
6.001 Recitation 14 Solutions
Trees and Search
March 30, 2005

1 Trees As Nested Lists

 Node - leaf or list of children nodes
 Leaf - anything that is not a pair

(define (leaf? obj)
 (not (pair? obj)))
(define test-tree '(1 (2 (3 (4) 5) 6) 7))

Draw the tree:

2 Beam Search

 Like breadth-first search, except it checks only the best n paths of length L before moving
onto paths of length L+1

 Requires some measure of the distance to the goal
 n = width of beam
 n = ∞ => breadth-first search
 n = 1 => depth-first search

3 Best-First Search

 Extends the best partial path so far
 Requires some measureof the distance to the goal

1

4 A* Search

 Start with a one-element queue consisting of a zero-length pat that contains only the root
node

 Loop until the first path in the queue terminates at the goal node or the queue is empty:
 Remove the first path from the queue. Create new paths by extending the first path to

all the neighbors in the terminal node
 Reject all new paths with loops
 If two or more paths reach a common node, keep ony the path that reaches the common

node with the smallest cost and remove all others
 Sort the entire queue by the total path lengthand an estimate of the remaining cost to

reach the goal, with the least-cost paths in front.
 If the goal node is found, announce success. Otherwise, announce failure.
 As long as estimates of the remaining cost are lower bounds, A* search produces optimal

paths to the goal.

5 Tree Manipulation

(define (tree-manip tree init leaf first rest accum)
(cond ((null? tree) init)

 ((leaf? tree) (leaf tree))
 (else (accum

 (tree-manip (first tree) init leaf first rest accum)
 (tree-manip (rest tree) init leaf first rest accum)))))

Use tree-manip to do the following:

a. Take the product of the even-valued leaves of the tree.

(even-product test-tree) => 48
(define (even-product tree)

(tree-manip tree 1 (lambda (a) (if (even? a) a 1))
car cdr *))

b. Flatten the tree.

(flatten test-tree) => (1 2 3 4 5 6 7)

(define (flatten tree)
(tree-manip tree nil list car cdr append))

c. Deep-reverse a tree.

(deep-reverse test-tree) => (7 (6 (5 (4) 3) 2) 1)
(define (deep-reverse tree)

(tree-manip tree nil (lambda (a) a) car cdr
(lambda (a b) (append b (list a)))))

2

d. Sum up the values of the leaves of the tree.

(sum test-tree) => 28
(define (sum tree)

(tree-manip tree 0 (lambda (a) a) car cdr +))

e. Create a new tree that keeps the odd-valued leaves of the original tree within the same tree
structure, but completely removes the even-valued leaves.

(remove-even test-tree) => (1 ((3 5)) 7)
(define (remove-even tree)

(tree-manip tree nil
(lambda (a) (if (even? a) nil a))
car cdr
(lambda (a b)

(if (null? a) b
(append (list a) b)))))

3

