Adjacency Data Structures

material from Justin Legakis

Today

- Orthographic \& Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors \& Normals
- Surface Definitions
- Simple Data Structures
- Fixed Storage Data Structures
- Fixed Computation Data Structures

Simple Orthographic Projection

- Project all points along the z axis to the $z=0$ plane

$$
\left(\begin{array}{l}
x \\
y \\
0 \\
1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

Last Time?

- Simple Transformations

- Classes of Transformations
- Representation
- homogeneous coordinates
- Composition
- not commutative

Orthographic vs. Perspective

- Orthographic

- Perspective

Simple Perspective Projection

- Project all points along the z axis to the $z=d$ plane, eyepoint at the origin:

OpenGL Basics: GL_POINTS

glDisable(GL_LIGHTING); glBegin(GL_POINTS); glColor3f(0.0, 0.0,0.0); glvertex3f(...); glEnd();

- lighting should be disabled...

In the limit, as $d \rightarrow \infty$
this perspective
projection matrix...
$\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 / d & 1\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Today

- Orthographic \& Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors \& Normals
- Surface Definitions
- Simple Data Structures
- Fixed Storage Data Structures
- Fixed Computation Data Structures

OpenGL Basics: Transformations

- Useful commands:
gIMatrixMode(GL_MODELVIEW); glPushMatrix();
glPopMatrix(); glMultMatrixf(...);

Today

- Orthographic \& Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors \& Normals
- Surface Definitions
- Simple Data Structures
- Fixed Storage Data Structures
- Fixed Computation Data Structures

glShadeModel (GL_SMOOTH);

- From OpenGL Reference Manual:
- Smooth shading, the default, causes the computed colors of vertices to be interpolated as the primitive is rasterized, typically assigning different colors to each resulting pixel fragment.
- Flat shading selects the computed color of just one vertex and assigns it to all the pixel fragments generated by rasterizing a single primitive.
- In either case, the computed color of a vertex is the result of lighting if lighting is enabled, or it is the current color at the time the vertex was specified if lighting is disabled.

Questions?

Image by Henrik Wann Jensen

Color Interpolation

- Interpolate colors of the 3 vertices
- Linear interpolation, barycentric coordinates

Normal Interpolation

Gouraud Shading

- Instead of shading with the normal of the triangle, we'll shade the vertices with the average normal and interpolate the shaded color across each face

- How do we compute Average Normals? Is it expensive??

Questions?

Today

- Orthographic \& Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors \& Normals
- Surface Definitions
- Well-Formed Surfaces
- Orientable Surfaces
- Computational Complexity
- Simple Data Structures
- Fixed Storage Data Structures
- Fixed Computation Data Structures

Well-Formed Surfaces

- Components Intersect "Properly"

Faces are: disjoint, share single Vertex, or share 2 Vertices and the Edge joining them

- Every edge is incident to exactly 2 vertices
- Every edge is incident to exactly 2 faces
- Local Topology is "Proper"
- Neighborhood of a vertex is homeomorphic to a disk (permits stretching and bending, but not tearing)
- Called a 2-manifold
- Boundaries: half-disk, "manifold with boundaries"
- Global Topology is "Proper"
- Connected
- Closed
- Bounded

Closed Surfaces and Refraction

- Original Teapot model is not "watertight": intersecting surfaces at spout \& handle, no bottom, a hole at the spout tip, a gap between lid \& base
- Requires repair before ray tracing with refraction

Computational Complexity

- Access Time
- linear, constant time average case, or constant time?
- requires loops/recursion/if?
- Memory
- variable size arrays or constant size?
- Maintenance
- ease of editing
- ensuring consistency

Today

- Orthographic \& Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors \& Normals
- Surface Definitions
- Simple Data Structures
- List of Polygons
- List of Edges
- List of Unique Vertices \& Indexed Faces:
- Simple Adjacency Data Structure
- Fixed Storage Data Structures
- Fixed Computation Data Structures

List of Edges:

$(3,6,2),(-6,2,4)$
$(2,2,4),(0,-1,-2)$
$(9,4,0),(4,2,9)$
$(8,8,7),(-4,-5,1)$
$(-8,2,7),(1,2,-7)$
$(3,0,-3),(-7,4,-3)$
$(9,4,0),(4,2,9)$
$(3,6,2),(-6,2,4)$
$(-3,0,-4),(7,-3,-4)$

Questions?

List of Polygons:

$(3,-2,5),(3,6,2),(-6,2,4)$
$(2,2,4),(0,-1,-2),(9,4,0),(4,2,9)$
$(1,2,-2),(8,8,7),(-4,-5,1)$
$(-8,2,7),(-2,3,9),(1,2,-7)$

List of Unique Vertices \& Indexed Faces:
Vertices: (-1, -1, -1)
(-1, -1, 1)
$(-1,1,-1)$
$(-1,1,1)$
(1, -1, -1)
(1, -1, 1)
(1, 1, -1)
$(1,1,1)$
Faces: 1243
5786
1562
3487
1375
2684

Problems with Simple Data Structures

- No Adjacency Information
- Linear-time Searches

Structured

Unstructured

- Adjacency is implicit for structured meshes, but what do we do for unstructured meshes?

Simple Adjacency

- Each element (vertex, edge, and face) has a list of pointers to all incident elements
- Queries depend only on local complexity of mesh
- Data structures do not have fixed size
- Slow! Big! Too much work to maintain!

Today

- Orthographic \& Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors \& Normals
- Surface Definitions
- Simple Data Structures
- Fixed Storage Data Structures
- Winged Edge (Baumgart, 1975)
- Fixed Computation Data Structures

Mesh Data

- So, in addition to:
- Geometric Information (position)
- Attribute Information (color, texture,
temperature, population density, etc.)
- Let's store:
- Topological Information (adjacency, connectivity)

Questions?

Winged Edge (Baumgart, 1975)

- Each edge stores pointers to 4 Adjacent Edges
- Vertices and Faces have a single pointer to one incident Edge
- Data Structure Size? Fixed
- How do we gather all faces surrounding one vertex? Messy, because there is no consistent way to order pointers

Questions?

HalfEdge (Eastman, 1982)

- Every edge is represented by two directed HalfEdge structures
- Each HalfEdge stores:
- vertex at end of directed edge
- symmetric half edge
- face to left of edge
- next points to the HalfEdge counter-clockwise around face on left
- Orientation is essential, but can be done consistently!

- Loop around a Face:

HalfEdgeMesh::FaceLoop (HalfEdge *HE) \{ HalfEdge *loop = HE; do \{
loop = loop->Next;
\} while (loop != HE);
\}

- Loop around a Vertex:

HalfEdgeMesh::VertexLoop(HalfEdge *HE) \{
HalfEdge *loop = HE;
do \{
loop = loop->Next->Sym;
\} while (loop != HE);
\}

Today

- Orthographic \& Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors \& Normals
- Surface Definitions
- Simple Data Structures
- Fixed Storage Data Structures
- Fixed Computation Data Structures
- HalfEdge (Eastman, 1982)
- SplitEdge
- Corner
- QuadEdge (Guibas and Stolfi, 1985)
- FacetEdge (Dobkin and Laszlo, 1987)

HalfEdge (Eastman, 1982)

- Starting at half edge HE, how do we find:
the other vertex of the edge? the other face of the edge? the clockwise edge around the face at the left? all the edges surrounding the face at the left?
all the faces surrounding the vertex?

HalfEdge (Eastman, 1982)

- Data Structure Size?

Fixed

- Data:
- geometric information stored at Vertices
- attribute information in Vertices, HalfEdges, and/or Faces
- topological information in HalfEdges only!
- Orientable surfaces only (no Mobius Strips!)
- Local consistency everywhere implies global consistency
- Time Complexity?
linear in the amount of information gathered

SplitEdge Data Structure:

- HalfEdge and SplitEdge are dual structures! SplitEdgeMesh::FaceLoop() = HalfEdgeMesh::VertexLoop() SplitEdgeMesh::VertexLoop() = HalfEdgeMesh::FaceLoop()

Today

- Orthographic \& Perspective Projections
- OpenGL Basics
- Averaging Vertex Colors \& Normals
- Surface Definitions
- Simple Data Structures
- Fixed Storage Data Structures
- Fixed Computation Data Structures
- HalfEdge (Eastman, 1982)
- SplitEdge
- Corner
- QuadEdge (Guibas and Stolfi, 1985)
- FacetEdge (Dobkin and Laszlo, 1987)

QuadEdge (Guibas and Stolfi, 1985)

- Some Properties of Flip, Sym, Rot, and Onext:
$-\mathrm{e} \mathrm{Rot}^{4}=\mathrm{e}$
- e $\operatorname{Rot}^{2} \neq \mathrm{e}$
- e Flip ${ }^{2}=\mathrm{e}$
- e Flip Rot Flip Rot $=$ e
- e Rot Flip Rot Flip = e
- e Rot Onext Rot Onext = e
- e Flip Onext Flip Onext = e
- e Flip ${ }^{-1}=$ e Flip
- e Sym = e Rot ${ }^{2}$
$-\mathrm{e} \operatorname{Rot}^{1}=\mathrm{e} \operatorname{Rot}^{3}$
-e Rot $^{1}=\mathrm{e}$ Flip Rot Flip
- e Onext ${ }^{-1}=\mathrm{e}$ Rot Onext Rot

QuadEdge (Guibas and Stolfi, 1985)

- Other Useful Definitions:
- e Lnext $=$ e Rot ${ }^{-1}$ Onext Rot
- e Rnext = e Rot Onext Rot ${ }^{-1}$
- e Dnext $=$ e Sym Onext Sym ${ }^{-1}$
- e Oprev $=$ e Onext ${ }^{-1}=$ e Rot Onext Rot
- e Lprev $=$ e Lnext ${ }^{-1}=$ e Onext Sym
- eRprev $=$ e Rnext ${ }^{-1}=$ e Sym Onext
- e Dprev $=$ e Dnext ${ }^{-1}=$ e Rot $^{-1}$ Onext Rot
- All of these functions can be expressed as a constant number of Rot, Sym, Flip, and Onext operations independent of the local topology and the global size and complexity of the mesh.

FacetEdge (Dobkin and Laszlo, 1987)
Questions?

