

Today

- Spline Surfaces / Patches
- Tensor Product
- Bilinear Patches
- Bezier Patches
- Subdivision Surfaces

Tensor Product

- Of two vectors:
$\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right] \otimes\left[\begin{array}{llll}b_{1} & b_{2} & b_{3} & b_{4}\end{array}\right]=\left[\begin{array}{lll}a_{1} b_{1} & a_{2} b_{1} & a_{3} b_{1} \\ a_{1} b_{2} & a_{2} b_{2} & a_{3} b_{2} \\ a_{1} b_{3} & a_{2} b_{3} & a_{3} b_{3} \\ a_{1} b_{4} & a_{2} b_{4} & a_{3} b_{4}\end{array}\right]$
- Similarly, we can define a surface as the tensor product of two curves....

Bilinear Patch

- Smooth version of quadrilateral with non-planar vertices...

- But will this help us model smooth surfaces?
- Do we have control of the derivative at the edges?

Bicubic Bezier Patch Tessellation

- Given 16 control points and a tessellation resolution, we can create a triangle mesh

resolution:
5×5 vertices

resolution: 11×11 vertices
 resolution:

Editing Bicubic Bezier Patches

Curve Basis Functions

Surface Basis Functions

- Original Teapot specified with Bezier Patches

- But it's not "watertight": it has intersecting surfaces at spout \& handle, no bottom, a hole at the spout tip, a gap between lid \& base

Subdivision Surfaces

- Subdivision Zoo
- Doo Sabin (anything!)
- Loop (triangles only)
- Catmull Clark (turns everything into quads)
- ... many others!
- Subdivision for Texture Coordinates

Doo-Sabin Subdivision

http://www.ke.ics.saitama-u.ac.jp/xuz/pic/doo-sabin.gif

Loop Subdivision

Shirley, Fundamentals of Computer Graphics

