
1

Adjacency Data Structures

material from Justin Legakis

Last Time?
• Simple Transformations

• Classes of Transformations
• Representation

– homogeneous coordinates
• Composition

– not commutative

Today
• Orthographic & Perspective Projections
• OpenGL Basics
• Averaging Vertex Colors & Normals
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures

Orthographic vs. Perspective
• Orthographic

• Perspective

Simple Orthographic Projection
• Project all points along the z axis to the z = 0 plane

x
y
0
1

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0
0

0
0
0
1

• Project all points along the z axis to the z = d plane,
eyepoint at the origin:

Simple Perspective Projection

x
y
z

z / d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1

1/d

0
0
0
0

x * d / z
y * d / z

d
1

=

homogenize

2

Alternate Perspective Projection
• Project all points along the z axis to the z = 0

plane, eyepoint at the (0,0,-d):

x
y
0

(z + d)/ d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0

1/d

0
0
0
1

x * d / (z + d)
y * d / (z + d)

0
1

=

homogenize

In the limit, as d →∞

1
0
0
0

0
1
0
0

0
0
0

1/d

0
0
0
1

1
0
0
0

0
1
0
0

0
0
0
0

0
0
0
1

→

...is simply an
orthographic projection

this perspective
projection matrix...

Questions? Today
• Orthographic & Perspective Projections
• OpenGL Basics
• Averaging Vertex Colors & Normals
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures

OpenGL Basics: GL_POINTS

glDisable(GL_LIGHTING);

glBegin(GL_POINTS);

glColor3f(0.0,0.0,0.0);

glVertex3f(…);

glEnd();

• lighting should be disabled...

OpenGL Basics: GL_QUADS

glEnable(GL_LIGHTING);
glBegin(GL_QUADS);
glNormal3f(…);
glColor3f(1.0,0.0,0.0);
glVertex3f(…);
glVertex3f(…);
glVertex3f(…);
glVertex3f(…);
glEnd();

• lighting should be enabled...
• an appropriate normal should be specified

3

OpenGL Basics: Transformations
• Useful commands:

glMatrixMode(GL_MODELVIEW);

glPushMatrix();

glPopMatrix();

glMultMatrixf(…);

From OpenGL Reference Manual

Questions?

Image by Henrik Wann Jensen

Today
• Orthographic & Perspective Projections
• OpenGL Basics
• Averaging Vertex Colors & Normals
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures

Color Interpolation
• Interpolate colors of the 3 vertices
• Linear interpolation, barycentric coordinates

glBegin(GL_TRIANGLES);
glColor3f(1.0,0.0,0.0);
glVertex3f(…);
glColor3f(0.0,1.0,0.0);
glVertex3f(…);
glColor3f(0.0,0.0,1.0);
glVertex3f(…);
glEnd();

glShadeModel (GL_SMOOTH);
• From OpenGL Reference Manual:

– Smooth shading, the default, causes the computed
colors of vertices to be interpolated as the primitive is
rasterized, typically assigning different colors to each
resulting pixel fragment.

– Flat shading selects the computed color of just one
vertex and assigns it to all the pixel fragments
generated by rasterizing a single primitive.

– In either case, the computed color of a vertex is the
result of lighting if lighting is enabled, or it is the
current color at the time the vertex was specified if
lighting is disabled.

Normal Interpolation

scan conversion
gouraud shading

ray tracing

scan conversion
flat shading

glBegin(GL_TRIANGLES);
glNormal3f(…);
glVertex3f(…);
glNormal3f(…);
glVertex3f(…);
glNormal3f(…);
glVertex3f(…);
glEnd();

4

Gouraud Shading
• Instead of shading with the normal of the triangle,

we’ll shade the vertices with the average normal
and interpolate the shaded color across each face

• How do we compute Average Normals? Is it expensive??

Questions?

Today
• Orthographic & Perspective Projections
• OpenGL Basics
• Averaging Vertex Colors & Normals
• Surface Definitions

– Well-Formed Surfaces
– Orientable Surfaces
– Computational Complexity

• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures

Well-Formed Surfaces
• Components Intersect "Properly"

– Faces are: disjoint, share single Vertex, or
share 2 Vertices and the Edge joining them

– Every edge is incident to exactly 2 vertices
– Every edge is incident to exactly 2 faces

• Local Topology is "Proper"
– Neighborhood of a vertex is homeomorphic to a disk

(permits stretching and bending, but not tearing)
– Called a 2-manifold
– Boundaries: half-disk, "manifold with boundaries"

• Global Topology is "Proper"
– Connected
– Closed
– Bounded

Orientable Surfaces?

from mathworld.wolfram.com

Closed Surfaces and Refraction
• Original Teapot model is not "watertight":

intersecting surfaces at spout & handle, no bottom,
a hole at the spout tip, a gap between lid & base

• Requires repair before ray tracing with refraction

Henrik Wann Jensen

5

Computational Complexity
• Access Time

– linear, constant time average case, or constant time?
– requires loops/recursion/if ?

• Memory
– variable size arrays or constant size?

• Maintenance
– ease of editing
– ensuring consistency

Questions?

Today
• Orthographic & Perspective Projections
• OpenGL Basics
• Averaging Vertex Colors & Normals
• Surface Definitions
• Simple Data Structures

– List of Polygons
– List of Edges
– List of Unique Vertices & Indexed Faces:
– Simple Adjacency Data Structure

• Fixed Storage Data Structures
• Fixed Computation Data Structures

List of Polygons:

(3,-2,5), (3,6,2), (-6,2,4)

(2,2,4), (0,-1,-2), (9,4,0), (4,2,9)

(1,2,-2), (8,8,7), (-4,-5,1)

(-8,2,7), (-2,3,9), (1,2,-7)

List of Edges:

(3,6,2), (-6,2,4)

(2,2,4), (0,-1,-2)

(9,4,0), (4,2,9)

(8,8,7), (-4,-5,1)

(-8,2,7), (1,2,-7)

(3,0,-3), (-7,4,-3)

(9,4,0), (4,2,9)

(3,6,2), (-6,2,4)

(-3,0,-4), (7,-3,-4)

List of Unique Vertices & Indexed Faces:

(-1, -1, -1)
(-1, -1, 1)
(-1, 1, -1)
(-1, 1, 1)
(1, -1, -1)
(1, -1, 1)
(1, 1, -1)
(1, 1, 1)

1 2 4 3
5 7 8 6
1 5 6 2
3 4 8 7
1 3 7 5
2 6 8 4

Vertices:

Faces:

6

Problems with Simple Data Structures

• No Adjacency Information
• Linear-time Searches

• Adjacency is implicit for structured meshes, but
what do we do for unstructured meshes?

Mesh Data
• So, in addition to:

– Geometric Information (position)
– Attribute Information (color, texture,

temperature, population density, etc.)
• Let’s store:

– Topological Information (adjacency, connectivity)

Simple Adjacency
• Each element (vertex, edge, and face) has a list of

pointers to all incident elements
• Queries depend only on local complexity of mesh
• Data structures do not have fixed size
• Slow! Big! Too much work to maintain!

Questions?

Today
• Orthographic & Perspective Projections
• OpenGL Basics
• Averaging Vertex Colors & Normals
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures

– Winged Edge (Baumgart, 1975)
• Fixed Computation Data Structures

Winged Edge (Baumgart, 1975)
• Each edge stores pointers

to 4 Adjacent Edges
• Vertices and Faces

have a single pointer
to one incident Edge

• Data Structure Size?
Fixed

• How do we gather all faces
surrounding one vertex?
Messy, because there
is no consistent way
to order pointers

VERTEX

EDGE

FACE

7

Questions? Today
• Orthographic & Perspective Projections
• OpenGL Basics
• Averaging Vertex Colors & Normals
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures

– HalfEdge (Eastman, 1982)
– SplitEdge
– Corner
– QuadEdge (Guibas and Stolfi, 1985)
– FacetEdge (Dobkin and Laszlo, 1987)

HalfEdge (Eastman, 1982)
• Every edge is represented by two directed

HalfEdge structures
• Each HalfEdge stores:

– vertex at end of
directed edge

– symmetric half edge
– face to left of edge
– next points to the

HalfEdge counter-clockwise
around face on left

• Orientation is essential, but
can be done consistently!

HalfEdge (Eastman, 1982)
• Starting at half edge HE, how do we find:

the other vertex of the edge?
the other face of the edge?
the clockwise edge around

the face at the left?
all the edges surrounding

the face at the left?
all the faces surrounding

the vertex?

HalfEdge (Eastman, 1982)
• Loop around a Face:

HalfEdgeMesh::FaceLoop(HalfEdge *HE) {
HalfEdge *loop = HE;
do {

loop = loop->Next;
} while (loop != HE);

}

• Loop around a Vertex:
HalfEdgeMesh::VertexLoop(HalfEdge *HE) {

HalfEdge *loop = HE;
do {

loop = loop->Next->Sym;
} while (loop != HE);

}

HalfEdge (Eastman, 1982)
• Data Structure Size?

Fixed
• Data:

– geometric information stored at Vertices
– attribute information in Vertices, HalfEdges, and/or Faces
– topological information in HalfEdges only!

• Orientable surfaces only (no Mobius Strips!)
• Local consistency everywhere implies global

consistency
• Time Complexity?

linear in the amount of information gathered

8

SplitEdge Data Structure:

• HalfEdge and SplitEdge are dual structures!
SplitEdgeMesh::FaceLoop() = HalfEdgeMesh::VertexLoop()

SplitEdgeMesh::VertexLoop() = HalfEdgeMesh::FaceLoop()

Corner Data Structure:
• The Corner data structure is its own dual!

Questions? Today
• Orthographic & Perspective Projections
• OpenGL Basics
• Averaging Vertex Colors & Normals
• Surface Definitions
• Simple Data Structures
• Fixed Storage Data Structures
• Fixed Computation Data Structures

– HalfEdge (Eastman, 1982)
– SplitEdge
– Corner
– QuadEdge (Guibas and Stolfi, 1985)
– FacetEdge (Dobkin and Laszlo, 1987)

QuadEdge (Guibas and Stolfi, 1985)
• Consider the Mesh and its Dual simultaneously

– Vertices and Faces switch roles, we just re-label them
– Edges remain Edges

• Now there are eight ways
to look at each edge
– Four ways to look

at primal edge
– Four ways to look

at dual edge

QuadEdge (Guibas and Stolfi, 1985)
• Relations Between Edges: Edge Algebra
• Elements in Edge Algebra:

– Each of 8 ways to look at each edge

• Operators in
Edge Algebra:
– Rot: Bug rotates 90 degrees to its left
– Sym: Bug turns around 180 degrees
– Flip: Bug flips up-side down
– Onext: Bug rotates CCW about

its origin (either Vertex or Face)

9

QuadEdge (Guibas and Stolfi, 1985)
• Some Properties of Flip, Sym, Rot, and Onext:

– e Rot4 = e
– e Rot2 ≠ e
– e Flip2 = e
– e Flip Rot Flip Rot = e
– e Rot Flip Rot Flip = e
– e Rot Onext Rot Onext = e
– e Flip Onext Flip Onext = e
– e Flip-1 = e Flip
– e Sym = e Rot2

– e Rot-1 = e Rot3

– e Rot-1 = e Flip Rot Flip
– e Onext-1 = e Rot Onext Rot
– e Onext-1 = e Flip Onext Flip

QuadEdge (Guibas and Stolfi, 1985)
• Other Useful Definitions:

– e Lnext = e Rot-1 Onext Rot
– e Rnext = e Rot Onext Rot-1

– e Dnext = e Sym Onext Sym-1

– e Oprev = e Onext-1 = e Rot Onext Rot
– e Lprev = e Lnext-1 = e Onext Sym
– e Rprev = e Rnext-1 = e Sym Onext
– e Dprev = e Dnext-1 = e Rot-1 Onext Rot

• All of these functions can be
expressed as a constant number of
Rot, Sym, Flip, and Onext operations
independent of the local topology and
the global size and complexity of the mesh.

FacetEdge (Dobkin and Laszlo, 1987)
• QuadEdge (2D, surface) → FacetEdge (3D, volume)
• Faces → Polyhedra / Cells
• Edge → Polygon & Edge pair

Questions?

For Next Time:
• Read Hugues Hoppe “Progressive Meshes”

SIGGRAPH 1996

