold = 0.25 Node threshold = 0.50

4 96.67 ± 4.55 96.44 ± 5.17
6 96.22 ± 6.93 95.78 ± 6.43
8 94.00 ± 7.50 95.78 ± 6.19

10 93.78 ± 6.54 92.22 ± 6.80

In the classification, a MLP with 16 hidden units is used.
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Fig. 5. The dependency of the classification accuracy of the cross-validation
sets on the selection of the node threshold for different numbers of hidden
units in a MLP. (Here the grid size selected is 4).

Table 2. The average accuracy, sensitivity and specificity (obtained over
30 runs) for the ACG in the first two rows and simple cell-graph (Demir
et al., 2005) in the third row

Parameters Accuracy Sensitivity Specificity
Inflamed Healthy

{4, 25} 96.93 97.51 91.88 98.15
(±0.52) (±0.52) (±1.76) (±0.00)

{4, 50} 97.13 97.53 93.33 98.15
(±0.32) (±0.52) (±1.08) (±0.00)

{4, 50, −4.4} 95.45 95.14 92.50 98.15
(±1.33) (±2.03) (±1.76) (±0.00)

Parameters in the first column are given in the forms of {grid size, node threshold} in
the first two rows and {grid size, node threshold, edge exponent} in the third row.

the node threshold, the classification accuracy is similar regardless
of the node threshold value. When we increase its value above ∼0.9,
the classification accuracy suddenly decreases.

3.3 Results
By making use of the 30-fold cross-validation results, we select two
sets of parameters: {4, 0.25} and {4, 0.50}, where the first element
in each set is the grid size and the second is the node threshold;
for both the parameter sets, we set the number of hidden units to
be 16. For each parameter set, we train our system by running a
MLP 30 times. The accuracy as well as the sensitivity and specificity
obtained on the test set are given in the first two rows in Table 2. In
Table 2 (in the third row), we also present the accuracy, sensitivity,
and specificity obtained using the global metrics extracted for the
simple cell-graphs in Demir et al. (2005) on the same dataset. In that
work, the cell-graph parameters {the grid size, node threshold, edge
exponent} are also selected using k-fold cross-validation, and the
best classification results (on the cross-validation sets) are obtained
when these parameters are 4, 0.50, and −4.4, respectively.

The t-test conducted on these classification results demonstrates
that the accuracy and the sensitivity of the cancer diagnosis are sig-
nificantly improved using ACGs. For the specificity of the inflamed
type, we obtain statistically better results using ACGs with a para-
meter set of {4, 0.50}. On the other hand, there is no significant
difference between the approaches of simple cell-graphs and ACGs
with a parameter set of {4, 0.25}. The specificity of the healthy type
is the same for both the cell-graph approaches.

4 CONCLUSION
In this work, we report a new method based on the construction of
ACGs with weighted nodes and weighted edges for the computa-
tional diagnosis of malignant glioma. In this article, we describe
the methodological steps of the ACG approach (segmentation, graph
metric extraction, and diagnosis) together with the experimental res-
ults. Utilizing ACGs for the first time, we present that unprecedented
accuracy is achieved in the classification of glioma based on the dis-
tinctive topological properties of its self-organizing malignant cells
and that ACGs outperform their counterparts, the simple cell-graphs.
ACGs, which are fully connected and whose edges are determinist-
ically established between every possible pair of cell clusters in a
tissue image, encode the complete topological information available
in the image (such as the cell cluster size and the Euclidean dis-
tance between the clusters); given the low resolution of the image,
no spatial information is wasted.

In this work, we use images of 646 human brain biopsy samples
taken from a total of 60 patients. These images include 329 malig-
nant glioma samples from 41 patients, 107 benign inflamed samples
from 9 patients, and 210 healthy samples from 14 patients. From
tissue images of 480×480 pixels with 100× magnification, we con-
struct ACGs and compute global graph metrics such as the degree,
eccentricity, spectral radius and eigen exponent that quantify differ-
ent aspects of cell distribution across the tissue sample in its entirety.
This is the first work that relies on global graph metrics defined on
fully-connected cancer cell-graphs. We select the control paramet-
ers using k-fold cross-validation; this optimizes the free parameter
selection. Our experimental results show that the ACG approach
leads to sensitivity of 97.53% and specificities of 93.33 and 98.15%
(for the inflamed and healthy, respectively) at the tissue level in
glioma diagnosis. To the best of our knowledge, these are the best
results ever reported with high reliability on cell-graph based glioma
diagnosis.
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