Adjacency Data Structures

material from Justin Legakis

- Orthographic & Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors & Normals
- Surface Definitions
- Simple Data Structures
- Fixed Storage Data Structures
- Fixed Computation Data Structures

Today

- Orthographic & Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors & Normals
- Surface Definitions
- Simple Data Structures
- Fixed Storage Data Structures
- Fixed Computation Data Structures

Color Interpolation

- Interpolate colors of the 3 vertices
- Linear interpolation, barycentric coordinates

glBegin(GL_TRIANGLES); glColor3f(1.0,0.0,0.0); glVertex3f(...); glColor3f(0.0,1.0,0.0); glVertex3f(...); glColor3f(0.0,0.0,1.0); glVertex3f(...); glEnd();

glShadeModel (GL_SMOOTH);

• From OpenGL Reference Manual:

- Smooth shading, the default, causes the computed colors of vertices to be interpolated as the primitive is rasterized, typically assigning different colors to each resulting pixel fragment.
- Flat shading selects the computed color of just one vertex and assigns it to all the pixel fragments generated by rasterizing a single primitive.
- In either case, the computed color of a vertex is the result of lighting if lighting is enabled, or it is the current color at the time the vertex was specified if lighting is disabled.

- Orthographic & Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors & Normals
- Surface Definitions
 - Well-Formed Surfaces
 - Orientable Surfaces
 - Computational Complexity
- Simple Data Structures
- Fixed Storage Data Structures
- Fixed Computation Data Structures

Computational Complexity

- Access Time
 - linear, constant time average case, or constant time?requires loops/recursion/if?
- Memory
 - variable size arrays or constant size?
- Maintenance
 - ease of editing
 - ensuring consistency

Questions?

- Orthographic & Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors & Normals
- Surface Definitions
- Simple Data Structures
 - List of Polygons
 - List of Edges
 - List of Unique Vertices & Indexed Faces:
 - Simple Adjacency Data Structure
- Fixed Storage Data Structures
- Fixed Computation Data Structures

Mesh Data

- So, in addition to:
 - Geometric Information (position)
 - Attribute Information (color, texture, temperature, population density, etc.)
- Let's store:
 - Topological Information (adjacency, connectivity)

- Orthographic & Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors & Normals
- Surface Definitions
- Simple Data Structures
- Fixed Storage Data Structures - Winged Edge (Baumgart, 1975)
- Fixed Computation Data Structures

Questions?

Today

- Orthographic & Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors & Normals
- Surface Definitions
- Simple Data Structures
- Fixed Storage Data Structures
- Fixed Computation Data Structures
 - HalfEdge (Eastman, 1982)
 - SplitEdge
 - CornerQuadEdge (Guibas and Stolfi, 1985)
 - FacetEdge (Dobkin and Laszlo, 1987)

HalfEdge (Eastman, 1982)

- Loop around a Face:
 - HalfEdgeMesh::FaceLoop(HalfEdge *HE) {
 HalfEdge *loop = HE;
 do {
 loop = loop->Next;
 - } while (loop != HE);
 - }
- Loop around a Vertex:
 - HalfEdgeMesh::VertexLoop(HalfEdge *HE) {
 HalfEdge *loop = HE;
 do {
 loop = loop->Next->Sym;
 }
 - } while (loop != HE);
 - }

HalfEdge (Eastman, 1982)

- Data Structure Size?
- FixedData:
 - geometric information stored at Vertices
 - attribute information in Vertices, HalfEdges, and/or Faces
 - topological information in HalfEdges only!
- Orientable surfaces only (no Mobius Strips!)
- Local consistency everywhere implies global consistency
- Time Complexity? linear in the amount of information gathered

