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Abstract

A wide variety of clustering algorithms exist that cater to appli-

cations based on certain special characteristics of the data. Our

focus is on methods that capture arbitrary shaped clusters in data,

the so called spatial clustering algorithms. With the growing size

of spatial datasets from diverse sources, the need for scalable al-

gorithms is paramount. We propose a shape-based clustering algo-

rithm, ABACUS, that scales to large datasets. ABACUS is based on

the idea of identifying the intrinsic structure for each cluster, which

we also refer to as the backbone of that cluster. The backbone com-

prises of a much smaller set of points, thus giving this method the

desired ability to scale to larger datasets. ABACUS operates in two

stages. In the first stage, we identify the backbone of each cluster

via an iterative process made up of globbing (or point merging) and

point movement operations. The backbone enables easy identifi-

cation of the true clusters in a subsequent stage. Experiments on

a range of real (images from geospatial satellites, etc.) and syn-

thetic datasets demonstrate the efficiency and effectiveness of our

approach. In particular, ABACUS is over an order of magnitude

faster than existing shape-based clustering methods, yet it provides

a comparable or better clustering quality.

1 Introduction

Clustering has been a prominent area of research within the

data mining, machine learning and statistical learning com-

munities. The choice of a clustering algorithm is strongly

motivated by the data or domain characteristics, such as the

data type (binary, categorical or numerical features). For in-

stance, if the clusters are expected to span lower-dimensional

subspaces, then projective or subspace clustering algorithms

would give the better results. Similarly, when the clusters are

non-convex, shape-based (or spatial clustering) methods that

identify clusters with arbitrary shapes, sizes and densities are

called for.

Spatial clustering has been applied to data from astron-

omy, meteorology, epidemiology, seismology, geospatial im-
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agery, biomedicine, location-based services, and so on. The

large size of many of the spatial datasets still poses scalabil-

ity issues for existing shape-based clustering methods. Fur-

thermore, these methods also vary in terms of robustness to

noise in the dataset. We propose a simple, yet effective, ro-

(a) Cluster Backbone (b) Recovered Clusters

Figure 1: Clusters obtained through the generative process.

bust, and scalable spatial clustering algorithm. Our approach

is based on the hypothesis that a spatial cluster can be gener-

ated from a set of core points within the cluster that form the

backbone or the intrinsic shape of the cluster. To elaborate,

consider the intrinsic shape of a set of clusters, as shown

in Figure 1(a). Given these core points in the backbone, a

dataset can be obtained through the following hypothetical

generative process. Assume that each backbone point has

two parameters associated with it. The weight parameter

wi ≥ 1, for a backbone point pi, indicates the number of

points that can be generated from pi. The second parameter,

spread, indicates the region around pi within which wi points

can be generated. The spread parameter can be expressed in

terms of a covariance matrix Σi, for a d-dimensional input

space. For the sake of simplicity, we assume that the covari-

ance matrix is a diagonal matrix with the variance σi along

each dimension. Now, assume that a Gaussian process gen-

erates mi < wi points at random, with mean at pi and the co-

variance matrix Σi dictating the distribution of these points.

The weight wi of the backbone point is redistributed amongst

the generated mi points, either uniformly or as a function of

the distance of the point from pi. The covariance matrix for

each of the mi points is obtained by updating Σi (of pi) such

that the variance σi for each of the mi points is decreased in

proportion to weights assigned to them. The entire collection

of mi points resulting from each backbone point forms a new

generation of points for the next step. This generative pro-



(a) Initial Dataset
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(b) After 3 Iterations
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(d) After 8 Iterations

Figure 2: Initial dataset (a) after 3 (b) and 6 (c) iterations, and the final backbone after 8 iterations of ABACUS. The dataset

(DS1) initially has 8000 points, whereas the backbone only has 838 points.

cess is repeated until the weight assigned to each new point

has reduced to one. Figure 1(b) shows the clusters obtained

from the backbone, via this generative process. For the sake

of comparison, the original dataset from which the backbone

was derived is shown in Figure 2(a). Note that the number

of points generated is solely controlled by the wi parameter

assigned to each core point. In the real-world, we obviously

do not have access to the cluster backbones, but rather we

have to find the intrinsic shapes given the original datasets.

Our new approach to scalable shape-based clustering, called

ABACUS (anagram of the bold letters in Arbitrary Shape

ClUstering via BAckbones), is motivated by this generative

approach. Given a spatial dataset, ABACUS aims to recover

the intrinsic shape or backbone of the clusters, by intuitively

following the generative process in reverse. The basic idea is

to recursively collapse a set of points into a single represen-

tative point via an operation we call globbing. Furthermore,

points also move under the influence of neighboring points.

Over a few iterations, the dataset is repeatedly summarized

until the backbone emerges. This process is briefly illus-

trated in Figure 2, which shows the putative intrinsic shape

after three, six, and eight iterations, starting from the ini-

tial dataset. Once the backbone is identified, it is relatively

straightforward to determine the final set of clusters. This

is especially true since the iterative globbing and movement

operations automatically confer two main benefits, namely i)

removal of noise points from the dataset, and ii) reduction in

the size of the dataset. Both these effects help in reducing

the computational cost and memory requirements, as well as

in making the method robust to noise, resulting in improved

quality of the clustering. In the experimental section, we

present extensive results on both synthetic and real datasets,

which show how scalable and effective our method is com-

pared to state of the art methods; ABACUS has comparable

quality of clustering, but it can outperform existing methods

in terms of runtime by an order of magnitude or more.

2 Related Work

Traditionally, spatial clustering methods have been divided

into the following categories – partitional, hierarchical,

density-based and spectral.

CLARANS [10] was one of the pioneering works in spa-

tial clustering, but it is rather slow since it is a medoid based

partitioning approach. The SNN (shared nearest-neighbor)

algorithm [5] is an example of partitional clustering. SSN

computes a graph based on the shared nearest neighbors be-

tween every two points. The connected components of the

graph are the final clusters after some threshold-based edge

removal.

The density based approach is exemplified by DB-

SCAN [6] and DENCLUE [8], both of which can find ar-

bitrary shaped clusterings. However, they can be quite

sensitive to the parameter values, and are computationally

expensive (O(N2) for high dimensional data, otherwise

O(N logN) with R∗-tree index structure). DENCLUE’s

density estimation identifies local maxima (termed density

attractors) in the data. Although the notion of density at-

tractors is similar to the points on the backbone in ABA-

CUS they do not necessarily preserve the structural shape of

the clusters. Another non-parametric algorithm – mean shift

clustering [4] – is closely related to DENCLUE.

CURE [7] is a hierarchical agglomerative clustering al-

gorithm that handles shape-based clusters, but it is still ex-

pensive with its quadratic complexity, and more importantly,

the quality of clustering depends enormously on the sam-

pling quality. In general, sampling based methods suffer

when the clusters are of varying sizes and densities [1]. An-

other hierarchical approach, CHAMELEON [9], formulates

the shape-based clustering as a graph partitioning algorithm.

However, it requires a number of thresholds to be set for ef-

fective clustering.

The spectral clustering approach [12] is also capable

of handling arbitrary shaped clusters. They formulate the

arbitrary shape clustering problem as a normalized min-

cut problem. Unfortunately the spectral approach is not

really scalable, requiring O(N3) time. Recently, a scalable

approximate spectral method was introduced [14], which

first selects representative points on which the full spectral

clustering is performed.

Many efforts have focused on scaling spatial cluster-



ing. For scaling hierarchical clustering further, Breunig et

al. [2] propose compressing the data using representatives

called Data Bubbles. Clustering is then performed on the

compressed representation. The approach proposed in [13]

shrinks clusters into dense compact regions by altering the

position of data points under “gravitational force” exerted by

other neighboring points. Unlike [13], ABACUS repeatedly

globs points resulting in faster convergence of the algorithm.

SPARCL [3] is one of the latest approaches for shape-based

clusters. It works in two phases. In the first phase a large

number of representatives or pseudo-centers, and in the sec-

ond step it merges them to obtain clusters. It is linear in the

number of points in the dataset, but is sensitive to the quality

of pseudo-centers.

Most algorithms described above are unable to scale to

large datasets. Due to lack of space we are unable to describe

some of the other algorithms.

3 The ABACUS Approach

Our approach to shape-based clustering is motivated by the

notion that a cluster possesses an intrinsic shape or a core

shape. Intuitively, for a 2-dimensional Gaussian cluster,

points around the mean of the cluster could be considered as

points forming the core shape of the cluster. For an arbitrary

shaped cluster, such as shown in Figure 2(a), the intrinsic

shape of the cluster is captured by the backbone of the cluster

(Figure 2(d)). ABACUS needs two parameters – the number

of nearest neighbors, denoted k, to be considered for each

point, and the final number of clusters desired, denoted C.

Unlike some of the methods that need an absolute radius as a

parameter, the number of nearest neighbors k is independent

of the density of a cluster. This parameter thus makes

ABACUS relatively robust to clusters with varying densities.

The ABACUS clustering approach has two phases, de-

tailed below. In the first phase we identify the intrinsic shape

of the clusters. In the following phase, the individual clusters

are identified.

3.1 Preliminaries Consider a dataset D of N points in d-

dimensional Euclidean space. The distance between points i
and j is represented by dij . The k-nearest neighbors (kNN)

of a data point i are given by the set Rk(i). The nearest

neighbors for all points are captured in a matrix A, where

each entry A(i, j) is given as

A(i, j) =

{

1 if j ∈ Rk(i)
0 if j /∈ Rk(i)

The term kNN matrix is used for A henceforth.

Figure 3 (left) shows a sample dataset and Figure 4(a)

shows its corresponding kNN matrix. Figure 3 (right) shows

the sample dataset after one iteration, while Figure 4(b)

shows the corresponding updated kNN matrix. In this

example, k is set to 2.
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Figure 3: Globbing and Movement (k = 2)
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(b) Updated kNN Matrix

Figure 4: kNN matrices for sample dataset (k=2)

3.2 Backbone Identification As opposed to the genera-

tive model described earlier, our goal is to identify points

belonging to the backbone given the original dataset. In

essence, ABACUS follows the generative model in the re-

verse order, starting with the original dataset and culminat-

ing in the identification of the backbone, as illustrated in Fig-

ure 2(d). The backbone identification phase consists of two

simple operations:
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Figure 5: Globbing and object movement: x (red) has 8

nearest neighbors (blue); only 5 lie within radius r. These

5 are globbed by x, and the 3 other points move x based on

the force vectors fi.

Globbing: Globbing involves assigning a representative to

a group of points. All points that lie within a d-dimensional

ball of radius r, around a representative x are globbed by x.

The globbed points are removed from the dataset and their

representative (point) is retained. Each point in the dataset

has a weight w assigned to it. Initially, the weight of each

point is set to 1. As points are globbed by a representative,

the weight of the representative is updated to reflect the

number of points globbed by it. Note that a representative

can be globbed by another representative point. As discussed

later, the value of the radius r is directly estimated from the

dataset. Note that r represents the spread parameter in the

generative model.

Object Movement: In our model, each point experiences a

force of attraction from its neighboring points. Under the



influence of these forces a point can change its position.

The magnitude of the movement is proportional to the forces

exerted on the point and the direction of movement is the

weighted sum of the force vectors. In the context of the

generative model, a point moves towards the most likely

component that is responsible for generating the point.

The backbone identification phase involves repeated

application of the above two steps, as illustrated in Figure 5.

In the first step, objects are globbed starting at the dense

regions of the dataset, since that results in faster convergence

of the algorithm. Moreover, starting at the dense regions

ensures that noise points do not distort the intrinsic shape of

the clusters by globbing points from true clusters. The dense

regions are identified by smaller values for the kNN distance.

In the following second step, the representative points move

under the influence of forces exerted by neighboring points.

Figure 3 shows a sample dataset consisting of 7 points and

the effect of one iteration (globbing followed by movement)

on the dataset. Similarly, Figures 4(a) and 4(b) show the

initial kNN matrix A0 and the updated kNN matrix A1 after

one iteration, respectively. On convergence of the iterative

process, An represents the intrinsic shape of the clusters.

Figure 2(d) shows the backbone of the dataset in Figure 2(a),

on convergence. Note that the two steps outlined in the

algorithm are essentially simulating the generative model in

reverse. The ABACUS algorithm is outlined in Figure 6. It

ABACUS(D0, k, C):

1. Initialize wi = 1, ∀i ∈ D0

2. j = 0
3. K = compute kNN(D0)

4. r = estimate knn radius(D0, k,K)

5. repeat

6. j = j + 1
7. glob objects(Dj−1, r, k)

8. Dj = move objects(Dj−1, r, k)

9. mj = number of points moved in iteration j
10. K = update kNN(Dj)

11. until
mj

mj−1
<

mj−1

mj−2

12. C = identify clusters(Dj−1, C)

Figure 6: The ABACUS Clustering Algorithm

takes three inputs – the dataset D of d-dimensional points,

the number of nearest neighbors k, and the number of final

clusters C. estimate knn radius computes an estimate for

the trimmed average distance to the kth nearest neighbor

for objects in the dataset. The radius is estimated by first

obtaining the distance to the kth nearest neighbor over a

random sample from the dataset. The average of the top 95%

percentile of these distances (arranged in ascending order) is

used as the globbing radius r. Note that we discard the top

5% distances to make r robust to outliers.

During glob objects all points within a radius r of a

point x are marked as being “globbed” or represented by

x. Note that not all points within the kNN of x are within

globbing radius r, thus the use of r in the globbing step

ensures that only points in the close proximity of x can

be represented by x. Such selective globbing also ensures

that outlier or noise points do not glob points belonging

to dense cluster regions. Globbing modifies the dataset by

removing the globbed points and by updating the weight

wx of the representative point to include the weights of

all the globbed points (i.e., wx =
∑

∀p s.t. dist(p,x)<r wp).

An estimate for r based on sampling is preferred for the

following reasons. First, an arbitrarily small value for r
can degrade the convergence of the backbone identification

approach. On the other hand, an arbitrarily large value for r
can result in points from more than one cluster being globbed

by a representative point.

In the move objects step, a point y in d-dimensional

space is displaced under the influence of its nearest neigh-

bors’ force of attraction. Out of the k nearest neighbors,

only those that have not been globbed by y participate in

displacing y. The force exerted by an object z on object y is

proportional to wz and inversely proportional to dist(y, z),
where dist() is some distance function. The updated posi-

tion of y in dimension i is given by Equation 3.1, where yi is

the ith dimension of y.

(3.1)

ynewi =
yi · wy +

∑

z∈Rk(y)∧d(y,z)>r zi · wz ·
1

dist(y,z)

wy +
∑

z∈Rk(y)∧d(y,z)>r wz ·
1

dist(y,z)

Figure 5 elaborates the globbing and movement steps. The

dataset (D)j−1 before violation of the stopping condition is

used for extracting the final clusters.

3.3 Stopping Condition for ABACUS One can extrapo-

late that the above two steps, of globbing and object move-

ment, repeated without a suitable stopping condition would

result in a dataset with a single point which globs all the

points in the dataset. Let Di be the dataset after iteration i.
Let D = D0 be the initial dataset, and let Dfinal be the final

globbed dataset obtained after Line 11 of Figure 6. Cluster-

ing quality is poor if Dfinal has points that represent globbed

points from more than one natural cluster. At the same time,

if Dfinal has most of the points in D0, then the algorithm

has not achieved a substantial reduction in the dataset size.

Hence, a “good” stopping condition needs to balance the re-

duction in the dataset size and the degree to which Di cap-

tures the shape-based clusters of D0. To express the simi-

larity between Di and D0 we compare their corresponding

kNN matrices. Since the sizes of the two kNN matrices are

not the same, an estimated kNN matrix for the initial set of

points is reconstructed from the kNN matrix for Di.



To formalize this notion, let Ai be the kNN matrix after

iteration i. The initial kNN matrix for the dataset is A (or

A0) as shown in Figure 4(a). Let the size of Ai be Ni ×Ni,

where Ni is the number of points in the dataset at the end

of iteration i, and N0 = N is the number of points in the

initial database. Consider an onto function fi : R
d → R

d for

iteration i. Function fi maps a point a in the original dataset

D0 to a point in Di that has globbed a.

We would like to compute the probability that a point b
is in the kNN set of another point b, after iteration i. There

are two cases to consider: 1) Both a and b are globbed by

the same representative x, and 2) a and b are globbed by

different representatives, x and y respectively. Consider the

first case: Given that fi(a) = fi(b) = x, i.e., both a and b
are globbed by the same point x ∈ Di, the probability that b
is a kNN of a can be approximated by:

(3.2) Pr[b ∈ Rk(a)] ∝

(

wx−2
k−2

)

(

wx−1
k−1

)

where wx, the weight of x, is the number of points globbed

by x. The numerator in the above equation corresponds to

the number of ways of choosing remaining k−2 points from

wx − 2, since we assume that a and b have already been

chosen. The denominator corresponds to the number of sets

(of points) that include point a.

In the alternate scenario, when a and b are globbed by

different representatives, namely x = fi(a) 6= fi(b) = y,

the probability of b ∈ Rk(a) is given by the expression

(3.3) Pr[b ∈ Rk(a)] ∝
1

d(x, y)
·

(

wx+wy−2
k−2

)

(

wx+wy−1
k−1

)

Here, the numerator gives the number of ways of choosing

k − 2 points from the glob set of x and y, i.e., the number

of possible neighborhood containing both a and b. The de-

nominator gives the number of ways of choosing the neigh-

borhood for a. The probability in Equation 3.3 depends on

two factors: 1) the number of points globbed by the rep-

resentatives of a and b in Dn, and 2) the distance between

the representatives x and y. The larger this distance, the

smaller the probability of b belonging to Rk(a). Similarly,

the probability in Equation 3.3 is less than that in Equa-

tion 3.2. This resonates with the intuition that nearby points

should have higher probability. Note that although the kNN

relation is not symmetric, the above probabilities are sym-

metric, i.e., Pr[b ∈ Rk(a)] = Pr[a ∈ Rk(b)]. Note also that

for Equations 3.2 and 3.3 to represent true probabilities, the

right hand side should be normalized by dividing by the term

Za =
∑

b Pr[b ∈ Rk(a)].
Let Mi denote the N×N matrix with the entry Mi[x, y]

representing Pr[y ∈ Rk(x)], i.e., Mi is the reconstructed

matrix for the probabilistic kNN relationship from Di.

3.3.1 MDL Based Stopping Condition Given the above

description, the stopping condition for ABACUS, can be

ideally formulated in terms of the Minimum Description

Length (MDL) principle [11], that takes an information

theoretic approach towards selecting a model.

The MDL principle suggests selecting the model hi that

minimizes L(hi) + L(D | hi), where L(hi) is the number

of bits required to represent the model and L(D | hi) is the

number of bits to encode the data given the model. Thus, the

MDL principle balances the generality and the specificity in

model selection for the data. A simple model requires fewer

number of bits corresponding to the L(hi) term, but it results

in a larger number of bits to represent the data L(D | hi).
On the contrary, a complex model would exhibit just the

opposite effect.

In the context of ABACUS, the set of hypothe-

ses/models is represented by Di (∀i > 0), i.e., the set of

globbed points after each iteration. The simplest model D1

requires the largest number of bits, but requires fewest num-

ber of bits to encode D0. Stated another way, the simplest

model has the smallest error when it comes to reconstruction

of the original data. This is often called as the reconstruc-

tion error. For subsequent hypotheses, as L(Di) decreases,

the additional information required to represent D0 (given by

L(D0 | Di), i > 0) increases. L(D0 | Di) can be interpreted

as the error introduced in reconstructing D0 from Di.

As seen before, Ai represents the kNN matrix for Di and

Mi represent the kNN matrix “reconstructed” from Di using

Equations 3.2 and 3.3. The probability that the reconstructed

kNN matrix Mi faithfully captures A0 is given by Pr(A0 |
Mi). Since each element in A0 can be considered to be

independent, Pr(A0 | Mi) can be expressed as

(3.4) Pr(A0 | Mi) =

N0
∏

m=1

N0
∏

n=1

Pr (A0(m,n) | Mi(m,n))

Since A0 is a binary matrix, we have the expression

(3.5)

Pr (A0(m,n) | Mi(m,n)) =

{

Mi(m,n) if A0(m,n) = 1

1−Mi(m,n) if A0(m,n) = 0

A high value for Mi(m,n) when A0(m,n) = 1 indi-

cates that Mi(m,n) can successfully represent the neighbor-

hood relationship between m and n. If Mi(m,n) is small

when A0(m,n) = 0, then 1 − Mi(m,n) gets a high value,

thus capturing the absence of neighborhood relationship be-

tween m and n. . The term L(D0 | Di) normalized by N0
2,

gives the average number of bits per entry in the matrix. The

number of bits required to represent the total reconstruction

error is captured by

L(D0 | Di) = − log Pr(A0 | Mi)

= −

N0
∑

m=1

N0
∑

n=1

logPr (A0(m,n) | Mi(m,n))(3.6)



The number of bits to represent the model depends on the

relative size of Di, given by the expression

(3.7) L(Di) = − log

(

| Di |

| D0 |

)

Hence the trade-off at the end of any iteration i is between

the average reconstruction error given by 1
N2

0
L(D0 | Di) and

the size of the model L(Di). Generating the reconstruction

matrix entails computing the error at each entry Mi(m,n).
The computation cost for each iteration is thus O(N2),
where N is the number of points in the original dataset.

This approach is infeasible for large datasets, both in terms

of computation and in terms of the memory requirement.

To bypass this computational cost we present a simpler

alternative that tries to capture the same trade-off between

the reconstruction error and the dataset size.

3.3.2 Practical Stopping Condition Given that the pure

MDL-based stopping condition discussed above is computa-

tionally expensive, we use a more practical stopping condi-

tion for ABACUS, that nevertheless, is intuitively related to

the MDL based formulation.

Notice that if points are only globbed (without object

movement), it results in the sparsification (reduction) of

the data. To complement the globbing, moving the points

enables further globbing in subsequent iterations. If gi is

the number of points globbed in an iteration and mi is the

number of points that are moved in an iteration then we have

gi ∝ mi−1. That is, the number of points globbed in iteration

i, is directly proportional to the number of points that move

in the previous iteration i − 1. This observation is shown in

Figure 7.
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Figure 7: The number of points moved and globbed per

iteration for a dataset with 1000K points.

Intuitively, as more points are globbed across the it-

erations, the reconstruction error obviously increases. Let

Ei = L(D0|Di) be the reconstruction error at the end of it-

eration i and let the error difference between two consecutive

iterations be ∆Ei = Ei −Ei−1. The difference between the

errors is proportional to the number of points globbed, i.e.,

∆Ei ∝
gi

gi−1
. Combining this with the previous observation

(gi ∝ mi−1) yields ∆Ei ∝
mi−1

mi−2
. As fewer points move in

subsequent iterations (mi < mi−1), it reflects the decline in

the size of the dataset, i.e., Ni < Ni−1. The ratio mi

mi−1
(< 1)

captures the relative rate of this decline.

i+1

Iterations
0

∆Ε

Relative Dataset size

Reconstruction Error

1

E
i+1i

E

Figure 8: Balancing the two contradicting influences in the

clustering formulation.

Our stopping condition is based on these observations.

If the expression

(3.8)
mi−1

mi−2
<

mi

mi−1

is false then the iterative process is halted, else continued

(see line 11 in Figure 6). In other words, if the rate of decline

in the current iteration i is less than that in iteration i−1, we

stop the globbing and movement operations.

Let us look at Figure 8 to understand this stopping

condition. Figure 8 shows the two contradicting influences

– dataset size and reconstruction error. The condition in

Equation 3.8 favors an increase in the ratio mi

mi−1
, implying

that the stopping condition encourages a rapid decrease in

the size of the dataset, by the relation mi ∝ Ni. The

downward sloping arrow along the ‘Relative Dataset Size’

curve in Figure 8 represents this effect. In short, the stopping

condition ensures that the algorithm progresses as long as the

dataset size continues to shrink progressively.
∆Ei+1

∆Ei
< 1, if expression 3.8 is not true. As long as

the stopping condition in Equation 3.8 holds, the rate of

change of relative error difference (
∆Ei+1

∆Ei
) is positive, i.e.

numerical value of the fraction
∆Ei+1

∆Ei
is increasing. Hence,

the condition in Equation 3.8, does not favor a decline in

the relative error difference, which happens during later

iterations. In the context of Figure 8, this tendency to oppose

a decline in the relative error difference is depicted by the

downward sloping arrow along the ‘Reconstruction Error’

curve. At the iteration at which the stopping condition in

Equation 3.8 is violated, both the above effects (increasing

relative reconstruction error and the rate at which the dataset

size is decreasing) are balanced. We chose to stop at this

iteration. This is indicated by the intersection point of the

two curves in Figure 8.

At the end of the iterative process a much smaller dataset

Dfinal, as compared to the original dataset D0 = D, is

obtained.



3.4 Cluster Identification Once the intrinsic shape or

backbone of the clusters is identified, the task remains to

isolate the individual clusters. ABACUS currently assumes

that the desired number of clusters C has been pre-specified.

Below, we also discuss how one can determine the number

of clusters automatically.

3.4.1 Number of clusters specified Given that the first

phase helps drastically reduce the noise and the size of the

dataset, the cluster identification step is relatively straight-

forward if the desired number of clusters C is given. Due

to the size reduction any suitable clustering algorithm can be

applied to Dfinal in line 12 in Figure 6. In our experiments,

we applied both DBSCAN [6] and CHAMELEON [9] dur-

ing the cluster identification phase of ABACUS. Both these

algorithms are able to effectively capture the clusters and are

relatively robust to noise, though the latter is more efficient.

3.4.2 Number of clusters unspecified When the desired

number of clusters C is not specified, we propose the fol-

lowing two-step approach to identify the final set of clusters.

In the first step, one can run a connected components algo-

rithm on Dfinal to obtain a set of preliminary clusters C. In

the second step, the clusters in C can be merged to obtain the

final clusters.

The cluster merging process is based on two similarity

measures. Let B(Ci, Cj) be the points in cluster Ci that

have a point from Cj in their kNN set, i.e., B(Ci, Cj) =
{

pi ∈ Ci : ∃pj ∈ Rk(pi) ∧ pj ∈ Cj

}

. We call

B(Ci, Cj) the border points in cluster Ci with respect to

cluster Cj . Note that B(Ci, Cj) need not be the same as

B(Cj , Ci). Let E(Ci, Cj) be the total number of occur-

rences of points in Cj in the k-neighborhood of points in Ci,

i.e., E(Ci, Cj) =
∑

pi∈Ci

∣

∣

{

pj : pj ∈ Rk(pi) ∧ pj ∈ Cj

}∣

∣.

Note that E(Ci, Cj) may count a point multiple times if

it belongs to the neighborhood of multiple points pi. Let

B(Ci) be the set of all border points in cluster Ci, i.e.,

B(Ci) =
⋃

∀Cj 6=Ci
B(Ci, Cj).

The first similarity metric S1 is given as

(3.9) S1(Ci, Cj) =
E(Ci, Cj)

| B(Ci, Cj) |
> α

The higher the value of the ratio in Equation 3.9, the

greater the similarity between the clusters. A high value for

S1(Ci, Cj) indicates that the points in Cj are close to the

border points in Ci. This similarity metric captures the de-

gree of closeness, measured in terms of local neighborhood

of border points, between a cluster pair.

The second similarity measure, S2, is given as

(3.10) S2(Ci, Cj) =
| B(Ci, Cj) |

| B(Ci) |
> β

S2 ensures that two clusters can be merged only if the

interaction “face” (fraction of border points) between the two

clusters is above the β threshold.

Cluster pairs are iteratively merged, starting with the

pair with highest similarity. For two clusters Ci and Cj to be

merged both the conditions, given by Equations 3.9 and 3.10,

must be satisfied. Since the true number of clusters are not

specified, we need to provide lower-bound thresholds (α and

β) for the similarity criteria to continue merging of clusters.

3.5 Complexity Analysis Let us assume that ABACUS

converges after t iterations. The number of points at the end

of each iteration is given by N0, N1, ..., Nt. Initially ABA-

CUS performs a kNN computation on all the points in the

dataset – O(N2) in the worst case for high-dimensional data,

whereas O(N logN) for spatial datasets that are typically in

just 2 or 3 dimensions.

Let us now consider the time for the subsequent itera-

tions. For each point p (in each iteration i) that globs its

nearest neighbors, we have to update the kNN only for all

the affected points (line 10 in Figure 6). Since we use a kd-

Tree to store the points, a kNN search takes O(N
1− 1

d

i ) time.

Let g1, g2, ..., gt be the number of points that have globbed

other points, in each of the iteration. The total complexity

of the kNN searches is given by O(
∑t

i=1 gi ·N
1− 1

d

i ). Mov-

ing the points involves computing the new location based on

the kNN. If m1,m2, ...,mt represents the number of points

that move in each iteration, the total cost of moving across

all iterations is given by O(k ·
∑t

i=1 mi). When CLUTO 1

is applied in Phase 2 to the set of points after the iterative

process, the computational cost is O(Nt logNt). Hence the

total computational cost is the sum of the above terms. Let

us assume that a constant fraction of points are globbed and

moved in each iteration, i.e., gi = mi = O(1) (note that this

is worst case behavior for us, since the more the points are

globbed, the faster is the convergence). Also let us assume

that in the worst case number of points in each iteration is

Ni = O(N). Then, in the worst case, the runtime complex-

ity over all the iterations is O(tN + kt + N logN), where

t is the number of iterations and k is the number of nearest

neighbors.

In summary, the complexity of ABACUS is O(N2)
when the number of dimensions is large, since in that case

the time for computing the initial kNN for each point would

dominate. However, for the typical 2D or 3D datasets

common in spatial clustering, ABACUS takes O(tN +
N logN) = O(N logN) time. Practically, ABACUS is

much faster as compared to other algorithms as shown in

the following section. This is because the number of kNN

searches drops significantly in each iteration.

1http://glaros.dtc.umn.edu/gkhome/cluto/



Name |D|(d) C k ABACUS SPARCL SPARCL CHAMELEON KASP

CHAMELEON / DBSCAN (Random) (LOF)

DS1 8000 (2) 6 70 1.7s / 2.6s 1.8s 4.1s 4.3s 19s

DS2 8000 (2) 6 70 1.3s / 2.2s 1.5s 4.0s 4.2s 13s

DS3 10000 (2) 9 55 1.9s / 3.0s 2.5s 5.5s 5.9s 33s

DS4 8000 (2) 8 20 1.7s / 3.4s 1.8s 4.2s 4.3s 24s

Swiss-roll 19386 (3) 4 70 4.4s / 5.7s 4.9s 19.6s 19.8s 43s

Table 1: Runtime Performance on Synthetic Datasets. All times are reported in seconds.

4 Experimental Evaluation

All our experiments are conducted on a Mac G5 machine

with a 2.66 GHz processor, running the Mac 10.4 OS X.

ABACUS is written in C++, using the Approximate Near-

est Neighbor Library (ANN)2. We compare the performance

of ABACUS with a range of clustering algorithms, namely

CHAMELEON [9] as implemented in the CLUTO package,

SPARCL [3], DBSCAN [6] implemented in C++ using R*-

tree index, and finally, the K-Means based Fast Spectral Ap-

proximation (KASP) [14] obtained from its authors 3 (writ-

ten in R). Parameters were tuned for each method for best re-

sults. Also note that unless mentioned otherwise, we used the

standard clustering parameters -clmethod=graph, -sim=dist,

-agglofrom=30) for CHAMELEON. For DBSCAN we used

minPts = 15 and eps = 0.7. For the cluster identification

phase of ABACUS we used these same parameters. Finally,

for KASP we used γ = 8, σ = 100, and for SPARCL we use

the parameters K = 30,minPts = 15.

4.1 Datasets A wide range of datasets were used to eval-

uate ABACUS. For the scalability experiments, we use the

dataset DS-SCAL, from SPARCL [3], which consists of 13

arbitrary shaped clusters in 2D with varying densities and

number of points (up to 1 million points). DS1 – DS4, shown

in Figure 11 and 12, are datasets that have been used by pre-

vious methods like CURE, CHAMELEON and SPARCL.

The real datasets consist of proteins of varying densities

(PROT; see Figure 10(c)), natural images (NATIMG; see

Figure 13), and geospatial satellite images (GEOIMG; see

Figure 14).

4.2 Results on Synthetic Datasets Table 1 shows run-

time performance of ABACUS and other algorithms on some

popular datasets in the literature. The runtime for ABA-

CUS with both CHAMELEON and DBSCAN in phase 2

is shown in Column 5. ABACUS is considerably more

efficient as compared to KASP or CHAMELEON. For

these relatively small datasets ABACUS is comparable to

SPARCL(random), and has an advantage over SPARCL

(LOF) and CHAMELEON in terms of the execution time.

2http://www.cs.umd.edu/∼mount/ANN/
3http://www.cs.berkeley.edu/∼jordan/fasp.html

KASP is about 10 times slower. Figures 11, 12 and 10(a)-(b)

show the backbone and final clusterings for these datasets.

The figures also show the number of points in the original

dataset, and those in the resulting backbone. The 3D datasets

(including the 3D protein dataset in Figure 10 (c)-(d)) ex-

hibit a predominant sparsification effect as compared to a

skeletonization effect. The k parameter used by ABACUS is

shown in Column 4 of Table 1.

4.3 Scalability Results To study the scalability of ABA-

CUS, we used the DS-SCAL dataset, with varying number

of points. The number of noise points in this dataset are set

constant at 5% of the total dataset size. The dimensionality

of the dataset is d = 2 and the number of clusters are fixed at

13. For each dataset k is set at 70. Further, for these results,

we used CHAMELEON (with standard parameters) for the

cluster identification phase.

A B C D E

10K 0.5s 4 0.4s 4.41%

50K 3.0s 4 1.1s 4.07%

100K 5.6s 4 1.6s 5.2%

200K 12.2s 4 7.7s 5.98%

400K 26.5s 4 25.1s 6.94%

600K 40.9s 4 58.7s 6.88%

800K 57.5s 4 109.9s 7.49%

1000K 113.9s 10 10.5s 1.78%

Table 2: ABACUS Scalability Results. The size of the

dataset is varied keeping the noise at 5% of the dataset size

(d = 2, k = 70, C = 30). A: Dataset size (no. of points), B:

Time for t iterations, C: Number of iterations (t), D: Time for

Phase 2, E: Dataset size after t iterations (% of initial size).

The first column in Table 2 specifies the size of the

dataset, the largest being a dataset with 1 million points. The

table breaks down the total execution time of ABACUS into

the time taken by the backbone phase (Column 2) and the

cluster identification phase (Column 4). The number of iter-

ations t, and the size of the final dataset (as a percentage of

the initial dataset) after t iterations are shown in Columns

3 and 5, respectively. We can observe that the time for

backbone identification increases with increasing size of the
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Note the log scale on the y-axis.

datasets. Also, different datasets exhibit varying degrees of

dataset reduction. The time taken by the cluster identifica-

tion phase is proportional to the dataset reduction achieved.

This is evident from the observation that the time taken by

Phase 2 on the 1000K dataset is ten times less than that for

the 800K dataset. This reduction is purely a factor of the

density of the points and also the relative position of the

points. Figure 9 compares the execution time of ABACUS

(a) Swissroll: 19386 points (b) Swissroll: 2471 points

(c) Proteins: 14669 points (d) Proteins: 2023 points

Figure 10: ABACUS on 3D datasets (Initial Data, and

Backbone/Clusters)

with other competing algorithms. For ABACUS the time re-

ported is the total execution time, i.e., time for the iterative

backbone step, and the cluster finding step. We can clearly

observe that as the dataset size increases, ABACUS get pro-

gressively better. ABACUS is about two orders of magni-

tude faster than CHAMELEON, and an order of magnitude

faster than SPARCL(random/LOF; run with K = 100 and

minPts = 15) and DBSCAN. KASP was too slow to be

run on more than 100K points.

(a) Initial DS1: 8000 points (b) Initial DS2: 8000 points

(c) DS1 Backbone: 838 points (d) DS2 Backbone: 909 points

(e) DS1 Clusters (f) DS2 Clusters

Figure 11: ABACUS Results: Initial Dataset, Backbone, and

Final Clustering on DS1 and DS2.

4.4 Results on Real Datasets We applied ABACUS to

several image datasets, containing natural images (NA-

TIMG), as well as satellite images (GEOIMG). For the nat-

ural image results shown in Figure 13, we first applied a pre-

processing step, whereby the RGB (Red-Green-Blue) val-

ues for each pixel in the image are obtained. ABACUS is

then run on the RGB 3D data. For each row in Figure 13,

the original image is followed by the clustering results from

ABACUS and K-Means. It is quite clear that ABACUS

yields a better segmentation/clustering of these images. K-

Means results in clusters that have granularities within them,

whereas ABACUS yields more uniform clusters, i.e., it has a

smoothening effect on the objects, resulting in objects having

uniform color. For instance, the entire pyramid has the same

color using ABACUS (Fig. 13(h)), in contrast to K-Means

results (Fig. 13(i)), where it appears somewhat patchy. Re-

sults for CHAMELEON and KASP are omitted due to space

considerations.

Table 3 shows comparative running time among the



Name |D|(d) C ABACUS (CHAMELEON) K-Means CHAMELEON SPARCL (LOF) KASP

Horse 154401 (3) 5 31.2s 4.5s 868.6s 41.8 1325s

Mushroom 154401 (3) 15 29.3s 18.6s 797.3s - 1589s

Pyramid 154401 (3) 5 11.3s 2.1s 743.2s - 1441s

Road 154401 (3) 4 14.9s 1.9s 779.4s - 1369s

Table 3: Runtime Performance on NATIMG Datasets. K-Means implemented in Matlab.

Name |D|(d) C ABACUS (CHAMELEON) CHAMELEON SPARCL (LOF/Random) KASP

GEOIMG1 37876 (2) 3 7.6s 42.7s 4.4s / 3.6s 103s

GEOIMG2 62417 (2) 10 35.1s 100.5s 21.5s / 5.7s 310s

GEOIMG3 143269 (2) 4 136.3s 519.3s 70.4s / 17.9s -

Table 4: Runtime Performance on GEOIMG Datasets.

(a) Initial DS3: 10000 points (b) Initial DS4: 8000 points

(c) DS3 Backbone: 1077 points (d) DS4 Backbone: 2211 points

(e) DS3 Clusters (f) DS4 Clusters

Figure 12: ABACUS Results: Initial Dataset, Backbone, and

Final Clustering on DS3, and DS4.

competing algorithms on the NATIMG images. The number

of pixels in these images is also shown (the images are

481 × 321 in size, giving a total of 154401 pixels). Due

to its simplicity, K-Means is much faster than ABACUS, but

at the same time, K-Means is sensitive to small variations

in the color space, resulting in inferior clustering quality.

DBSCAN had to be forcefully terminated since it did not

finish even after 6hrs for all the datasets in NATIMG. For

the Mushroom, Pyramid, and Road datasets SPARCL (LOF)

(a) Horse (b) ABACUS (c) K-Means

(d) Mushroom (e) ABACUS (f) K-Means

(g) Pyramid (h) ABACUS (i) K-Means

(j) Road (k) ABACUS (l) K-Means

Figure 13: ABACUS and K-Means on NATIMG: Horse

(C = 5), Mushroom (C = 15), Pyramid (C = 5), and Road

(C = 4).

had to be manually terminated, since it failed to terminate

even after a 30 minutes (probably due to some bug in the

code). We also applied ABACUS to geospatial satellite

imagery. For instance, Figure 14(a) shows the original image



of Baghdad. The image was pre-processed using Sobel

edge mask before a half-toning filter is applied. The half-

toned image is shown in Figure 14(b). Note that the pre-

processing results in clearer half-toning, but does not aid in

the clustering directly. ABACUS with CHAMELEON for

phase two results in the clusters shown in Figure 14(c). As

seen, the clusters correspond to the land masses separated

by the Tigris river. Although SPARCL took less time, the

clustering quality was far inferior, as shown in Figure 14(d).

Figure 14 shows two other examples of applying ABACUS

to geospatial data taken from Earth-as-Art site 4 (Landsat-7

Satellite). Figure 14(e) is a satellite image of the Netherlands

delta region, whereas Figure 14(f) is an image of Himalayan

Snow-capped peaks in China.

Table 4 summarizes the runtime for each algorithm.

The parameters used for SPARCL (LOF) were K =
30,minPts = 15, C = 3. The reduction in the size of

the original GEOIMG1 dataset at the end of phase 1 was

83.6%. For GEOIMG2 and GEOIMG3 again, SPARCL is

more efficient as compared to ABACUS. The reduction ob-

tained at the end of phase 1 of ABACUS for GEOIMG2 and

GEOIMG3 is 55.44% and 56.43%, respectively. This ex-

plains the larger time taken by ABACUS. For all GEOIMG

experiments, we used k = 30. Note that KASP ran out of

memory for GEOIMG3 (we used γ = 15, σ = 100).

Name ABACUS SPARCL CHAME- KASP

(Chameleon) (LOF) LEON

10K 0.91/0.97 0.94/0.96 1.0/1.0 0.43/0.55

50K 0.95/0.97 0.94/0.96 0.99/0.99 0.44/0.56

100K 0.95/0.965 0.91/0.96 0.99/0.99 0.43/0.55

200K 0.95/0.974 0.91/0.95 0.99/0.98 -

400K 0.95/0.974 0.95/0.98 0.99/0.99 -

600K 0.95/0.974 0.91/0.96 0.99/0.99 -

800K 0.99/0.99 0.95/0.98 0.99/0.99 -

1000K 0.95/0.97 0.91/0.95 0.98/0.99 -

Table 5: Clustering quality results on synthetic datasets.

Each entry shows the Purity/NMI Score

4.5 Clustering Quality Results Since arbitrary shaped

clusters do not respect similarity measures in the metric

sense, internal clustering quality measures such as sum-of-

squared error with respect to the cluster mean are essen-

tially meaningless. As a result, we utilize external quality

measures to evaluate the performance of ABACUS. External

quality measures evaluate the clustering quality as compared

to the ground truth clustering. For evaluating the clustering

quality of ABACUS, we use two external criteria – purity

score and Normalized Mutual Information (NMI). Purity is

given by purity(Ca, Cgt) =
1
N

∑i=k

i=0 maxj ‖c
i
a∩c

j
gt‖, where

Ca and Cgt denote the clusterings obtained from ABACUS

and the ground truth, respectively, and cia denotes the ith

4http://earthasart.gsfc.nasa.gov/

(a) GEOIMG-1: Baghdad (b) Sobel filter/halftoning

(c) ABACUS: 3 clusters (d) SPARCL: 3 clusters

(e) GEOIMG-2: Nether-

lands

(f) GEOIMG-3: Hi-

malaya

(g) ABACUS: 10 Clusters (h) ABACUS: 4 clusters

Figure 14: Clusters in the GEOIMG datasets

cluster from Ca. Although purity is a simple measure with

an easy interpretation, it tends to be biased towards a clus-

tering with higher number of clusters. Normalized mutual

information (NMI) overcomes this drawback. NMI is given

by NMI(Ca, Cgt) =
I(Ca;Cgt)

H(Ca)+H(Cgt)

2

where I denotes the mu-

tual information: I(Ca; Cgt) =
∑

k

∑

j

‖cia∩c
j
gt‖

N
log

N‖cia∩c
j
gt‖

‖cia‖‖c
j
gt‖

and H denotes the Entropy:

H(Cm) = −
∑

j

‖cjm‖
N

log
‖cjm‖
N

,m ∈ {a, gt}. Both purity

and NMI scores lie in the range [0, 1].
Before measuring the clustering quality, we eliminate

the noise points, since different algorithms deal with noise

points differently. Note that since we do not know the ground

truth for the real datasets (NATIMG and GEOIMG), and we

also do not know it for the synthetic datasets DS1-DS4, we

cannot use the external quality measures for these datasets.

To evaluate the clustering quality of the different meth-



ods, Table 5 shows the Purity and NMI scores for the syn-

thetic datasets we used earlier in the scalability experiments

(DS-SCAL), where we know the ground truth (i.e., there are

C = 13 true clusters). We can see that the purity score and

NMI are both fairly stable across the methods. The quality

scores for ABACUS are comparable or better to those for

SPARCL. On the other hand, the clustering quality obtained

from CHAMELEON is the best. Note that the memory re-

quirement for KASP makes it inoperable beyond datasets of

size 100K. Also its purity and NMI scores were rather poor.

4.6 Parameter Sensitivity Results We performed experi-

ments to test the sensitivity of ABACUS to the input param-

eter k (number of nearest neighbors). For a given dataset, we

alter k and record the clustering quality. We selected the syn-

thetic dataset with 800K points (2D with 13 clusters) for this

experiment. Figure 15 shows the execution time and purity
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Figure 15: ABACUS: Sensitivity to k, Execution time and

Purity

as the number of nearest neighbors k is increased. For the

range of k shown, clusters remain intact at the end of phase

1. As a result the purity score remains almost the same. Al-

though this might not be true for much higher values of k
for which true clusters can get split. From Figure 15(a) one

can see that the execution time increases linearly as the k pa-

rameter is gradually increased, since the time to compute the

kNN increases linearly with k.

5 Conclusion

In this paper we proposed a scalable and robust algorithm

ABACUS for clustering large spatial point datasets. The

algorithm is based on the notion that each spatial cluster can

be represented by its intrinsic shape, commonly known as the

skeleton within the image processing community and as the

backbone in this work. To identify the backbone, ABACUS

performs two steps (globbing and movement) iteratively,

resulting in a substantially reduced dataset that still captures

the shape of the clusters. Finding clusters in the backbone

amounts to identifying clusters in the original dataset. From

the experimental evaluation we see that the algorithm is

more scalable as compared to contemporary arbitrary shaped

clustering algorithm.

Eliminating the dependency of the second phase of

ABACUS on the number of true clusters is a task for the

future.
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